楊志 夏福全
摘要:在實Hilbert空間中提出求解單調變分不等式的慣性次梯度外梯度算法,其中變分不等式的可行集是一個光滑凸函數(shù)的水平集.新算法應用慣性加速技巧,迭代過程中對映射F賦值一次,并只需向兩個半空間作投影兩次.在適當?shù)募僭O下,證明該算法的弱收斂性.新算法改進和推廣相關文獻中的相應結果.
關鍵詞:次梯度外梯度算法; 單調; Lipschitz連續(xù); 慣性方法; 變分不等式
中圖分類號:O117; O178 文獻標志碼:A 文章編號:1001-8395(2023)05-0591-10
1預備知識
2算法
3收斂性分析
4數(shù)值結果
參考文獻
[1] FACCHINEI F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York:Springer-Verlag,2003.
[2] NAGURNEY A. Network Economic:A Variational Inequality Approach[M]. Berlin:Springer-Verlag,1999.
[3] KARAMARDIAN S. Generalized complementarity problem[J]. Journal of Optimization Theory and Applications,1971,8(3):161-168.
[4] DUVAUT G, LIONS J L, JOHN C W, et al. Inequalities in Mechanics and Physics[M]. Berlin:Springer-Verlag,1976.
[5] KORPELEVICH G M. An extragradient method for finding saddle points and for other problems[J]. Matecon,1976,12:747-756.
[6] CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and Applications,2011,148(2):318-335.
[7] HE S, WU T. A modified subgradient extragradient method for solving monotone variational inequalities[J]. Journal of Inequalities and Applications,2017,2017(1):1-14.
[8] CAO Y, GUO K. On the convergence of inertial two-subgradient extragradient method for variational inequality problems[J]. Optimization,2020,69(6):1237-1253.
[9] 陳家欣,葉明露. 一種新的求解變分不等式的慣性雙次梯度外梯度算法[J]. 數(shù)學進展,2022,51(1):165-182.
[10] MALITSKY Y V, SEMENOV V V. An extragradient algorithm for monotone variational inequalities[J]. Cybern Sys Anal,2014,50(2):271-277.
[11] GIBALI A, VAN HIEU D. A new inertial double-projection method for solving variational inequalities[J]. Journal of Fixed Point Theory and Applications,2019,21(4):1-21.
[12] BAUSCHKE H H, COMBETTES P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces[M]. New York:Springer-Verlag,2017.
[13] ZDZISAW O. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J]. Bulletin of the American Mathematical Society,1967,73(4):591-598.
[14] YE M L. An improved projection method for solving generalized variational inequality problems[J]. Optimization,2018,67(9):1523-1533.
[15] HE S, XU H K. Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities[J]. Journal of Global Optimization,2013,57(4):1375-1384.
An? Inertial Subgradient Extragradient Algorithm for Solving
Variational InequalitiesYANG Zhi,XIA Fuquan(School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan)
Abstract:In this paper, we propose a new inertial subgradient extragradient algorithm for solving monotone variational inequalities in Hilbert space, where the feasible set of variational inequality is the level set of a smooth convex function. The new algorithm uses the inertial acceleration technique. The value of F is calculated once during per iteration, only needs to project to two half spaces twice. Under the appropriate assumptions, the weak convergence of the algorithm is proved. The new algorithm improves and generalizes the corresponding results in the relevant literature.
Keywords:subgradient extragradient algorithm; monotone; Lipschitz continuous; inertial method; variational inequalities
2020 MSC:65K15; 90C25; 90C33
(編輯陶志寧)