• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chiral metal-organic framework {(HQA)(ZnCl2)(2.5H2O)}n for the enantioseparation of chiral amino acids and drugs

    2023-05-29 10:00:50XingtiZhengQiZhngQinjieXinyuLiLingZhoXiodongSun
    Journal of Pharmaceutical Analysis 2023年4期

    Xingti Zheng , Qi Zhng , Qinjie M , Xinyu Li , Ling Zho ,Xiodong Sun ,*

    a Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China

    b School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

    c Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China

    d Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China

    Keywords:

    Capillary electrochromatography

    Metal-organic framework

    Enantioseparation

    Chiral stationary phase

    Open-tubular column

    Dansyl amino acids

    ABSTRACT Chiral metal-organic frameworks (CMOFs) with enantiomeric subunits have been employed in chiral chemistry.In this study, a CMOF formed from 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid(HQA) and ZnCl2, {(HQA)(ZnCl2)(2.5H2O)}n, was constructed as a chiral stationary phase (CSP) via an in situ fabrication approach and used for chiral amino acid and drug analyses for the first time.The{(HQA)(ZnCl2)(2.5H2O)}n nanocrystal and the corresponding chiral stationary phase were systematically characterised using a series of analytical techniques including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, circular dichroism, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area measurements.In opentubular capillary electrochromatography (CEC), the novel chiral column exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including 19 racemic dansyl amino acids and several model chiral drugs (both acidic and basic).The chiral CEC conditions were optimised, and the enantioseparation mechanisms are discussed.This study not only introduces a new high-efficiency member of the MOF-type CSP family but also demonstrates the potential of improving the enantioselectivities of traditional chiral recognition reagents by fully using the inherent characteristics of porous organic frameworks.

    1.Introduction

    Enantiodiscrimination is a topic of interest in separation science because enantiomers of chiral compounds often differ in their biological activities[1,2].The increasing use of enantiopure drugs in pharmaceuticals has boosted research in the field of highperformance chiral separation [3,4].Amino acids (AAs) are essential compounds that contain both amino and carboxyl groups[5,6]and play important roles in several biochemical systems.They exhibit different biological behaviours owing to their chiral characteristics[7,8].Among these, L-AAs are widely used in food[9,10],medicine [11,12], and other fields.However, the potential of D-AAs in numerous biological processes has been recently demonstrated[13,14] through their connection to the treatment of metabolic disorders, including schizophrenia [15], Alzheimer's disease [16],and cancer [17].Hence, the development of methods for enantioseparating chiral AAs and drugs is crucial to many fields of science.

    Metal-organic frameworks (MOFs) are composed of inorganic metal ions and organic ligands and exhibit many advantageous characteristics, such as ultra-high specific surface areas, tuneable uniform pore sizes, and ease of functional modification.MOFs are versatile porous materials for multiple applications including gas storage [18,19], catalysis [20,21], drug delivery [22,23], and molecular separation.Recent studies have successfully employed chiral MOFs with porous supramolecular architectures as the opentubular capillary electrochromatography (OT-CEC) stationary phases for chiral separation.For example,Wang et al.[24]developed a mesoporous Fe-based γ-cyclodextrin MOF as the chiral stationary phase in OT-CEC for the enantioseparation of 14 racemic drugs and one chiral alcohol.Sun et al.[25]established a chiral OT-CEC system based on the MOF L-His-MIL-53 via post-synthesis modification.The enantioresolution of several chiral drugs was significantly better than that of the bare capillary column or other modified capillary columns before post-synthesis modification.The major limitations of reported MOF-type capillary columns are their relatively poor enantioselectivities and complicated column preparation processes.The development of chiral MOFs as stationary phases in OT-CEC can solve these problems by enhancing the surface concentration of chiral selectors [26].Nevertheless, current reports on chiral MOF-based CEC methodologies are sporadic and high-performance MOF@capillaries remain scarce.

    In this study, a chiral MOF, {(6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid(HQA))(ZnCl2)(2.5H2O)}n,was synthesised and successfully immobilised on the inner wall of a capillary column using an in situ approach.Specifically,HQA was synthesised by the slow oxidation of quinine, a natural selector, followed by selfassembly of a 1D chain coordination framework.The chiral MOF and corresponding capillary column were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD),energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), circular dichroism (CD)spectroscopy, and Brunauer-Emmett-Teller surface area measurements (BET).A systematic OT-CEC experiment was conducted to demonstrate the excellent enantioseparation performance of this novel MOF-based capillary column.

