杜妍辰 孫潔 汪曉銘 黎林榮 喻洪流
摘要:智能下肢假肢與下肢外骨骼是肢體功能障礙者恢復(fù)日常運(yùn)動(dòng)的重要手段?;诩‰娦盘?hào)的直接意圖控制是其自適應(yīng)、自主控制的關(guān)鍵技術(shù)之一。針對(duì)此問(wèn)題,闡述了基于肌電信號(hào)的人體下肢運(yùn)動(dòng)意圖映射研究進(jìn)展,包括比例肌電法、肌骨模型法和人工智能算法,討論了基于肌電信號(hào)的人體運(yùn)動(dòng)意圖映射研究所面臨的主要問(wèn)題。最后,對(duì)該領(lǐng)域未來(lái)發(fā)展方向進(jìn)行了展望和總結(jié)。
關(guān)鍵詞:肌電信號(hào);智能下肢假肢;下肢外骨骼;運(yùn)動(dòng)意圖映射;直接意圖控制
中圖分類號(hào):TK 242.6
文獻(xiàn)標(biāo)志碼:A
智能下肢假肢與下肢外骨骼等移動(dòng)穿戴式康復(fù)機(jī)器人能夠幫助肌肉損傷、神經(jīng)損傷或下肢截肢患者恢復(fù)下肢運(yùn)動(dòng)功能。目前,解決基于人與機(jī)器人密切交互的控制問(wèn)題已成為研究這類下肢康復(fù)機(jī)器人的關(guān)鍵技術(shù)問(wèn)題,其中,人機(jī)交互中的人體運(yùn)動(dòng)意圖識(shí)別又是交互控制技術(shù)中的核心問(wèn)題之一。人類與機(jī)器人的信息交互可以通過(guò)多種方法,這些方法在復(fù)雜程度和交互水平上各不相同[1-2]。其中,廣泛采用的分層控制結(jié)構(gòu)(高層控制、中層控制和底層控制)能夠在無(wú)需識(shí)別人體運(yùn)動(dòng)意圖的情況下輔助患者實(shí)現(xiàn)基本的運(yùn)動(dòng),但一般只適合結(jié)構(gòu)化環(huán)境中的精準(zhǔn)性和重復(fù)性任務(wù),并不適合非結(jié)構(gòu)化環(huán)境,面對(duì)復(fù)雜環(huán)境(如人群中行走)或未構(gòu)建的任務(wù)(如在不規(guī)則地形環(huán)境中的運(yùn)動(dòng))時(shí),這種控制方法難以實(shí)現(xiàn)用戶對(duì)設(shè)備的直接控制,從而導(dǎo)致設(shè)備無(wú)法擬合人體自然、流暢的運(yùn)動(dòng)[3-5]。
當(dāng)前傳感器技術(shù)的發(fā)展使得人機(jī)交互更加有效,人與機(jī)器人可以通過(guò)各種交互方式協(xié)同完成任務(wù)。在保證機(jī)器人安全性的同時(shí),自然地對(duì)人體運(yùn)動(dòng)意圖作出反應(yīng),如何映射人類運(yùn)動(dòng)意圖是下肢假肢與下肢外骨骼的協(xié)作系統(tǒng)所面臨的挑戰(zhàn)之一。人體運(yùn)動(dòng)意圖識(shí)別的信號(hào)主要包括機(jī)械信號(hào)、生物力學(xué)信號(hào)和神經(jīng)信號(hào)。其中:機(jī)械信號(hào)是反映人體運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)的信號(hào),主要包括速度、關(guān)節(jié)加速度等信號(hào);生物力學(xué)信號(hào)是反映人體力學(xué)特性的信號(hào),主要包括人機(jī)交互力、足底壓力等信號(hào);神經(jīng)信號(hào)是反映人體中樞信息的信號(hào),主要包括腦電信號(hào)( EEG)和肌電信號(hào)( EMG)。機(jī)械信號(hào)和生物力學(xué)信號(hào)由于其傳感技術(shù)成熟、穩(wěn)定的特點(diǎn)被廣泛應(yīng)用于意圖識(shí)別,但其仍存在一些局限:a.機(jī)械信號(hào)和生物力學(xué)信號(hào)是人體與外部環(huán)境交互的信號(hào),不是人體本身的運(yùn)動(dòng)意圖,無(wú)法準(zhǔn)確映射人體運(yùn)動(dòng)意圖;b.機(jī)械信號(hào)和生物力學(xué)信號(hào)存在滯后性,影響意圖識(shí)別效果。神經(jīng)信號(hào)的特點(diǎn)卻在于:a.神經(jīng)信號(hào)是中樞神經(jīng)的直接反映,即能夠直接反映人體運(yùn)動(dòng)意圖;b.神經(jīng)信號(hào)具有一定的預(yù)測(cè)性[3]。但是,由于腦電信號(hào)需要穿戴腦電帽,且信號(hào)易受到干擾,而肌電信號(hào)不僅是中樞運(yùn)動(dòng)神經(jīng)的直接反映,能夠解碼人體運(yùn)動(dòng)意圖,同時(shí)還具有預(yù)測(cè)性和易獲取性的特點(diǎn),成為映射人體運(yùn)動(dòng)意圖的主要輸入。在假肢與外骨骼設(shè)備的人機(jī)協(xié)作系統(tǒng)中加入肌電信號(hào)可以實(shí)現(xiàn)更加直接的控制[6-11]。雖然肌電信號(hào)在假肢與外骨骼的研究中存在一些局限性,但是,近年來(lái)一些科研機(jī)構(gòu)持續(xù)開展臨床技術(shù)(如周圍神經(jīng)手術(shù)等)和人機(jī)接口(如假肢接收腔等)等肌電接口研究并取得了一定的成果,促進(jìn)了表面肌電信號(hào)直接控制智能下肢假肢與下肢外骨骼的研究[12-14]。肌電信號(hào)(EMG)已被廣泛應(yīng)用于人機(jī)協(xié)作系統(tǒng)中,用于映射人體運(yùn)動(dòng)意圖。本文重點(diǎn)研究基于肌電信號(hào)映射人體下肢運(yùn)動(dòng)意圖。
