• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      十邊形化學(xué)圖的Gutman指數(shù)問(wèn)題研究

      2023-06-13 09:37:10朱皖琳耿顯亞
      關(guān)鍵詞:極值

      朱皖琳 耿顯亞

      摘 ?要:假定[Gn]表示由隨機(jī) n個(gè)十邊形構(gòu)成的線性結(jié)構(gòu)分子圖,借助圖的結(jié)構(gòu)特點(diǎn),計(jì)算[Gn]的 Gutman指數(shù)的數(shù)學(xué)期望,并獲得了隨機(jī)十邊形鏈Gutman指數(shù)的極值.

      關(guān)鍵詞:Gutman指數(shù);隨機(jī)十邊形鏈;數(shù)學(xué)期望;極值

      [ ? 中圖分類號(hào) ? ?]O157.6 [ ? ?文獻(xiàn)標(biāo)志碼 ? ] ?A

      Research on Gutman Index of Decagon Chemical Graphs

      ZHU Wanlin,GENG Xianya

      (School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan

      232001,China)

      Abstract:It is assumed that Gn respresents a linear molecular graph of random decagons,and derived from the structural characteristics of the graph we calculate the expected value of Gutman index in a random decagon chain. And the Gutman index of random decagonal chains with extremal value are also obtained.

      Key words:Gutman index; random decagon chain; expected value; extremal value

      化學(xué)圖論中一個(gè)最重要的方法是拓?fù)渲笖?shù),許多十邊形的化合物,其衍生物一直是有機(jī)化學(xué)領(lǐng)域的重要研究課題.正十邊形的結(jié)構(gòu)十分特殊,它是唯一符合黃金分割比的正多邊形,因此,越來(lái)越多的人研究其結(jié)構(gòu)和性質(zhì).本文只考慮有限的簡(jiǎn)單連通圖,研究具有[n]個(gè)十邊形的化合物鏈的Gutman指數(shù),符號(hào)與專業(yè)術(shù)語(yǔ)參考文獻(xiàn)[1-8].

      1 隨機(jī)十邊形鏈的Gutman指數(shù)的數(shù)學(xué)期望

      設(shè)[G=(VG,EG)]是頂點(diǎn)集為[VG]、邊集為[EG]的非平凡簡(jiǎn)單連通圖.圖[G]中頂點(diǎn)[u]和[v]之間的最短距離[dG(u,v)](簡(jiǎn)稱[d(u,v)])稱為最短路.維納指數(shù)[W(G)]就是基于距離的圖不變量,計(jì)算圖[G]中所有頂點(diǎn)對(duì)之間的距離和.[9]Gutman指數(shù)的提出擴(kuò)展了與頂點(diǎn)距離和度相關(guān)圖參數(shù)的研究領(lǐng)域,是一個(gè)重要的圖參數(shù),與很多分子的結(jié)構(gòu)特征有著密切關(guān)系.[10]

      具有[n]個(gè)十邊形的隨機(jī)化合物鏈[Gn]是由[n-1]個(gè)十邊形鏈[Gn-1]連接一個(gè)新的末端十邊形[Hn]得到的,見圖1.當(dāng)[n≥3],末端十邊形[Hn]有5種連接方式,將其表示為[G1n,G2n,G3n,G4n,G5n],見圖2. 具有[n]個(gè)十邊形的隨機(jī)化合物鏈[Gn(p1,p2,p3,p4)]是通過(guò)逐步添加末端十邊形得到的.在每一步[k=(3,4,5,……,n)]添加中,可隨機(jī)選擇5種連接方式中的一種.[11-13][Gn→G1n+1]的概率為[p1],[Gn→G2n+1]的概率為[p2],[Gn→G3n+1]的概率為[p3], [Gn→G4n+1]的概率為[p4], [Gn→G5n+1]的概率為[1-p1-p2-p3-p4].

      其中,[p1,p2,p3]和[p4]為常數(shù),與參數(shù)[k]無(wú)關(guān).

      計(jì)算隨機(jī)十邊形鏈的Gutman指數(shù)的數(shù)學(xué)期望.隨機(jī)十邊形化合物鏈[Gn+1]是由[Gn]連接一個(gè)新的末端十邊形[Hn+1]得到的,其中,[Hn+1]是由頂點(diǎn)[x1,x2,x3,……,x10]構(gòu)成,新的邊為[unx1],見圖1.一方面,對(duì)于所有的[v∈VGn],有

      [d(x1)=d(un,v)+1, ? ?d(x2)=d(un,v)+2,…, ? ?d(x6)=d(un,v)+6,d(x7)=d(un,v)+5, ? ?d(x8)=d(un,v)+4, …, ? ?d(x10)=d(un,v)+2.]