    2.Material and methods

    2.1.Chemicals

    L-proline(L-Pro), D-Pro, L-cysteine(L-Cys), D-Cys, L-alanine(L-Ala),D-Ala, L-arginine (L-Arg), D-Arg, L-glutamic acid (L-Glu), D-Glu, Lserine (L-Ser), D-Ser, L-tyrosine (L-Tyr), L-isoleucine (L-Ile), D-Ile, Lcystine(L-Cys), D-Cys,L-threonine(L-Thr), D-Thr, L-tryptophan(L-Trp),D-Trp, L-methionine (L-Met), D-Met, L-citrulline (L-Cit), D-Cit, D-histidine (D-His), and L-lysine (L-Lys) were purchased from Macklin Biochemical Co., Ltd.(Shanghai, China).Dansyl (DNS) chloride, Lleucine (L-Leu), D-Leu, L-valine (L-Val), D-Val, D-Tyr, L-asparagine (LAsn), D-Asn, L-phenylalanine (L-Phe), D-Phe, (S)-ibuprofen ((S)-IBU),(R)-IBU, and IBU were purchased from Shanghai Haohong Pharmaceutical Co.,Ltd.(Shanghai,China).D-Lys and L-His were purchased from Sigma-Aldrich(Shanghai,China).(S)-metoprolol((S)-MET)and(R)-MET were purchased from Beijing Bellwether Technology Co.,Ltd.(Beijing, China).(S)-chlorpheniramine maleate ((S)-CPM) and(R)-CPM were purchased from Shenzhen Zhenqiang Biotechnology Co.,Ltd.(Shenzhen,China).MET and CPM were provided by Jiangsu Institute for Food and Drug Control (Nanjing, China).3-aminopropyltriethoxysilane (APTES), glutaraldehyde (50% in H2O),and other chemicals were of analytical grade or higher and purchased from Macklin Biochemical Co., Ltd..Bare-fused silica capillaries (75 μm i.d.; 365 μm o.d.) were purchased from Yongnian Ruifeng Chromatography Devices Co.,Ltd.(Handan,China).

    2.2.Apparatus

    CEC experiments were performed using a CL1030 capillary electrophoresis system (Beijing Huayang Liming Instrumental Co.,Beijing, China) equipped with a ultraviolet (UV) detector(190-700 nm) and a 30 kV high-voltage power supply.The morphologies of the synthesised MOF {(HQA)(ZnCl2)(2.5H2O)}nand MOF-functionalized capillary ({(HQA)(ZnCl2)(2.5H2O)}n@capillary)were characterised using SEM (FEI Quanta 250 FEG, Waltham, MA,USA).XPS spectra were collected using a Shimadzu AXIS spectrometer(Kyoto,Japan).XRD data were recorded using a Bruker D8 ADVANCE X-ray powder diffractometer(Saarbrucken,Germany).FTIR spectra were recorded using a Nicolet IS50 spectrometer(Thermo Scientific Inc., Waltham, MA, USA) using KBr pellets.The thermostability of the MOF coatings was measured by TGA using a NETZSCH STA 449F3 instrument(Selb,Germany)in the temperature range of 25-800°C.The optical activities were tested by CD spectroscopy using a JASCO J-815 spectrometer(Easton,MD,USA)spectrometer in a trifluoroethanol:H2O(1:1,V/V)solution.The BET surface area and total pore volume of the MOF material and MOF capillary coating were determined using a JW-BK200B instrument(JWGB Sci.&Tech.Ltd., Beijing, China) instrument and the N2adsorption-desorption isotherm method.

    2.3.Synthesis of HQA

    HQA was synthesized according to the literature [27].Briefly,100 mL of a KMnO4solution(32.4 mmol)was mixed with 14.6 mL of a quinine solution in 10% H2SO4(12.35 mmol)at 0°C.Next,200 mL of ethanol (EtOH) was added.The reaction mixture was stirred overnight at room temperature and refluxed at 70°C for 30 min.The reaction mixture was purified by filtration to remove MnO2byproduct, and the residual solvent was evaporated under reduced pressure at 100°C.HQA was obtained as a light-brown solid(27.6% yield) after recrystallization from H2O and EtOH.The reaction scheme for HQA synthesis and its characterisation data are shown in Figs.S1-S4.

    2.4.Synthesis of {(HQA)(ZnCl2)(2.5H2O)}n

    The chiral MOF {(HQA)(ZnCl2)(2.5H2O)}nwas synthesised by heat treatment [28].Briefly, 30 mL of a methanol (MeOH):H2O(1:1, V/V) solution containing HQA (1 mmol) and ZnCl2(1 mmol)was heated at 70°C for 4 days.HQA was obtained as a colourless product in 78.9% yield (Fig.S5).