基于表面肌電信號(hào)映射人體下肢運(yùn)動(dòng)意圖,即通過(guò)解碼肌電信號(hào)以獲得人體下肢的運(yùn)動(dòng)信息(如膝關(guān)節(jié)角度、髖關(guān)節(jié)力矩等)是人體運(yùn)動(dòng)意圖映射的研究重點(diǎn)。本文重點(diǎn)綜述基于表面肌電信號(hào)映射人體下肢運(yùn)動(dòng)意圖的不同方法,將這些映射方法總結(jié)概括為3類:比例肌電法、肌骨模型法和人工智能法。
1 研究現(xiàn)狀
1.1 比例肌電法
比例肌電法是較早開展研究以及應(yīng)用的方法,其主要思想是在量化的肌電信號(hào)與下肢運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)之間建立線性數(shù)學(xué)關(guān)系,其中,量化的肌電信號(hào)主要是濾波處理后的肌電信號(hào)的幅值。其控制結(jié)構(gòu)如圖1所示,控制器調(diào)節(jié)的參數(shù)隨肌電信號(hào)的大小成比例變化[15-18]。
根據(jù)控制器的增益不同,比例肌電法分為固定增益比例控制和變?cè)鲆姹壤刂?,典型的相關(guān)研究如表1所示。
1.1.1 固定增益比例控制
固定增益比例控制是結(jié)合表面肌電信號(hào)和運(yùn)動(dòng)學(xué)信號(hào)實(shí)現(xiàn)直接控制,一般通過(guò)不斷實(shí)驗(yàn)以尋找最優(yōu)增益。比例肌電控制器跟蹤的角度或力矩與經(jīng)過(guò)處理的肌電信號(hào)相關(guān)。
Young等[10]通過(guò)設(shè)計(jì)健康受試者的平地行走實(shí)驗(yàn),驗(yàn)證了采用比例肌電控制系統(tǒng)的外骨骼能夠幫助用戶降低能耗。范德堡大學(xué)的Ha等[10]提出將表面肌電信號(hào)的二次判別分析(QDA)和主成分分析(PCA)后的特征值直接用于阻抗控制器,通過(guò)比較健康受試者和截肢患者在非負(fù)重活動(dòng)(坐)下是否穿戴假肢的膝關(guān)節(jié)角度(均方根誤差分別為6.2。和5.2。),證明了比例肌電法直接控制膝關(guān)節(jié)假肢的可行性。
1.1.2變?cè)鲆姹壤刂?/p>
變?cè)鲆姹壤刂频牡讓涌刂破鞯脑鲆婵梢赃M(jìn)行調(diào)節(jié),分為手動(dòng)調(diào)節(jié)和自動(dòng)調(diào)節(jié)。前者允許手動(dòng)增加或減少控制器增益以調(diào)節(jié)設(shè)備驅(qū)動(dòng),但這種控制方法與自動(dòng)控制系統(tǒng)理念相違背;后者是控制器增益隨底層控制的輸入響應(yīng),根據(jù)表面肌電信號(hào)調(diào)節(jié)阻抗或位置。
Wu等[20]設(shè)計(jì)了膝關(guān)節(jié)假肢的“主被動(dòng)控制系統(tǒng)”,通過(guò)輸入表面肌電信號(hào)仿生人體關(guān)節(jié),其“主動(dòng)組件”仿生驅(qū)動(dòng)膝關(guān)節(jié)的動(dòng)作, “被動(dòng)組件”仿生膝關(guān)節(jié)對(duì)阻抗的反應(yīng),結(jié)合2個(gè)組件計(jì)算膝關(guān)節(jié)輸出扭矩調(diào)節(jié)阻抗,實(shí)現(xiàn)人、機(jī)、環(huán)境物理交互。密歇根大學(xué)的Huang等[23]對(duì)踝關(guān)節(jié)假肢的扭矩和表面肌電信號(hào)建立數(shù)學(xué)關(guān)系,同時(shí)通過(guò)視覺反饋系統(tǒng)手動(dòng)調(diào)節(jié)控制器增益。
在K0ller等[22]的研究中,雙側(cè)踝關(guān)節(jié)外骨骼采用了自適應(yīng)增益比例肌電控制方法,經(jīng)過(guò)對(duì)8名健康受試者行走實(shí)驗(yàn)的驗(yàn)證,證明了這種控制方法能夠降低人體代謝成本。Fleming等[27]利用連續(xù)的表面肌電信號(hào)與有限狀態(tài)相結(jié)合的控制方法實(shí)現(xiàn)對(duì)假肢踝關(guān)節(jié)的直接控制,為研究下肢假肢與下肢外骨骼控制提供了新思路。