      [v∈VGndGn+1(v)=22n-1].

      另一方面,

      [i=12kd(xi)d(x1,xi)=50, ? ?i=12kd(xi)d(x2,xi)=51, ? …, ? ?i=12kd(xi)d(x6,xi)=55,]

      [i=12kd(xi)d(x7,xi)=54, ? ?i=12kd(xi)d(x8,xi)=53, ? …, ? ?i=12kd(xi)d(x10,xi)=51].

      定理1 當(dāng)[n≥1],無(wú)規(guī)十邊形鏈[Gn]的Gutman指數(shù)的期望為

      [E(Gut(Gn))=(1 ?452-968p1-726p2-484p3-242p4)n33+(968p1+726p2+484p3+242p4-132)n2 +(447-1 ?936p1-1 ?452p2-968p3-484p4)n3-1.]

      證明 無(wú)規(guī)十邊形鏈[Gn+1]是通過(guò)將[Gn]連接一個(gè)新的末端十邊形[Hn+1]而獲得的,這里的[Hn+1]由頂點(diǎn)[x1,x2,x3…x10]構(gòu)成,新邊為[unx1],如圖2,那么有

      [Gut(Gn+1)={u,v}?VGnd(u)d(v)d(u,v)+v∈VGnxi∈VHn+1d(v)d(xi)d(v,xi)+{xi,xj}?VHn+1d(xi)d(xj)d(xi,xj)]

      其中,

      [{u,v}?VGnd(u)d(v)d(u,v)={u,v}?VGn\{un}d(u)d(v)d(u,v)+v∈VGn\{un}dGn+1(un)d(v)d(un,v)={u,v}?VGn\{un}d(u)d(v)d(u,v)+v∈VGn\{un}(dGn(un)+1)d(v)d(un,v)=Gut(Gn)+v∈VGnd(v)d(un,v).]

      當(dāng)[d(xi)=3],對(duì)于[i∈2,3,4…10],有

      [v∈VGnxi∈VHn+1d(v)d(xi)d(v,xi)=v∈VGnd(v)[3(d(un,v)+1)+…+2(d(un,v)+5)+2(d(un,v)+ ? ?4)+…+2(d(un,v)+2)]][=v∈VGnd(v)(21d(un,v)+71)=21v∈VGnd(v)d(un,v)+71v∈VGnd(v) ]

      [ ? ?=21v∈VGnd(v)d(un,v)+71(22n-1).]

      [{xi,xj}?VHn+1d(xi)d(xj)d(xi,xj)=12i=110d(xi)(j=110d(xj)d(xi,xj)= 12[3×50+2×51+…+2×55+2×54+…+2×51]=550.]

      綜上,得到

      [Gut(Gn+1)=Gut(Gn)+22v∈VGnd(v)d(un,v)+1 ?562n+479].

      對(duì)于無(wú)規(guī)十邊形鏈[Gn],[v∈VGnd(v)d(un,v)]的數(shù)值是一個(gè)隨機(jī)變量,可以把它的期望表示為

      [An:=E(v∈VGnd(v)d(un,v))].通過(guò)直接計(jì)算,可以得到無(wú)規(guī)十邊形鏈[Gn]的Gutman指數(shù)期望值的遞推關(guān)系.

      [E(Gut(Gn+1))=E(Gut(Gn))+22An+1 ?562n+479].

      考慮以下5種可能的情況:

      情況1:[Gn→G1n+1],在這種情況下,[un]考慮頂點(diǎn)[x2]或[x10],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u2,v)]或[v∈VGnd(v)d(u10,v)]兩種結(jié)果,概率為[p1].

      情況2:[Gn→G2n+1],在這種情況下,[un]考慮頂點(diǎn)[x3]或[x9],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u3,v)]或[v∈VGnd(v)d(u9,v)]兩種結(jié)果,概率為[p2].

      情況3:[Gn→G3n+1],在這種情況下,[un]考慮頂點(diǎn)[x4]或[x8],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u4,v)]或[v∈VGnd(v)d(u8,v)]兩種結(jié)果,概率為[p3].

      情況4:[Gn→G4n+1],在這種情況下,[un]考慮頂點(diǎn)[x5]或[x7],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u5,v)]或[v∈VGnd(v)d(u7,v)]兩種結(jié)果,概率為[p4].