    2.5.Preparation of the {(HQA)(ZnCl2)(2.5H2O)}n coated OT capillary column

    A 50-cm untreated fused-silica capillary was continuously rinsed with 1 M NaOH (1 h), H2O (15 min),1 M HCl (30 min),H2O(15 min),and MeOH(30 min).After removing residual MeOH with N2gas,the capillary column was dried at 100°C in a vacuum oven for 1 h.Next,a 50% APTES solution in MeOH was pumped into the capillary for 15 min.The capillary was sealed with rubber septa and allowed to react in a water bath maintained at 55°C for 12 h to fully bind the amino groups.A 2% glutaraldehyde (V/V, pH 11) solution was then pumped into the APTES-modified column for 2 h, followed by injecting a 0.1 M KMnO4solution into the capillary for 1 h using a syringe pump.

    {(HQA)(ZnCl2)(2.5H2O)}n@capillary was fabricated using a simple in situ approach.The carboxyl-functionalized capillary column was rinsed with a 3 mL of MeOH:H2O(1:1,V/V)solution containing HQA (1 mmol) and ZnCl2(1 mmol) for 3 h.The capillary was then sealed with rubber septa and allowed to react in a water bath maintained at 70°C for three days to obtain the final functionalized capillary.

    2.6.Preparation of standard solutions

    All DNS AAs were prepared according to the literature [29].Briefly,100 μL of an AA solution(1 mg/mL in 0.1 M HCl containing 30% MeOH),20 μL of 2 M NaOH,and 30 μL of concentrated NaHCO3were mixed with 500 μL of a DNS chloride solution (10 mg/mL in acetone).The mixed solution was allowed to react at 4°C for 45 min,and the reaction terminated by adding 10 μL of 25% NH4OH.Racemic drugs (0.5 mg/mL) were dissolved directly in 50% MeOH:H2O (1:1, V/V) solution [30].

    2.7.CEC procedures

    A 50 cm {(HQA)(ZnCl2)(2.5H2O)}n@capillary was used for CEC,with an effective length of 41.5 cm.An applied voltage of 15 kV was used (unless stated otherwise) and the temperature was maintained at 25°C.The detection wavelength was set at 254 nm.A 20 mM phosphate solution containing 10% MeOH was used as the running buffer, and its pH was accurately adjusted by adding a small volume of HCl(10%)or NaOH(5 M)with a micro syringe.All solutions were filtered through a 0.45-μm membrane filter prior to use.Thiourea was used as a neutral marker to indicate the electroosmotic flow (EOF).The capillary column was conditioned with running buffer between CEC analyses until a stable baseline was obtained.

    3.Results and discussion

    3.1.Characterization of {(HQA)(ZnCl2)(2.5H2O)}n

    The SEM analysis showed that {(HQA)(ZnCl2)(2.5H2O)}nhas a triclinic morphology, which matches the theoretical architecture(Fig.1A).To confirm the successful synthesis and purity of{(HQA)(ZnCl2)(2.5H2O)}n,powder XRD (PXRD) was performed at room temperature using a powdered MOF sample (Fig.S6).PXRD showed that this MOF crystallises in a triclinic morphology, as observed in the SEM image, with two crystallographically independent Zn centers.The experimental PXRD pattern showed peaks at 9.8°, 12.9°, 13.3°, 14.8°, 20.0°, and 25.2°, which are consistent with the simulated pattern.The FT-IR spectra of HQA and MOF product (Fig.1B) showed a characteristic band in the region of 1450-1360 cm-1corresponding to the asymmetric stretching vibrations of the carboxylate functional groups and benzene rings[31].In addition, an intense peak corresponding to the stretching vibration of the carbonyl group was observed at 1710 cm-1, indicating the presence of freely available carboxyl groups in{(HQA)(ZnCl2)(2.5H2O)}n.The bands at 1620 cm-1and 1598 cm-1corresponded to symmetric and asymmetric stretching of carboxyl groups bonded to Zn[32,33].Coordination between Zn ions and O atoms of the HQA ligand causes the electron cloud densities of carbon-nitrogen bonds to be between that of C=O and C-O bonds,shifting its stretching vibration to a low frequency [34].A peak at 1685 cm-1indicated the presence of a zwitterionic moiety.Notably,two peaks at 3433 cm-1and 3300 cm-1indicated the presence of uncoordinated H2O molecules, further confirming the successful synthesis of {(HQA)(ZnCl2)(2.5H2O)}n.

    Fig.1 .Characterization of{(HQA)(ZnCl2)(2.5H2O)}n.(A)Scanning electron microscopy(SEM)image.(B)Fourier transform infrared(FT-IR)spectra.X-ray photoelectron spectroscopy(XPS) spectra of (C) survey spectrum and (D) Zn2p spectrum.(E) Circular dichroism (CD) spectra.(F) N2 adsorption-desorption isotherms (inset: pore size distribution).HQA: 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid; STP: standard temeprature and pressure.