比例肌電法是將表面肌電信號(hào)和控制目標(biāo)映射為簡(jiǎn)單的數(shù)學(xué)關(guān)系,易于建模和計(jì)算,大多數(shù)研究將此方法應(yīng)用于下肢假肢與下肢外骨骼,其中,部分研究的實(shí)驗(yàn)對(duì)象是神經(jīng)或肌肉損傷與截肢患者,這使得此研究更具實(shí)際意義和價(jià)值。但這種方法無(wú)法仿生人體的生物神經(jīng)控制系統(tǒng),不能準(zhǔn)確地計(jì)算多塊肌肉聯(lián)合作用對(duì)運(yùn)動(dòng)的影響,導(dǎo)致控制精度不高、參數(shù)調(diào)節(jié)困難及魯棒性差等問(wèn)題。
1.2肌骨模型法
肌骨模型是描述運(yùn)動(dòng)仿真和理解人體運(yùn)動(dòng)控制機(jī)制的重要數(shù)學(xué)模型,該模型可根據(jù)肌電信號(hào)解算肢體運(yùn)動(dòng)學(xué)角度和動(dòng)力學(xué)力矩[30]?;诩」悄P头ǖ闹苯涌刂平Y(jié)構(gòu)如圖2所示,典型的相關(guān)研究如表2所示。
Karavas 等[33'35]通過(guò)肌骨模型映射膝關(guān)節(jié)力矩改進(jìn)下肢外骨骼控制結(jié)構(gòu)。Lloyd等[44]通過(guò)實(shí)驗(yàn)驗(yàn)證了肌骨模型計(jì)算膝關(guān)節(jié)力矩(相關(guān)系數(shù)0.91;殘差12 Nm)可行性和可靠性。陳江城等[45]根據(jù)肌絲滑移理論優(yōu)化肌肉的激活模型,優(yōu)化模型預(yù)測(cè)膝關(guān)節(jié)力矩的結(jié)果表明,最大絕對(duì)誤差為(11.0±1.32) Nm,相關(guān)系數(shù)為0.927±0.042。Kim等[34]提出遞歸最小二乘算法提取人體腿部肌肉激活率優(yōu)化模型,Au等[46]利用此方法直接控制踝關(guān)節(jié)假肢。Cimolato團(tuán)隊(duì)和Saxby團(tuán)隊(duì)[40'47]分別提出使用深度學(xué)習(xí)優(yōu)化肌骨模型的方法,這對(duì)于肌骨模型的研究具有重要意義。
雖然肌骨模型法能夠描述下肢肌骨生理結(jié)構(gòu)和運(yùn)動(dòng)微觀力學(xué),但肌肉參數(shù)冗余、肌骨幾何形狀復(fù)雜等因素影響計(jì)算,考慮到實(shí)時(shí)計(jì)算問(wèn)題,此方法難以滿足下肢假肢與下肢外骨骼對(duì)實(shí)時(shí)性的要求,且這些研究的實(shí)驗(yàn)對(duì)象大多是健康受試者。設(shè)備的控制應(yīng)緊密結(jié)合生物系統(tǒng)控制,這些問(wèn)題導(dǎo)致該方法應(yīng)用于智能下肢假肢與下肢外骨骼還有一定的距離[32,36,40,48]。
1.3人工智能法
人工智能中的特征工程和神經(jīng)網(wǎng)絡(luò)算法可以自動(dòng)、有效地將表面肌電信號(hào)聯(lián)合力學(xué)仿生映射運(yùn)動(dòng)學(xué)與動(dòng)力學(xué),采用人工智能算法映射下肢運(yùn)動(dòng)意圖成為該領(lǐng)域的研究亮點(diǎn)[49]。人工智能算法映射下肢運(yùn)動(dòng)意圖主要包括特征工程與神經(jīng)網(wǎng)絡(luò)模型,其控制結(jié)構(gòu)如圖3所示,典型的相關(guān)研究如表3所示。
1.3.1特征工程
針對(duì)神經(jīng)網(wǎng)絡(luò)的輸入過(guò)多導(dǎo)致的特征冗余和過(guò)擬合等問(wèn)題,對(duì)神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行特征優(yōu)化,主要方法包括主成分分析、歸一化和稀疏編碼等。Xiong等[51]使用稀疏算法優(yōu)化力矩特征,并基于神經(jīng)網(wǎng)路構(gòu)建模型,根據(jù)優(yōu)化的特征預(yù)測(cè)膝關(guān)節(jié)力矩和踝關(guān)節(jié)力矩,結(jié)果表明,歸一化均方根誤差均小于7.98%,相關(guān)系數(shù)均高于0.963 3。Chandrapal團(tuán)隊(duì)[50]通過(guò)等長(zhǎng)和等速運(yùn)動(dòng)實(shí)驗(yàn)比較兩種歸一化方法(以膝關(guān)節(jié)45°時(shí)最大值歸一化;以最大值歸一化每個(gè)膝關(guān)節(jié)角度表面肌電信號(hào)和力矩),等長(zhǎng)運(yùn)動(dòng)最小誤差可達(dá)到10.461%,等速運(yùn)動(dòng)最小誤差達(dá)到20%。
1.3.2 神經(jīng)網(wǎng)絡(luò)
人工神經(jīng)網(wǎng)絡(luò)是模擬人腦的神經(jīng)元網(wǎng)絡(luò)的一種非線性模型,前饋網(wǎng)絡(luò)和記憶網(wǎng)絡(luò)是常用的映射運(yùn)動(dòng)意圖的模型。