      情況5:[Gn→G5n+1],在這種情況下,[un]考慮頂點(diǎn)[x6],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u6,v)]這種結(jié)果,概率為[1-p1-p2-p3-p4].根據(jù)以上5種情況,可以得出期望值[An]為:

      [An=p1v∈VGnd(v)d(x2,v)+…+p4v∈VGnd(v)d(x5,v)+(1-p1-p2-p3-p4)v∈VGnd(v)d(x6,v) ? ? ?=p1[v∈VGn-1d(v)d(un-1,v)+2v∈VGn-1d(v)+51]+…+p4[v∈VGn-1d(v)d(un-1,v)+ ? ? ? ? ? 5v∈VGn-1d(v)+54]+(1-p1-p2-p3-p4)[v∈VGn-1d(v)d(un-1,v)+6v∈VGn-1d(v)+55].]

      通過(guò)將期望運(yùn)算符應(yīng)用于上述等式,可以獲得期望值:

      [E(An)=An].

      [An=p1(An-1+44n+5)+p2(An-1+66n-17)+p3(An-1+88n-39)+p4(An-1+110n-61) +(1-p1-p2-p3-p4)(An-1+132n-83) =An-1+(132-88p1-66p2-44p3-22p4)n+88p1+66p2+44p3+22p4-83.]

      邊界條件為:[A1=E(v∈VG1d(v)d(u1,v)=50].

      根據(jù)上述遞推關(guān)系和邊界條件,得到

      [An=(66-44p1-33p2-22p3-11p4)n2+(44p1+33p2+22p3+11p4-17)n+1.]

      [因此,E(Gut(Gn+1))=E(Gut(Gn))+22An+1 ?562n+479=E(Gut(Gn))+][22[(66-44p1-33p2-22p3-11p4)n2 +(44p1+33p2+22p3+11p4-17)n+1]+1 562n+479.]

      邊界條件為:[E(Gut(G1))=500].

      根據(jù)上述遞推關(guān)系和邊界條件,得到期望值[E(Gut(Gn))]為 :

      [E(Gut(Gn))=(1 ?452-968p1-726p2-484p3-242p4)n33+(968p1+726p2+484p3+242p4-132)n2 +(447-1 ?936p1-1 ?452p2-968p3-484p4)n3-1.]

      特別地,如果[p1=1],此時(shí)[p2=p3=p4=p5=0],則[Gn?Mn].如果[p2=1](相應(yīng)的[p3=1],[p4=1]),此時(shí)[p1=p3=p4=p5=0](相應(yīng)的[p1=p2=p4=p5=0],[p1=p2=p3=p5=0]),則[Gn?O1n](相應(yīng)的[Gn?O2n],[Gn?O3n]).特別地,如果[p5=1],此時(shí)[p1=p2=p3=p4=0],則[Gn?Ln].

      2 隨機(jī)十邊形鏈的Gtuman指數(shù)的極值

      定理2 對(duì)于無(wú)規(guī)十邊形化合物鏈[Gn(n≥3)],對(duì)鏈[Ln]實(shí)現(xiàn)[E(Gut(Gn))]的最大值,間鏈[Mn]實(shí)現(xiàn)[E(Gut(Gn))]的最小值.

      證明 根據(jù)定理1,有

      [E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 484n2-968n3)p3+(-242n33+242n2-484n3)p4+1452n33-132n2+447n3-1.]

      當(dāng)[n≥1]時(shí),通過(guò)求偏導(dǎo)數(shù),有

      [?E(Gut(Gn))?p1=-968n33+968n2-1 936n3<0, ? ??E(Gut(Gn))?p2=-726n33+726n2-1 452n3<0,?E(Gut(Gn))?p3=-484n33+484n2-968n3<0, ? ??E(Gut(Gn))?p4=-242n33+242n2-484n3<0.]

      如果[p1=p2=p3=p4=0],([i.e.p5=1]),對(duì)鏈[Ln] 實(shí)現(xiàn)[E(Gut(Gn))]的最大值,[Gn?Ln] .如果

      [p1+p2+p3+p4=1],令[p4=1-p1-p2-p3]([0≤p1≤1],[0≤p2≤1],[0≤p3≤1]),有

      [E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+484n2]

      [-968n3)p3+(-242n33+242n2-484n3)(1-p1-p2-p3)+1 ?452n33-132n2+447n3-1.]因此,

      [?E(Gut(Gn))?p1=-726n33+726n2-1 ?452n3<0, ? ?E(Gut(Gn))?p2=-484n33+484n2-968n3<0,?E(Gut(Gn))?p3=-242n33+242n2-484n3<0. ]

      如果[p1=p2=p3=0],([i.e.p4=1]),得不到最小值.如果[p1+p2+p3=1],此時(shí)令[p3=1-p1-p2]([0≤p1≤1],[0≤p2≤1]),有

      [E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+484n2-968n3) (1-p1-p2)+1 ?452n33-132n2+447n3-1.]