    XPS experiments were also performed to determine the elemental composition of {(HQA)(ZnCl2)(2.5H2O)}n.The full-scan XPS profiles of the MOF samples are shown in Figs.1C and D.As expected,the characteristic peaks of C1s(284.5 eV),N1s(401.5 eV),O1s(532.5 eV),Zn2p(1022.2 eV and 1045.3 eV),and Cl2p(198.5 eV)were observed.The two characteristic peaks in the Zn2p XPS spectrum, situated at 1045.3 eV and 1022.2 eV, corresponded to Zn2p1/2 and Zn2p3/2,respectively.This indicated that Zn(II)exists in the MOF, matching the SEM-EDS results.CD spectra were recorded in the far-UV region (190-250 nm) to determine the optical activity of the MOF (Fig.1E).The thermal stability of the MOF product was tested using TGA (Fig.S7).The weight change profile remained constant up to a temperature of 80°C, at which point the weight reduction increased with the temperature up to 120°C.This weight loss corresponded to the release of coordinated water molecules.A second significant weight loss occurs at 250°C,the onset of instability temperature of {(HQA)(ZnCl2)(2.5H2O)}n.The TGA weight curve indicated a steep reduction in weight under extreme thermal stress, corresponding to the collapse of the MOF structure.To determine the porosity of the prepared MOF product,N2adsorption-desorption isotherms were measured using the BET technique.The N2adsorption-desorption isotherms were identified as type III isotherms (Fig.1F), and their pore size distribution indicated the presence of pores smaller than 30 nm(inset of Fig.1F).Using the Barrett-Joyner-Halenda (BJH) model and the desorption branch of the N2isotherm,the average pore size was calculated to be 5.739 nm.Multipoint BET method and BJH analysis showed that the surface area was 139.5 m2/g and pore volume was 0.048 cm3/g.

    3.2.Characterization of {(HQA)(ZnCl2)(2.5H2O)}n@capillary

    The SEM images clearly showed the presence of a homogeneous coating on the inner surface of the {(HQA)(ZnCl2)(2.5-H2O)}n@capillary and the smooth inner wall of the bare capillary(Figs.2A and B).The surface elemental compositions of bothcapillaries were analysed using SEM-EDS (Figs.2A and B).The differences in the elemental compositions of the two capillaries further demonstrated that the {(HQA)(ZnCl2)(2.5H2O)}nMOF was successfully immobilised onto the capillary inner surface(Table 1).The multipoint BET method showed that the surface area of the{(HQA)(ZnCl2)(2.5H2O)}n@capillary (78.801 m2/g) was significantly larger than that of the bare capillary (33.889 m2/g).BJH analysis and the desorption branch of the N2isotherm showed that the (MOF-coated and bare capillaries had pore sizes of 4.897 and 4.671 nm and pore volumes of 0.085 and 0.057 cm3/g,respectively.These results indicated the successful synthesis and high porosity of the MOF coating(Figs.2C and D).The effect of pH on the EOF is shown in Fig.S8.The {(HQA)(ZnCl2)(2.5H2O)}n@capillary exhibited different EOF behaviours than the bare capillary column but with similar trends; its decreased EOF confirms the successful synthesis and coating of {(HQA)(ZnCl2)(2.5H2O)}non the inner surface of the capillary.

    Table 1 The differences in the elemental compositions of the two capillaries.

    3.3.Enantiomer separation

    The enantioseparation performance of the {(HQA)(ZnCl2)(2.5-H2O)}n@capillary was evaluated using various chiral compounds as model analytes.Under the selected CEC conditions,almost all chiral analytes were successfully resolved, as summarized in Table 2.Representative electropherograms are shown in Fig.3.Note that free AAs cannot be enantioseparated in this MOF-coated capillary because they do not have suitable functional groups to interact with selectors[35].However,derivatizing agents can be applied to both the amino and carboxylic groups to allow intermolecular interactions with the selectors.The chiral MOF-type stationary phase achieved excellent enantioselectivities toward DNS-AAs, with an enantioresolution of 13.56 for DNS-Phe.Notably, no enantioresolution was achieved using the bare capillary (Table 2).These results demonstrate the essential role of the chiral MOF coating during CEC separation.This MOF-coated capillary is also capable of resolving acidic or basic drug enantiomers, which is a significant advantage over most reported chiral capillary columns that typically exhibit relatively low enantioselectivities.

    Fig.3 .Performance of open-tubular capillary electrochromatography-based enantioseparation of (A) nineteen dansyl amino acids (DNS-AAs) and (B) three model racemic drugs conducted using{(HQA)(ZnCl2)(2.5H2O)}n@capillary.Conditions:20 mM phosphate buffer containing 10% methanol(MeOH)at pH 6.75;applied voltage,15 kV.HQA:6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid; Ala: alanine; Arg: arginine; Asn: asparagine; Cit: citrulline; Cys: cysteine; Cys-Cys: cystine; Glu: glutamic acid; His: histidine; Ile:isoleucine; Leu: leucine; Lys: lysine; Met: methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Trp: tryptophan; Tyr: tyrosine; Val: valine; CPM: chlorpheniramine maleate; IBU: ibuprofen; MET: metoprolol.

