曹南斌 呂志敏
【摘? ?要】? ?對一類Filippov系統(tǒng)的邊界平衡點(diǎn)分岔進(jìn)行分析,并證明Filippov系統(tǒng)發(fā)生邊界平衡點(diǎn)分岔的條件,最后呈現(xiàn)Filippov系統(tǒng)對應(yīng)的分岔圖。
【關(guān)鍵詞】? ?Filippov系統(tǒng);邊界平衡點(diǎn)分岔;分岔圖
Boundary Equilibrium Bifurcation of Filippov Systems
Cao Nanbin, Lv Zhimin
( Hebei GEO University, Shijiazhuang 050031, China)
【Abstract】? ? In this paper, the stability of equilibrium point and boundary equilibrium bifurcation of a class of Filippov systems is studied, and the paper proves the condition for the existence of boundary equilibrium bifurcation of Filippov systems. Finally, the paper presents the corresponding bifurcation diagrams by numerical simulation.
【Key words】? ? ?Filippov systems; boundary equilibrium bifurcation; bifurcation diagram
〔中圖分類號〕? ?O152? ? ? ? ? ? ? ? ?〔文獻(xiàn)標(biāo)識碼〕? A ? ? ? ? ? ? ?〔文章編號〕 1674 - 3229(2023)01- 0013- 03
2? ? ?分岔圖
在[p=1,b1=1]情形下對系統(tǒng)(2)進(jìn)行數(shù)值模擬。當(dāng)[b2=2]時,隨著不連續(xù)邊界的移動,可得系統(tǒng)F1的平衡點(diǎn)與不連續(xù)邊界發(fā)生碰撞,產(chǎn)生偽平衡點(diǎn),這樣的分岔稱為Persistence分岔,見圖1a。系統(tǒng)F2的平衡點(diǎn)和一個存在的偽平衡點(diǎn)與不連續(xù)邊界發(fā)生碰撞,最后都消失了,這樣的分岔稱為Non-smooth fold分岔,見圖1b。當(dāng)[b2=0]時,系統(tǒng)F1與系統(tǒng)F2隨著不連續(xù)邊界的移動,出現(xiàn)一族偽平衡點(diǎn),最后都消失,這樣的分岔稱為退化分岔。在這一部分僅僅給出了系統(tǒng)F1的分岔圖,見圖2。當(dāng)[b2=-2]時,隨著不連續(xù)邊界的移動,系統(tǒng)F1中的平衡點(diǎn)和偽平衡點(diǎn)與不連續(xù)邊界發(fā)生碰撞,最后兩類平衡點(diǎn)都消失,這樣的分岔稱為Non-smooth fold分岔,見圖3a。系統(tǒng)F2中的平衡點(diǎn)與不連續(xù)邊界發(fā)生碰撞變成邊界平衡點(diǎn),最后變成偽平衡點(diǎn),這樣的分岔稱為 Persistence 分岔,見圖3b。
3? ? ?結(jié)語
本文給出了一類具有一條變化不連續(xù)邊界的Filippov系統(tǒng),討論了系統(tǒng)的邊界平衡點(diǎn)分岔。
[參考文獻(xiàn)]
[1] Giannakopoulos F, Pliete K. Planar systems of piecewise linear differential equations with a line of discontinuity[J]. Nonlinearity, 2001, 14(6): 1611.
[2]Bernardo M, Budd C, Champneys A R, et al. Piecewise-smooth dynamical systems: theory and applications[M]. Springer Science Business Media, 2008.
[3] Kuznetsov Y A , Rinaldi S , Gragnani A . One-Parameter Bifurcations in Planar Filippov Systems[J].INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS,2003, 13(8):2157-2188.
[4] Di Bernardo M, Pagano D J, Ponce E. Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: a case study approach[J]. International Journal of Bifurcation and chaos, 2008, 18(5): 1377-1392.