• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      無(wú)界域上一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在唯一性

      2023-06-21 09:20:39鄧海斌李曉軍

      鄧海斌 李曉軍

      摘要:研究定義在無(wú)界區(qū)域上的一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在性和唯一性.利用方程主部算子在權(quán)空間L2ρ(Rd+)上生成算子半群的指數(shù)衰減性,對(duì)方程的解進(jìn)行整體期望有界估計(jì),并得到隨機(jī)穩(wěn)態(tài)解的存在性和指數(shù)穩(wěn)定性,進(jìn)而得到穩(wěn)態(tài)解的分布為唯一的不變測(cè)度.

      關(guān)鍵詞:隨機(jī)反應(yīng)擴(kuò)散方程; 不變測(cè)度; 指數(shù)穩(wěn)定

      中圖分類號(hào):O175.26 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2023)05-0608-08

      1相關(guān)引理和概念

      2穩(wěn)態(tài)解的指數(shù)穩(wěn)定性和一致有界性

      3不變測(cè)度的存在唯一性

      參考文獻(xiàn)

      [1] DA PRATO G, ZABCZYK J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press,1996.

      [2] DA PRATO G, ZABCZYK J. Stochastic Equations in Infinite Dimensions[M]. Cambridge:Cambridge University Press,1992.

      [3] CERRAI S. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term[J]. Probability Theory and Related Fields,2003,125(2):271-304.

      [4] WANG B X. Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise[J].Journal of Differential Equations,2019,268(1):1-59.

      [5] MISIATS O, STANZHYTSKYI O, YIP N K. Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains[J]. Journal of Theoretical Probability,2016,29(3):996-1026.

      [6] ASSING S, MANTHEY R. Invariant measures for stochastic heat equations with unbounded coefficients[J]. Stochastic Processes and Their Applications,2003,103(2):237-256.

      [7] BRZEZNIAK Z, MOTYL E, ONDREJAT M. Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains[J]. The Annals of Probability,2017,45(5):3145-3201.

      [8] ECKMANN J, HAIRER M. Invariant measures for stochastic partial differential equations in unbounded domains[J]. Nonlinearity,2001,14(1):133-151.

      [9] TESSITORE G, ZABCZYK J. Invariant measures for stochastic heat equations[J]. Probability and Mathematical Statistics,1998,18(2):271-287.

      [10] BRZENIAK Z, ONDREJT M, SEIDLER J. Invariant measures for stochastic nonlinear beam and wave equations[J]. Journal of Differential Equations,2016,260(5):4157-4179.

      Existence and Uniqueness of Invariant Measures for a Class of

      Stochastic Reaction-Diffusion Equations on Unbounded DomainsDENG Haibin,LI Xiaojun(College of Science, Hohai University, Nanjing 211100, Jiangsu)

      Abstract:In this paper, we study the existence and uniqueness of invariant measures for a class of stochastic reaction-diffusion equations defined on unbounded domains. Using the exponential decay of the operator semigroup generated by the linear operator of the equation on the weight space L2ρ(Rd+), we get the global boundness of expectation estimation of solution, obtain the existence and exponential stability of the stochastic stationary solution, and deduce that the distribution of the stationary solution is the unique invariant measure.

      Keywords:stochastic reaction-diffusion equations; invariant measure; exponential stability 〖=〗

      2020 MSC:35K57; 60H15

      (編輯 余毅)

      达州市| 南投市| 兴山县| 双流县| 秦皇岛市| 镇赉县| 沙坪坝区| 新营市| 宜川县| 新邵县| 黑水县| 徐州市| 瑞安市| 凤翔县| 龙州县| 顺平县| 保康县| 滕州市| 徐州市| 武威市| 洛隆县| 常州市| 郓城县| 白水县| 酒泉市| 新乐市| 酉阳| 信丰县| 大荔县| 黄骅市| 平罗县| 兖州市| 抚松县| 方正县| 米脂县| 宁津县| 星子县| 乌恰县| 静安区| 公安县| 南澳县|