    Table 2 Enantioseparation of dansyl (DNS)-amino acids and racemic drugs in different capillary column.

    3.4.Separation mechanisms

    Quinine possesses multiple chiral recognition sites that allow for excellent enantioselectivity; hence, it is commonly used as a chiral acid selector.Furthermore,the planar quinoline ring and the carbamate group are potential chiral binding sites.A series of experiments has revealed that the quinine-modified stationary phase can enantioseparate chiral aromatic carboxylic acids, aromatic oxocarboxylic acids, various N-derived AAs, and other structural AAs[36-38].The H-bonding,dipole-dipole,and π-π interactions with the carbamate groups and the large steric effect of quinine itself toward analytes promotes chiral recognition[39].However,it is not possible to achieve both versatility and enantioselectivity using a single chiral stationary phase-modified capillary column,possibly because of the negative interactions between recognition domains and the relatively low surface chiral selector concentrations in a limited support surface area [35].To overcome this limitation, we can enhance the surface concentration of chiral selectors in the stationary phase.Compared with previous research on quinine-modified stationary phases[36,37],this study showed significantly increased enantioseparation performance(Rs=13.56).This improvement may be attributed to the high MOF surface area, offering intense surface concentration and high porosity,resulting in abundant chiral recognition sites for selectorselectant interactions.These factors may facilitate the access of guest enantiomers to the host framework, leading to efficient enantioseparation in CEC(Fig.4).To verify this hypothesis,quinine was coated onto an NH2-modified capillary column to prepare a similar stationary phase with low surface area (Fig.S9).The enantioseparation performance of this stationary phase(Rs=1.51)was inferior than that of {(HQA)(ZnCl2)(2.5H2O)}n@capillary, confirming our hypothesis.Regarding analyte enantioseparation, the tertiary amine of the quinine group is fully protonated at the working pH of the mobile phases, enabling an ion pairing mechanism and strong Coulomb attractions with deprotonated analytes.Therefore, the analytes form transient ion pairs with the chiral selectors through the molecular electrostatic field surrounding the chiral association sites.Moreover,molecular interactions between analytes and the chiral stationary phase such as H-bonding,dipole-dipole forces, π-π interactions, and steric attraction or repulsion, cause enantiodiscrimination and enantioresolution of chiral analytes.Notably,the enantiomer migration orders were not always consistent with the results of the enantiomeric separation,including those of DNS-Cys and DNS-Cys-Cys.Here, enantioresolution was not equal to that of the other DNS-AAs, with a deficiency in the single enantiomer peak area induced by the coelution of faster migrating enantiomers.

    Fig.4 .Schematic illustration of {(HQA)(ZnCl2)(2.5H2O)}n.HQA: 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid.

    3.5.Optimization of CEC conditions

    To improve CEC performance, we optimised the different types(MeOH,EtOH,and acetonitrile)and proportions(0-20%)of organic modifiers,buffer pH(6.00-7.00),and applied voltages(12-20 kV)(Fig.5 and Tables S1-S4).Our results showed that the chiral column is compatible with various organic additives.Considering both the enantioresolution and retention time of the enantiomers,20 mM phosphate buffer(pH=6.75)containing 10% MeOH was the optimal buffer, with an applied voltage of 15 kV.Under optimised CEC conditions,all model analytes were baseline-separated within 20 min.The theoretical plate numbers of the enantiomer peaks were usually higher than 17,000, suggesting excellent separation efficiency.

    Fig.5 .Effect of different conditions on the efficiency of the enantioseparation of dansyl(DNS)-phenylalanine(Phe)using{(HQA)(ZnCl2)(2.5H2O)}n@capillary.(A)Different types of organic solvents.(B)Different concentrations of organic solvent.(C)Different applied voltages.(D)Different values of pH of phosphate buffer.HQA:6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid; Cl: chloride; EtOH: ethanol; Rs: resolutions; α: relative retention value; ACN: acetonitrile; MeOH: methanol.

    3.6.Repeatability

    Repeatability of the new CEC system was evaluated by calculating the relative standard deviations(RSDs)of the retention times of the first eluted peak(t1).As shown in Table 3,the run-to-run(n=5)and day-to-day (n = 5) repeatability was less than 1.74% and 1.66%,respectively.The column-to-column repeatability was also tested using {(HQA)(ZnCl2)(2.5H2O)}n@capillaries synthesised from different batches,with the RSD(n=3)lower than 3.40%.Therefore,{(HQA)(ZnCl2)(2.5H2O)}n@capillary exhibited good repeatability.