針對(duì)踝關(guān)節(jié)力矩的連續(xù)估計(jì),Zhang等[41]分別構(gòu)建肌肉骨骼模型和前饋神經(jīng)網(wǎng)絡(luò)模型,根據(jù)不同步速下的肌電信號(hào)預(yù)測(cè)踝關(guān)節(jié)力矩,結(jié)果表明,肌骨模型與神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果的誤差接近(如肌骨模型0.15;神經(jīng)網(wǎng)絡(luò)0.10),驗(yàn)證了神經(jīng)網(wǎng)絡(luò)模型代替肌骨模型將表面肌電圖信號(hào)映射到關(guān)節(jié)力矩的可行性。
Zabre -Gonzalez等[59]使用基于外源輸入的非線性自回歸神經(jīng)網(wǎng)絡(luò)( NARX)建立脛骨前肌、腓骨內(nèi)側(cè)肌表面肌電信號(hào)與踝關(guān)節(jié)角度和力矩的之間的模型,通過(guò)平地行走、上下樓梯,以及路況切換實(shí)驗(yàn)驗(yàn)證模型的有效性,結(jié)果表明,均方根誤差均小于1°和0.04 Nm/kg,相關(guān)系數(shù)高于0.99。這項(xiàng)研究有效地證明了表面肌電直接意圖控制能夠提高人、機(jī)、環(huán)境物理交互的協(xié)調(diào)性,有助于實(shí)現(xiàn)自主控制和自適應(yīng)控制。
中科院的Zhang等[53]通過(guò)實(shí)驗(yàn)對(duì)比健康受試者和脊髓損傷受試者,結(jié)果表明,健康受試者和脊髓損傷受試者均方根誤差分別小于9°和6°,證明BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)脊髓損傷患者的髖、膝、踝關(guān)節(jié)角度的可行性。
Caulcrick等[60]比較了線性回歸、多項(xiàng)式回歸和神經(jīng)網(wǎng)絡(luò)回歸膝關(guān)節(jié)力矩。經(jīng)過(guò)在坐姿下穿戴膝關(guān)節(jié)外骨骼預(yù)測(cè)膝關(guān)節(jié)扭矩的實(shí)驗(yàn)得到,神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果的相關(guān)系數(shù)為(97.6+0.8)%,高于其他方法( 94.1;96.0)。結(jié)果表明,針對(duì)肌電信號(hào)和膝關(guān)節(jié)力矩的映射關(guān)系,基于神經(jīng)網(wǎng)絡(luò)的建模方法更加可靠。
以上這些研究證明了應(yīng)用人工智能算法回歸下肢關(guān)節(jié)角度與力矩的可行性和可靠性。但是,由于表面肌電信號(hào)具有隨機(jī)性和超前性等特性,導(dǎo)致基于肌電信號(hào)的下肢假肢和下肢外骨骼的直接意圖控制需要更進(jìn)一步的研究。例如,針對(duì)表面肌電信號(hào)提前于相應(yīng)動(dòng)作發(fā)生的特性,Coker等[57]以表面肌電信號(hào)為輸入訓(xùn)練神經(jīng)網(wǎng)絡(luò)( ANN)預(yù)測(cè)不同時(shí)間間隔(表面肌電信號(hào)和相應(yīng)動(dòng)作發(fā)生的時(shí)間間隔)的膝關(guān)節(jié)角度,結(jié)果表明:時(shí)間間隔越短,準(zhǔn)確度越高(50 ms均方根誤差為0.68°;200 ms均方根誤差為4.16°);樣本越多,準(zhǔn)確度越高。
2 討論與展望
為了更清晰地對(duì)比3種下肢運(yùn)動(dòng)意圖映射方法,本文分析總結(jié)了這些方法各自的特點(diǎn),如表4所示。
2.1 現(xiàn)有研究存在的問(wèn)題
針對(duì)不同方法研究特點(diǎn),現(xiàn)有的研究仍存在以下問(wèn)題:
a.模型存在缺陷。比例肌電法和人工智能法計(jì)算相對(duì)簡(jiǎn)單快速,但其無(wú)法體現(xiàn)人體生理結(jié)構(gòu)和運(yùn)動(dòng)特性,而肌骨模型則相反。很多情況下,智能下肢假肢與下肢外骨骼需要實(shí)時(shí)計(jì)算,龐大的計(jì)算量和復(fù)雜的模型都會(huì)增加設(shè)備硬件負(fù)擔(dān),同時(shí)相對(duì)簡(jiǎn)單的模型則對(duì)底層控制要求更高。雖然人工智能算法具有模型相對(duì)復(fù)雜、計(jì)算相對(duì)簡(jiǎn)單的特點(diǎn),但需要大量數(shù)據(jù)對(duì)其進(jìn)行訓(xùn)練,應(yīng)對(duì)未知任務(wù)和復(fù)雜環(huán)境的風(fēng)險(xiǎn)更大。目前還沒(méi)有提出一種既能描述生理運(yùn)動(dòng)特性,同時(shí)又能夠提高計(jì)算效率的模型。