      因此,

      [?E(Gut(Gn))?p1=-484n33+484n2-968n3<0, ? ??E(Gut(Gn))?p2=-242n33+242n2-484n3<0. ]

      如果[p1=p2=0],([i.e.p3=1]),也得不到最小值.如果[p1+p2=1],令[p1=1-p2]([0≤p1≤1]),有

      [E(Gut(Gn)=(-968n33+968n2-1 ?936n3)(1-p2)+(-726n33+726n2-1 ?452n3)p2+1 ?452n33-132n2+447n3-1]

      此時(shí),[?E(Gut(Gn))?p1=242n33+242n2-484n3>0. ]

      當(dāng)[p2=0],([i.e.p1=1]),[E(Gut(Gn))]取得最小值,此時(shí)[Gn?Mn].

      參考文獻(xiàn)

      [1]Estrada,Ernesto,Danail Bonchev. Chemical graph theory[M]. Handbook of graph ? theory,2013.1-24.

      [2]Gutman,Ivan. Selected properties of the Schultz molecular topological index[J]. Journal of Chemical Information and Computer Sciences,1994,34:1087-1089.

      [3]Bondy,J. A.,U. Murty . Graph theory [M].Graduate texts in mathematics,2008.

      [4]Milas,Nicholas,John Nolan,Jr,Petrus HL Otto. Ozonization of Cyclooctatetraene[J]. The Journal of Organic Chemistry,1958,23(4):624-625.

      [5]Entringer,Roger C.,Douglas E. Jackson,D. A. Snyder. Distance in graphs[J]. Czechoslovak Mathematical Journal,1976,26:283-296.

      [6]Mukwembi,Simon,S. Munyira. Degree distance and minimum degree[J]. Bulletin of the Australian Mathematical Society,2013,87:255-271.

      [7]Wei,Shouliu,Wai Chee Shiu. Enumeration of Wiener indices in random polygonal chains[J]. Journal of Mathematical Analysis and Applications,2019,469:537-548.

      [8]Yang,Weiling,F(xiàn)uji Zhang. Wiener index in random polyphenyl chains[J]. Match-Communications in Mathematical and Computer Chemistry,2012,68:371-376.

      [9]Chen,Ailian,F(xiàn)uji Zhang. Wiener index and perfect matchings in random phenylene chains[J]. Match,2009,61:623-630.

      [10]Zhang,Leilei,et al. The expected values for the Schultz index,Gutman index,multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain[J]. Discrete Applied Mathematics,2020,282:243-256.

      [11]吉亞迪,耿顯亞. 給定化學(xué)圖的兩類代數(shù)指標(biāo)問(wèn)題研究[J]. 牡丹江師范學(xué)院報(bào):自然科學(xué)版,2021(2):1-5.

      [12]Qi,Jinfeng,Minglei Fang,Xianya Geng. The Expected Value for the Wiener Index in the Random Spiro Chains[J]. Polycyclic Aromatic Compounds,2022(43):1788-1798.

      [13]劉英偉,張洋,任意螺旋線拓?fù)鋽?shù)值解法[J].牡丹江師范學(xué)院學(xué)報(bào):自然科學(xué)版,2019(3):13-17.

      編輯:琳莉

      猜你喜歡
      極值
      極值(最值)中的分類討論
      極值點(diǎn)帶你去“漂移”
      極值點(diǎn)偏移攔路,三法可取
      極值(最值)中的分類討論
      極值點(diǎn)偏移問(wèn)題的解法
      極值點(diǎn)偏移,你hold住了嗎
      緊黎曼流形上Hardy-Littlewood-Sobolev不等式的極值問(wèn)題:次臨界逼近法
      一類“極值點(diǎn)偏移”問(wèn)題的解法與反思
      借助微分探求連續(xù)函數(shù)的極值點(diǎn)
      MIMO仿射型極值搜索系統(tǒng)的輸出反饋滑??刂?/a>
      邯郸市| 大理市| 揭东县| 永川市| 青川县| 德阳市| 泸水县| 原平市| 海宁市| 平利县| 喜德县| 常州市| 天峨县| 剑川县| 南部县| 新营市| 白沙| 乡宁县| 石景山区| 阜城县| 武安市| 逊克县| 雷山县| 甘孜县| 河北省| 莱西市| 高唐县| 涟源市| 太仆寺旗| 石台县| 滨海县| 原阳县| 桂东县| 明水县| 宁国市| 横峰县| 保靖县| 麟游县| 文水县| 华坪县| 澄城县|