    Table 3 Repeatability data for {(HQA)(ZnCl2)(2.5H2O)}n@capillary.

    3.7.Stabil ity

    The stability of the {(HQA)(ZnCl2)(2.5H2O)}n@capillaries was verified by repeatability tests,as shown in Fig.6.Using DNS-Phe as the analyte, there were no significant changes in resolution after 100 separation runs,thus confirming the stability and durability of the {(HQA)(ZnCl2)(2.5H2O)}n@capillaries.

    Fig.6 .Durability of {(HQA)(ZnCl2)(2.5H2O)}n@capillary.Conditions: analytes, dansyl(DNS)-phenylalanine (Phe); 20 mM phosphate buffer containing 10% methanol(MeOH) at pH 6.75; applied voltage,15 kV.HQA: 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid; Cl: chloride.

    3.8.A comparison of the present OT-CEC system with previous studies

    A comparison of the advantages of different chiral column preparation methods, chiral coating materials, analytes, and previous representative CEC studies is summarized in Table S5[40-43].Generally, MOFs have large specific surface areas and porosities, and tuneable micropores/channels that can accommodate various chiral compounds.Researchers can ‘‘tailor” the properties of MOF materials by changing the ligand or performing chemicalmodifications.Themajoradvantageof{(HQA)(ZnCl2)(2.5H2O)}n@capillary over other CEC studies is its broad and high enantioresolution as well as simple column preparation.A similar conclusion can be drawn when comparing it with commercial chiral stationary phases (Table S6).

    4.Conclusions

    A chiral MOF, {(HQA)(ZnCl2)(2.5H2O)}n, was successfully synthesised and employed to prepare a novel chiral capillary column.The MOF nanocrystal and the corresponding chiral OT column were characterised using several analytical techniques, including SEM,XRD, FT-IR, CD, XPS, TGA, and BET.This is the first detailed characterisation of this type of MOF.The new OT-CEC system showed broad enantioselectivity towards a variety of chiral analytes,including 19 racemic DNS-AAs and several chiral drugs(both acidic and basic).The enantioselectivity of the quinoline precursor (e.g.,hydrophobic effect,π-π interactions,and H-bond interaction)was greatly improved by the high porosity of the chiral MOF coating,enhancing the enantiorecognition capability of the chiral stationary phase.This study introduced a new high-efficiency MOF-type chiral column and demonstrated traditional chiral selectors can be improved by exploiting the inherent characteristics of porous organic frameworks.

    CRediT author statement

    Xiangtai Zheng:Writing-Original draft preparation,Reviewing and Editing, Supervision;Qi Zhang: Writing - Original draft preparation,Reviewing and Editing;Qianjie MaandXinyu Li:Writing-Reviewing and Editing;Liang Zhao: Supervision, Methodology,Funding acquisition;Xiaodong Sun: Methodology, Writing -Reviewing and Editing, Supervision, Funding acquisition.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This study was funded by the National Natural Science Foundation of China (Grant No.: 82003705) and the Shanghai Science and Technology Innovation Foundation (Grant Nos.: 23010500200 and 23ZR1422700).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2023.03.003.