b.實(shí)驗(yàn)對(duì)象不理想。智能下肢假肢與下肢外骨骼的目標(biāo)人群是截肢和肌肉或神經(jīng)損傷患者,患者的肌肉特性不同于健康人,映射運(yùn)動(dòng)意圖直接控制設(shè)備需要從宏觀考慮完整控制結(jié)構(gòu)。目前,智能下肢假肢與下肢外骨骼的實(shí)驗(yàn)對(duì)象主要為健康人,臨床應(yīng)用性不高。
c.實(shí)驗(yàn)缺乏對(duì)比。相同模型對(duì)健康人和患者映射運(yùn)動(dòng)意圖的有效性需要進(jìn)行實(shí)驗(yàn)比較,對(duì)于智能下肢假肢或下肢外骨骼的同一個(gè)模型需要對(duì)健康人和患者的實(shí)驗(yàn)結(jié)果進(jìn)行量化分析(如能量消耗、精確度等)。目前只有少數(shù)的研究進(jìn)行了對(duì)比分析,并證明其方法的可行性。
d.實(shí)驗(yàn)環(huán)境與任務(wù)簡(jiǎn)單。目前大多數(shù)研究映射運(yùn)動(dòng)意圖的實(shí)驗(yàn)任務(wù)簡(jiǎn)單(行走或站立)、單一,且實(shí)驗(yàn)環(huán)境基本是在實(shí)驗(yàn)室條件下,無(wú)法適應(yīng)未知的環(huán)境和復(fù)雜的任務(wù)。
2.2 展望
針對(duì)肌電直接控制智能下肢假肢與下肢外骨骼的研究總結(jié)了相關(guān)下肢運(yùn)動(dòng)意圖映射方法。雖然這些方法已經(jīng)在相關(guān)實(shí)驗(yàn)中成功映射了人體下肢運(yùn)動(dòng),但對(duì)于智能下肢假肢與下肢外骨骼的目標(biāo)人群,現(xiàn)有的研究和實(shí)驗(yàn)仍存在很多不足,針對(duì)這些問(wèn)題,未來(lái)的研究應(yīng)關(guān)注以下幾個(gè)方面:
a.信息融合。肌電信號(hào)存在隨機(jī)性、易干擾等明顯缺陷,雖然現(xiàn)有的研究已開始將反映生物神經(jīng)的肌電信號(hào)和更加穩(wěn)定的信號(hào)(如角速度、圖像等)相結(jié)合,但該領(lǐng)域的研究仍處于初步階段,對(duì)于信息融合,如何篩選輸入信息,如何處理并融合信息等問(wèn)題都有待研究。加強(qiáng)信息融合,增強(qiáng)輸入信息的穩(wěn)定性和可靠性,解碼更多運(yùn)動(dòng)信息是未來(lái)的發(fā)展方向。
b.患者特性。由于截肢者、神經(jīng)和肌肉損傷患者的肌肉特性不同于健康人,需要更加關(guān)注實(shí)際患者及其特殊肌群對(duì)智能下肢假肢與下肢外骨骼肌電控制系統(tǒng)的影響,克服截肢原因(如外傷或血管障礙等)、殘肢長(zhǎng)度和形狀以及隨后的肌肉萎縮對(duì)肌電信號(hào)的影響。
c.人工智能。在目前的研究中,使用人工智能算法可以準(zhǔn)確映射下肢運(yùn)動(dòng),但是,這種方法并不能體現(xiàn)其生物特性,而且,這種黑箱模型基本無(wú)法達(dá)到100%的正確率,降低了智能下肢假肢或外骨骼的可靠性和穩(wěn)定性。未來(lái)需要依靠人工智能算法的強(qiáng)計(jì)算、快速建模等特點(diǎn),結(jié)合比例肌電和肌骨模型構(gòu)造新模型,深入挖掘肌電信號(hào)、機(jī)械信號(hào)等輸入與人體運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)相關(guān)信息以控制設(shè)備。
d.復(fù)雜環(huán)境。目前的研究大多是基于實(shí)驗(yàn)室環(huán)境,映射運(yùn)動(dòng)意圖受到特定運(yùn)動(dòng)模型的限制,但實(shí)際環(huán)境更為復(fù)雜。如何應(yīng)對(duì)復(fù)雜環(huán)境T的不確定步態(tài),如何解決重新穿戴假肢肌電信號(hào)偏差,以及下肢假肢與下肢外骨骼機(jī)器人能否適應(yīng)復(fù)雜地理環(huán)境(如復(fù)雜地形)等問(wèn)題的研究還鮮有涉及,但這對(duì)人體下肢運(yùn)動(dòng)意圖映射具有重要意義。
3 結(jié)束語(yǔ)
介紹了表面肌電信號(hào)映射下肢運(yùn)動(dòng)意圖的研究方法,同時(shí)深入討論了這些方法直接控制智能下肢假肢與下肢外骨骼的研究特點(diǎn)以及未來(lái)研究的發(fā)展方向。目前,雖然對(duì)智能下肢假肢與下肢外骨骼的控制研究已取得長(zhǎng)足的發(fā)展,但在基于肌電映射下肢運(yùn)動(dòng)意圖直接控制機(jī)器人方面還有很多問(wèn)題沒(méi)有解決,很多空白點(diǎn)值得進(jìn)一步深入探討,尤其基于人工智能的探索尚處于初步研究階段,這一領(lǐng)域未來(lái)的發(fā)展前景非常廣闊。
參考文獻(xiàn):
[1] JONES K S,SCHMIDLIN E A.Human-robot interaction:toward usable personal service robots[J]. Reviews ofHuman Factors and Ergonomics, 2011, 7(1): 100-148.
