• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      變分不等式的慣性次梯度外梯度算法

      2023-06-21 09:20:39楊志夏福全
      關鍵詞:單調

      楊志 夏福全

      摘要:在實Hilbert空間中提出求解單調變分不等式的慣性次梯度外梯度算法,其中變分不等式的可行集是一個光滑凸函數(shù)的水平集.新算法應用慣性加速技巧,迭代過程中對映射F賦值一次,并只需向兩個半空間作投影兩次.在適當?shù)募僭O下,證明該算法的弱收斂性.新算法改進和推廣相關文獻中的相應結果.

      關鍵詞:次梯度外梯度算法; 單調; Lipschitz連續(xù); 慣性方法; 變分不等式

      中圖分類號:O117; O178 文獻標志碼:A 文章編號:1001-8395(2023)05-0591-10

      1預備知識

      2算法

      3收斂性分析

      4數(shù)值結果

      參考文獻

      [1] FACCHINEI F, PANG J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York:Springer-Verlag,2003.

      [2] NAGURNEY A. Network Economic:A Variational Inequality Approach[M]. Berlin:Springer-Verlag,1999.

      [3] KARAMARDIAN S. Generalized complementarity problem[J]. Journal of Optimization Theory and Applications,1971,8(3):161-168.

      [4] DUVAUT G, LIONS J L, JOHN C W, et al. Inequalities in Mechanics and Physics[M]. Berlin:Springer-Verlag,1976.

      [5] KORPELEVICH G M. An extragradient method for finding saddle points and for other problems[J]. Matecon,1976,12:747-756.

      [6] CENSOR Y, GIBALI A, REICH S. The subgradient extragradient method for solving variational inequalities in Hilbert space[J]. Journal of Optimization Theory and Applications,2011,148(2):318-335.

      [7] HE S, WU T. A modified subgradient extragradient method for solving monotone variational inequalities[J]. Journal of Inequalities and Applications,2017,2017(1):1-14.

      [8] CAO Y, GUO K. On the convergence of inertial two-subgradient extragradient method for variational inequality problems[J]. Optimization,2020,69(6):1237-1253.

      [9] 陳家欣,葉明露. 一種新的求解變分不等式的慣性雙次梯度外梯度算法[J]. 數(shù)學進展,2022,51(1):165-182.

      [10] MALITSKY Y V, SEMENOV V V. An extragradient algorithm for monotone variational inequalities[J]. Cybern Sys Anal,2014,50(2):271-277.

      [11] GIBALI A, VAN HIEU D. A new inertial double-projection method for solving variational inequalities[J]. Journal of Fixed Point Theory and Applications,2019,21(4):1-21.

      [12] BAUSCHKE H H, COMBETTES P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces[M]. New York:Springer-Verlag,2017.

      [13] ZDZISAW O. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J]. Bulletin of the American Mathematical Society,1967,73(4):591-598.

      [14] YE M L. An improved projection method for solving generalized variational inequality problems[J]. Optimization,2018,67(9):1523-1533.

      [15] HE S, XU H K. Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities[J]. Journal of Global Optimization,2013,57(4):1375-1384.

      An? Inertial Subgradient Extragradient Algorithm for Solving

      Variational InequalitiesYANG Zhi,XIA Fuquan(School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan)

      Abstract:In this paper, we propose a new inertial subgradient extragradient algorithm for solving monotone variational inequalities in Hilbert space, where the feasible set of variational inequality is the level set of a smooth convex function. The new algorithm uses the inertial acceleration technique. The value of F is calculated once during per iteration, only needs to project to two half spaces twice. Under the appropriate assumptions, the weak convergence of the algorithm is proved. The new algorithm improves and generalizes the corresponding results in the relevant literature.

      Keywords:subgradient extragradient algorithm; monotone; Lipschitz continuous; inertial method; variational inequalities

      2020 MSC:65K15; 90C25; 90C33

      (編輯陶志寧)

      猜你喜歡
      單調
      一個單調遞增函數(shù)及應用
      單調任意恒成立,論參離參定最值
      數(shù)列的單調性
      數(shù)列的單調性
      怎樣判斷函數(shù)的單調性
      對數(shù)函數(shù)單調性的應用知多少
      指數(shù)函數(shù)單調性的應用“廣而告之”
      世界正在變得單調
      奧秘(2015年5期)2015-09-10 07:22:44
      《1.3.1 函數(shù)的單調性》導學案(第1課時)
      旋轉擺的周期單調性
      漾濞| 原阳县| 昔阳县| 章丘市| 枣强县| 兰坪| 苏州市| 康保县| 延吉市| 永济市| 北碚区| 余江县| 当阳市| 克什克腾旗| 准格尔旗| 诸城市| 崇礼县| 沽源县| 应城市| 莱州市| 曲松县| 息烽县| 开平市| 西乌| 长治县| 电白县| 金华市| 南昌市| 江陵县| 仁布县| 元朗区| 斗六市| 茶陵县| 荔浦县| 阳江市| 兴和县| 改则县| 平昌县| 弥勒县| 富裕县| 斗六市|