    夜夜夜夜夜久久久久| 在线观看一区二区三区| 一夜夜www| 可以在线观看的亚洲视频| 一a级毛片在线观看| 五月玫瑰六月丁香| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 不卡av一区二区三区| 欧美又色又爽又黄视频| 噜噜噜噜噜久久久久久91| 色精品久久人妻99蜜桃| 国产久久久一区二区三区| 又黄又粗又硬又大视频| 97人妻精品一区二区三区麻豆| 亚洲中文av在线| 男人和女人高潮做爰伦理| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产综合久久久| 亚洲一区二区三区色噜噜| 国产野战对白在线观看| www日本黄色视频网| 嫩草影院精品99| 99久久国产精品久久久| 国产午夜精品论理片| 99久久久亚洲精品蜜臀av| 在线免费观看的www视频| a级毛片在线看网站| 色综合欧美亚洲国产小说| 日韩欧美在线乱码| 色在线成人网| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 啦啦啦韩国在线观看视频| 精品国产亚洲在线| 亚洲精品美女久久av网站| 香蕉国产在线看| 最新美女视频免费是黄的| 国产乱人伦免费视频| 美女午夜性视频免费| 欧美日韩乱码在线| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 日韩 欧美 亚洲 中文字幕| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久人妻蜜臀av| 每晚都被弄得嗷嗷叫到高潮| 成年女人永久免费观看视频| 麻豆成人午夜福利视频| 在线国产一区二区在线| 男女午夜视频在线观看| 欧美在线一区亚洲| 午夜久久久久精精品| 欧美日韩综合久久久久久 | 香蕉国产在线看| 91老司机精品| 国产乱人视频| 91av网站免费观看| 亚洲男人的天堂狠狠| 日韩精品中文字幕看吧| 他把我摸到了高潮在线观看| 男插女下体视频免费在线播放| 制服人妻中文乱码| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 日韩欧美一区二区三区在线观看| 色播亚洲综合网| 欧美色视频一区免费| 成人性生交大片免费视频hd| 女警被强在线播放| 欧美zozozo另类| 中国美女看黄片| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产欧美日韩一区二区三| 日韩高清综合在线| 真人做人爱边吃奶动态| 美女免费视频网站| 中亚洲国语对白在线视频| 一卡2卡三卡四卡精品乱码亚洲| 手机成人av网站| 草草在线视频免费看| 精品久久久久久久末码| 怎么达到女性高潮| 村上凉子中文字幕在线| 男女视频在线观看网站免费| 脱女人内裤的视频| 国产av在哪里看| 在线观看美女被高潮喷水网站 | 日本免费a在线| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 亚洲av免费在线观看| 久久久国产成人免费| 丁香六月欧美| 精华霜和精华液先用哪个| 99国产精品一区二区蜜桃av| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人 | 日日夜夜操网爽| 18禁观看日本| 51午夜福利影视在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品影院| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 一a级毛片在线观看| 性色avwww在线观看| 久久久精品大字幕| 久久久国产欧美日韩av| 麻豆av在线久日| 天堂网av新在线| 日韩精品青青久久久久久| 欧美日韩乱码在线| 亚洲在线自拍视频| 成人三级黄色视频| 国产成人影院久久av| 日日夜夜操网爽| 亚洲乱码一区二区免费版| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 亚洲美女视频黄频| 怎么达到女性高潮| 亚洲成人免费电影在线观看| 舔av片在线| 久久久久国产一级毛片高清牌| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 免费看日本二区| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 99热6这里只有精品| www日本在线高清视频| 午夜免费观看网址| 日本撒尿小便嘘嘘汇集6| 成人国产综合亚洲| 久久久久久久久久黄片| 狂野欧美激情性xxxx| 国产精品98久久久久久宅男小说| 色综合站精品国产| 亚洲欧洲精品一区二区精品久久久| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 久久久成人免费电影| 19禁男女啪啪无遮挡网站| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 国产97色在线日韩免费| 岛国在线观看网站| 中文字幕人成人乱码亚洲影| 精品久久久久久久末码| 色尼玛亚洲综合影院| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 国产黄a三级三级三级人| 国产成人aa在线观看| 一级毛片精品| 国产极品精品免费视频能看的| 欧美黑人欧美精品刺激| 在线观看日韩欧美| 亚洲国产日韩欧美精品在线观看 | 不卡一级毛片| 在线永久观看黄色视频| 亚洲欧美日韩卡通动漫| 老司机午夜十八禁免费视频| 成人一区二区视频在线观看| 国产久久久一区二区三区| 日韩欧美在线乱码| 亚洲 欧美 日韩 在线 免费| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 国产成人系列免费观看| 亚洲国产看品久久| 欧美成人性av电影在线观看| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 嫩草影院入口| 日韩欧美在线乱码| 深夜精品福利| 成熟少妇高潮喷水视频| 成人av一区二区三区在线看| 亚洲精华国产精华精| 国产1区2区3区精品| 午夜a级毛片| 操出白浆在线播放| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 精品久久久久久久久久免费视频| 97碰自拍视频| 午夜福利免费观看在线| 亚洲 国产 在线| www日本黄色视频网| 琪琪午夜伦伦电影理论片6080| 在线观看午夜福利视频| 免费看日本二区| 亚洲无线观看免费| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 免费观看的影片在线观看| av黄色大香蕉| 国产精品一区二区三区四区免费观看 | 精品国产乱码久久久久久男人| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 国产探花在线观看一区二区| 