[2]吳偉銘,孟巧玲,倪偉,等.康復(fù)機(jī)器人系統(tǒng)數(shù)據(jù)通信技術(shù)應(yīng)用現(xiàn)狀[J].上海理工大學(xué)學(xué)報(bào),2023,45(1): 36-43
[3]王啟寧,鄭恩昊,陳保君,等,面向人機(jī)融合的智能動(dòng)力下肢假肢研究現(xiàn)狀與挑戰(zhàn)[J].自動(dòng)化學(xué)報(bào),2016,42(12):1780-1793.
[4]趙偉亮,曹武警,李,等,人機(jī)共融的主動(dòng)型下肢假肢分層控制策略探討[J].生物信息學(xué),2017,15(3):191-195.
[5] HUANG H,KUIKEN T A,LIPSCHUTZ R D.A strategyfor identifying locomotion modes using surfaceelectromyography[J]. IEEE Transactions on BiomedicalEngineering, 2009. 56(1): 65-73.
[6] HARGROVE L J,YOUNG A J,SIMON A M, et al.Intuitive control of a powered prosthetic leg duringambulation:a randomized clinical triaI[J]. JAMA, 2015,313(22): 2244-2252.
[7] YOUNG A J. KUIKEN T A. HARGROVE L J. Analysisof using EMG and mechanical sensors to enhance intentrecognition in powered lower limb prostheses[J] . Journal ofNeural Engineering, 2014, 11(5): 056021.
[8] HARGROVE L J, SIMON A M, YOUNG A J. et al.Robotic leg control with EMG decoding in an amputeewith nerve transfers[J]. New England Journal of Medicine, 2013. 369(13): 1237-1242.
[9] SIMON A M, FEY N P, INGRAHAM K A. et al. Poweredprosthesis control during walking, sitting, standing, andnon-weight bearing activities using neural and mechanicalinputs[C]//lntemational IEEE/EMBS Conference on NeuralEngineering. San Diego: IEEE. 2014: 1174-1177.
[10] HA K H, VAROL H A, GOLDFARB M. Volitional controlof a prosthetic knee using surface electromyography[J].IEEE Transactions on Biomedical Engineering, 2011,58(1): 144-151.
[11]劉壯,朱純煜,朱越,等.基于多傳感器信息的新型穿戴式上肢外骨骼康復(fù)機(jī)器人 [J]. 北京生物醫(yī)學(xué)工程,?021,40(3): 273-278.
[12] HEFFERMAN G M. ZHANG F, NUNNERY M J, et al.Integration of surface electromyographic sensors with thetransfemoral amputee socket: a comparison of fourdiffering configurations[J]. Prosthetics & OrthoticsIntemational. 2015, 39(2): 166-173.
[13] YEON S H. SHU T, ROGERS E A, et al. Flexible dryelectrodes for EMG acquisition within lower extremityprosthetic sockets[C]//2020 8th IEEE RAS/EMBSIntemational Conference for Biomedical Robotics andBiomechatronics (BioRob). New York: IEEE, 2020:1088-1095.
[14] ELMARAGHl S, ALBANO N J. ISRAEL J S. et al.Targeted muscle reinnervation in the hand: treatment andprevention of pain after ray amputation[J]. The Journal ofHand Surgery, 2020, 45(9): 884.
[15] MYERS D R, MOSKOWITZ G D. Myoelectric pattemrecognition for use in the volitional control of above-kneeprostheses[J]. IEEE Transactions on Systems, Man. andCybernetics, 1981, 11(4): 296-302.
[16] DONATH M. Proportional EMG control for above kneepros-theses[D]. Cambridge: Massachusetts Institute ofTechnology, 1974.
[17] DOORENBOSCH C, HARLAAR J. Accuracy of apracticable EMG to force model for knee muscles[J].Neuroscience Letters, 2004, 368(1): 78-8 1 .
[18] HOOVER C D. FULK G D. FITE K B. Stair ascent with apowered transfemoral prosthesis under direct myoelectriccontroI[J]. IEEE/ASME Transactions on Mechatronics,2013. 18(3): 1191-1200.
[19] YOUNG A J. GANNON H. FERRIS D P. Abiomechanical comparison of proportional electromy-ography control to biological torque control using apowered hip exoskeleton[J]. Frontiers in Bioengineeringand Biotechnology, 2017, 5: 37.
