• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無(wú)界域上一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在唯一性

    2023-06-21 09:20:39鄧海斌李曉軍

    鄧海斌 李曉軍

    摘要:研究定義在無(wú)界區(qū)域上的一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在性和唯一性.利用方程主部算子在權(quán)空間L2ρ(Rd+)上生成算子半群的指數(shù)衰減性,對(duì)方程的解進(jìn)行整體期望有界估計(jì),并得到隨機(jī)穩(wěn)態(tài)解的存在性和指數(shù)穩(wěn)定性,進(jìn)而得到穩(wěn)態(tài)解的分布為唯一的不變測(cè)度.

    關(guān)鍵詞:隨機(jī)反應(yīng)擴(kuò)散方程; 不變測(cè)度; 指數(shù)穩(wěn)定

    中圖分類號(hào):O175.26 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2023)05-0608-08

    1相關(guān)引理和概念

    2穩(wěn)態(tài)解的指數(shù)穩(wěn)定性和一致有界性

    3不變測(cè)度的存在唯一性

    參考文獻(xiàn)

    [1] DA PRATO G, ZABCZYK J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press,1996.

    [2] DA PRATO G, ZABCZYK J. Stochastic Equations in Infinite Dimensions[M]. Cambridge:Cambridge University Press,1992.

    [3] CERRAI S. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term[J]. Probability Theory and Related Fields,2003,125(2):271-304.

    [4] WANG B X. Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise[J].Journal of Differential Equations,2019,268(1):1-59.

    [5] MISIATS O, STANZHYTSKYI O, YIP N K. Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains[J]. Journal of Theoretical Probability,2016,29(3):996-1026.

    [6] ASSING S, MANTHEY R. Invariant measures for stochastic heat equations with unbounded coefficients[J]. Stochastic Processes and Their Applications,2003,103(2):237-256.

    [7] BRZEZNIAK Z, MOTYL E, ONDREJAT M. Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains[J]. The Annals of Probability,2017,45(5):3145-3201.

    [8] ECKMANN J, HAIRER M. Invariant measures for stochastic partial differential equations in unbounded domains[J]. Nonlinearity,2001,14(1):133-151.

    [9] TESSITORE G, ZABCZYK J. Invariant measures for stochastic heat equations[J]. Probability and Mathematical Statistics,1998,18(2):271-287.

    [10] BRZENIAK Z, ONDREJT M, SEIDLER J. Invariant measures for stochastic nonlinear beam and wave equations[J]. Journal of Differential Equations,2016,260(5):4157-4179.

    Existence and Uniqueness of Invariant Measures for a Class of

    Stochastic Reaction-Diffusion Equations on Unbounded DomainsDENG Haibin,LI Xiaojun(College of Science, Hohai University, Nanjing 211100, Jiangsu)

    Abstract:In this paper, we study the existence and uniqueness of invariant measures for a class of stochastic reaction-diffusion equations defined on unbounded domains. Using the exponential decay of the operator semigroup generated by the linear operator of the equation on the weight space L2ρ(Rd+), we get the global boundness of expectation estimation of solution, obtain the existence and exponential stability of the stochastic stationary solution, and deduce that the distribution of the stationary solution is the unique invariant measure.

    Keywords:stochastic reaction-diffusion equations; invariant measure; exponential stability 〖=〗

    2020 MSC:35K57; 60H15

    (編輯 余毅)

    抚松县| 广河县| 英山县| 杂多县| 渭南市| 图们市| 新民市| 泸定县| 家居| 龙口市| 鲁甸县| 松潘县| 高雄市| 比如县| 克山县| 塘沽区| 山阴县| 柏乡县| 酉阳| 沙坪坝区| 青岛市| 赣榆县| 阜新市| 津市市| 呼和浩特市| 大新县| 六安市| 黄大仙区| 大丰市| 环江| 永兴县| 顺平县| 珲春市| 沙洋县| 积石山| 新巴尔虎左旗| 碌曲县| 屏东市| 宁南县| 保德县| 定边县|