[20] WU S K. WAYCASTER G, SHEN X R.Electromyography-based control of active above-kneeprostheses[J]. Control Engineering Practice. 2011, 19(8):875-882.
[21] HOOVER C D. FULK G D. FITE K B. The design andinitial experimental validation of an active myoelectrictransfemoral prosthesis[J]. Journal of Medical Devices.2012, 6(1): 011005.
[22] KOLLER J R, JACOBS D A, FERRIS D P, et al. Learningto walk with an adaptive gain proportional myoelectriccontroller for a robotic ankle exoskeleton[J]. Journal ofNeuroEngineering and Rehabilitation. 2015. 12: 97.
[23] HUANG S. WENSMAN J P. FERRIS D P. Locomotoradaptation by transtibial amputees walking with anexperimental powered prosthesis under continuousmyoelectric controI[J]. IEEE Transactions on NeuralSystems and Rehabilitation Engineering, 2016, 24(5):573-581.
[24] CLITES T R, CARTY M J. ULLAURI J B, et al.Proprioception from a neurally controlled lower-extremityprosthesis[J]. Science Translational Medicine. 2018,10(443): eaap8373.
[25] FLEMING A, HUANG S. HUANG H. Proportionalmyoelectric control of a virtual inverted pendulum usingresidual antagonistic muscles: toward voluntary posturalcontroI[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering, 2019, 27(7): 1473-1482.
[26] HUANG S, HUANG H. Voluntary control of residualantagonistic muscles in transtibial amputees: reciprocalactivation. coactivation. and implications for direct neuralcontrol of powered lower limb prostheses[J]. IEEETransactions on Neural Systems and RehabilitationEngineering, 2019, 27(1): 85-95.
[27] FLEMING A. HUANG S. BUXTON E, et al. Directcontinuous electromyographic control of a poweredprosthetic ankle for improved postural control after guidedphysical training: A case study[J]. Wearable Technologies,2021. 2: E3.
[28] HUNT G R. HOOD S, LENZI T. Stand-up, squat, lunge,and walk with a robotic knee and ankle prosthesis undershared neural controI[J]. IEEE Open Joumal ofEngineering in Medicine and Biology, 2021, 2: 267-277.
[29] FLEMING A, LIU W T, HUANG H. Neural coherence ofhomologous muscle pairs during direct EMG control ofstanding posture in transtibial amputees[C]//Proceedings ofthe Sth Intemational Conference on Converging Clinicaland Engineering Research on Neurorehabilitation lV.Cham: Springer, 2022: 139-143.
[30] VAN SOEST A J K. HAENEN W P. ROZENDAAL L A.Stability of bipedal stance: the contribution ofcocontraction and spindle feedback[J]. BiologicalCybernetics, 2003, 88(4): 293-301.
[31] FLEISCHER C. HOMMEL G. A human-exoskeletoninterface utilizing electromyography[J]. IEEE Transactionson Robotics, 2008, 24(4): 872-882.
[32] HOOVER C D, FITE K B. A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis [C]//IEEE
International
Conference
onRehabilitation Robotics. Zurich: IEEE. 201 I : 1-6.
[33] KARAVAS N, AJOUDANI A. TSAGARAKIS N, et al.Tele-Impedance based stiffness and motion augmentationfor a knee exoskeleton device[C]//2013 IEEE IntemationalConference on Robotics and Automation. Karlsruhe: IEEE,2013: 2194-2200.
[34] KIM Y. HORI Y. Muscle group activation estimation inhuman leg during gait using recursive least squaresembodying Hill's muscle modeI[C]//5th IEEE RAS/EMBSIntemational Conference on Biomedical Robotics andBiomechatronics. Sao Paulo: IEEE. 2014: 845-850.
[35] KARAVAS N. AJOUDANI A. TSAGARAKIS N, et al.Tele-impedance based assistive control for a compliantknee exoskeleton[J]. Robotics & Autonomous Systems,2015, 73:78-90.
[36] THATTE N. GEYER H. Toward balance recovery with legprostheses using neuromuscular model controI[J]. IEEETransactions on Biomedical Engineering, 2016, 63(5):904-913.
[37] BAHL J S, ZHANG J, KILLEN B A, et al. Statistical shapemodelling versus linear scaling: effects on predictions ofhip joint centre location and muscle moment arms in peoplewith hip osteoarthritis[J]. Journal of Biomechanics, 2019,85: 164-172.
[38] BARZAN M. MODENESE L, CARTY C P. et al.Development and validation of subject-specific pediatricmultibody knee kinematic models with ligamentousconstraints[J]. Journal of Biomechanics, 2019. 93:194-203 .
[39] DAVICO G, PIZZOLATO C, KILLEN B A, et al. Bestmethods and data to reconstruct paediatric lower limbbones for musculoskeletal modelling[J]. Biomechanics andMocleling in Mechanobiology, 2020, 19(4): 1225-1238.
[40] CIMOLATO A, MILANDRI G. MATTOS L S. et al.Hybrid machine leaming-neuromusculoskeletal modelingfor control of lower limb prosthetics[C]//2020 8th IEEERAS/EMBS Intemational Conference for BiomedicalRobotics and Biomechatronics (BioRob). New York: IEEE,2020: 557-563.
[41] ZHANG L B, LI Z J, HU Y B, et al. Ankle joint torqueestimation using an EMG-driven neuromusculoskeletalmodel and an artificial neural network modeI[J]. IEEETransactions on Automation Science and Engineering,2021, 18(2): 564-573.
[42] RABE K G. LENZI T, FEY N P. Performance ofsonomyographic and electromyographic sensing forcontinuous estimation ofjoint torque during ambulation onmultiple terrains[J]. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 202 1, 29: 263 5-2644.
[43] SHAH C. FLEMING A, NALAM V, et al. Design ofEMG-driven musculoskeletal model for volitional controlof a robotic ankle prosthesis[C]//2022 IEEE/RSJInternational Conference on Intelligent Robots andSystems. Kyoto: IEEE, 2022: 12261-12266.
[44] LLOYD D G, BESIER T F. An EMG-drivenmusculoskeletal model to estimate muscle forces and kneejoint moments in vivo[J]. Journal of Biomechanics, 2003,36(6): 765-776.
[45]陳江城,張小棟,李睿,等.利肌電信號(hào)的下肢動(dòng)49(12): 26-33.
[46] AU S K. BONATO P, HERR H. An EMG-positioncontrolled system for an active ankle-foot prosthesis: aninitial experimental study[C]//9th International Conferenceon Rehabilitation Robotics. Chicago: IEEE, 2005:375-379.
[47] SAXBY D J. KILLEN B A. PIZZOLATO C, et al.Machine leaming methods to support personalizedneuromusculoskeletal modelling[J]. Biomechanics andModeling in Mechanobiology, 2020, 19(4): 1169-1185.
[48] INKOL K A. BROWN C, MCNALLY W. et al. Muscletorque generators in multibody dynamic simulations ofoptimal sports performance[J]. Multibody SystemDynamics. 2020, 50(4): 435-450.
[49]喻洪流 . 康復(fù)機(jī)器人人:十大遠(yuǎn)景展望 [J].中國(guó)康復(fù)醫(yī) 學(xué)雜志, 2020, 35(8): 900-902.
[50] CHANDRAPAL M. CHEN X Q, WANG W H. et al.Investigating improvements to neural network based EMGto joint torque estimation[J]. Paladyn, Journal ofBehavioral Robotics, 2011, 2(4): 185-192.
[51] XIONG B P, ZENG N Y. LI H, et al. Intelligent predictionof human lower extremity joint moment: an artificial neuralnetwork approach[J]. IEEE Access. 2019, 7: 29973-29980.
[52] CHEN J C, ZHANG X D. CHENG Y, et al. Surface EMGbased continuous estimation of human lower limb jointangles by using deep belief networks[J] . Biomedical SignalProcessing and Control. 2018, 40: 335-342.
[53] ZHANG F. LI P F, HOU Z G, et al. sEMG-basedcontinuous estimation of joint angles of human legs byusing BP neural network[J]. Neurocomputing, 2012, 78(1):139-148.
[54] SU C J, CHEN S R. JIANG H Y, et al. Ankle joint torqueprediction based on surface Electromyographic and angularvelocity signals[J]. lEEE Access, 2020. 8: 217681-217687.
[55] KELE$ A D, YUCESOY C A. Development of a neuralnetwork based control algorithm for powered ankleprosthesis[J] . Journal of Biomechanics, 2020. 113 : 110087.
[56] SIU H C. SLOBODA J, MCKINDLES R J, et al. Ankletorque estimation during locomotion from surfaceelectromyography and accelerometry[C]//2020 8th IEEERAS/EMBS Intemational Conference for BiomedicalRobotics and Biomechatronics. New York: IEEE, 2020:80-87.
[57] COKER J. CHEN H. SCHALL M C, et al. EMG and jointangle-based machine leaming to predict future joint anglesat the knee[J] . Sensors, 2021, 21(1 1): 3622.
[58] KIM I. LEE T. LEE S H. Ankle intention detectionalgorithm using electromyography signaI[J]. Journal ofComputational Design and Engineering, 2021, 8(5):1234-1242.
[59] ZABRE-GONZALEZ E V. RIEM L. VOGLEWEDE P A,et al. Continuous myoelectric prediction of future ankleangle and moment across ambulation conditions and theirtransitions[J] . Frontiers in Neuroscience, 2021, 15: 709422.
[60] CAULCRICK C. HUO W G, HOULT W. et al. Humanjoint torque modelling with MMG and EMG during lowerlimb human-exoskeleton interaction[J]. IEEE Robotics andAutomation Letters, 2021, 6(4): 7185-7192.
[61] ZANGENE A R. ABBASI A, NAZARPOUR K.Estimation of lower limb kinematics during squat task indifferent loading using sEMG activity and deep recurrentneural networks[J]. Sensors, 2021. 21(23): 7773.
[62] 11 W T. LIU K P, SUN Z B, et al. A neural network-basedmodel for lower limb continuous estimation against thedisturbance of uncertainty[J]. Biomedical SignalProcessing and Control. 2022, 71 : 103 115.
[63] FOROUTANNIA A, AKBARZADEH-T M R,AKBARZADEH A. A deep learning strategy for EMG-based joint position prediction in hip exoskeleton assistiverobots[J]. Biomedical Signal Processing and Control. 2022.75: 103557.