少妇丰满av| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 免费搜索国产男女视频| 久久精品亚洲精品国产色婷小说| 久久香蕉国产精品| 国产在线精品亚洲第一网站| 亚洲国产精品sss在线观看| 一本一本综合久久| 成人国产综合亚洲| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 美女黄网站色视频| 久久久久国产一级毛片高清牌| 亚洲成人久久性| 夜夜爽天天搞| 无限看片的www在线观看| 天堂√8在线中文| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 欧美成狂野欧美在线观看| 日本熟妇午夜| 免费大片18禁| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| 欧美乱妇无乱码| 欧美不卡视频在线免费观看| 一个人免费在线观看电影 | 18禁美女被吸乳视频| 啦啦啦观看免费观看视频高清| avwww免费| xxxwww97欧美| 成人国产一区最新在线观看| 99精品久久久久人妻精品| 网址你懂的国产日韩在线| 视频区欧美日本亚洲| 亚洲天堂国产精品一区在线| 热99在线观看视频| 色综合欧美亚洲国产小说| www.自偷自拍.com| 国产真实乱freesex| 一级黄色大片毛片| 天天躁日日操中文字幕| 日韩国内少妇激情av| 在线观看日韩欧美| 三级男女做爰猛烈吃奶摸视频| 91av网站免费观看| 天堂av国产一区二区熟女人妻| 国产蜜桃级精品一区二区三区| 色视频www国产| 两个人的视频大全免费| 国产精品久久视频播放| 亚洲专区字幕在线| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 久久中文看片网| 亚洲av电影不卡..在线观看| 五月伊人婷婷丁香| 久久精品国产99精品国产亚洲性色| 999久久久国产精品视频| 美女cb高潮喷水在线观看 | 1024手机看黄色片| 不卡一级毛片| 久久九九热精品免费| 婷婷精品国产亚洲av| 91av网站免费观看| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 美女扒开内裤让男人捅视频| 男人舔女人下体高潮全视频| 精品日产1卡2卡| 伊人久久大香线蕉亚洲五| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 亚洲无线在线观看| 国产精品电影一区二区三区| 日韩三级视频一区二区三区| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 亚洲国产精品999在线| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 在线观看日韩欧美| 午夜视频精品福利| 欧美日韩一级在线毛片| 午夜视频精品福利| 女警被强在线播放| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 性色avwww在线观看| 精品福利观看| 夜夜爽天天搞| www日本在线高清视频| 在线观看美女被高潮喷水网站 | 99久久精品国产亚洲精品| 久久久久久九九精品二区国产| 禁无遮挡网站| 亚洲一区二区三区色噜噜| 午夜免费激情av| av福利片在线观看| 丝袜人妻中文字幕| 国产精品1区2区在线观看.| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| 国产1区2区3区精品| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| 十八禁网站免费在线| 中文字幕最新亚洲高清| 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 色尼玛亚洲综合影院| 久久亚洲精品不卡| av黄色大香蕉| 亚洲激情在线av| 国产久久久一区二区三区| avwww免费| 美女扒开内裤让男人捅视频| 久久婷婷人人爽人人干人人爱| 熟女少妇亚洲综合色aaa.| 日韩欧美精品v在线| 三级毛片av免费| 女同久久另类99精品国产91| 天天添夜夜摸| 99热这里只有是精品50| 啦啦啦免费观看视频1| 精品无人区乱码1区二区| 一级黄色大片毛片| 91av网站免费观看| 成年女人永久免费观看视频| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在 | 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 国产亚洲精品一区二区www| 久久天堂一区二区三区四区| 亚洲欧美日韩高清专用| 无限看片的www在线观看| 丰满人妻一区二区三区视频av | 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 亚洲美女视频黄频| 在线观看日韩欧美| 亚洲色图av天堂| 国产成人福利小说| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 夜夜爽天天搞| 亚洲国产欧美网| 国产精品,欧美在线| 女人被狂操c到高潮| 亚洲一区二区三区色噜噜| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 国产欧美日韩一区二区三| 伦理电影免费视频| 亚洲熟妇中文字幕五十中出| 国产伦精品一区二区三区四那| 欧美一区二区国产精品久久精品| 香蕉久久夜色| 国产成人精品无人区| 手机成人av网站| 久久精品91无色码中文字幕| 不卡一级毛片| 精品一区二区三区四区五区乱码| 国产精品久久久av美女十八| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 啦啦啦韩国在线观看视频| 久久久久久久午夜电影| 无限看片的www在线观看| 91在线精品国自产拍蜜月 | 在线观看一区二区三区| 日韩欧美国产在线观看| 变态另类丝袜制服| 好看av亚洲va欧美ⅴa在| 午夜亚洲福利在线播放| h日本视频在线播放| a在线观看视频网站| 三级国产精品欧美在线观看 | 中文字幕人成人乱码亚洲影| 午夜久久久久精精品| 五月玫瑰六月丁香| 午夜日韩欧美国产| 岛国在线免费视频观看| 在线观看免费视频日本深夜| 成人性生交大片免费视频hd| 国产野战对白在线观看| 亚洲国产精品久久男人天堂| 波多野结衣高清作品| 99国产精品99久久久久| 日本免费a在线| 精品福利观看| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片 | 精品久久蜜臀av无| 色综合亚洲欧美另类图片| 久久人妻av系列| 亚洲精品国产精品久久久不卡| 在线观看舔阴道视频| av视频在线观看入口| 在线a可以看的网站| 最近在线观看免费完整版| 国产精品久久久久久亚洲av鲁大| 人妻久久中文字幕网| 国产精品一及| 国产淫片久久久久久久久 | 国产免费男女视频| 成人无遮挡网站| 人妻夜夜爽99麻豆av| 免费在线观看亚洲国产| 色噜噜av男人的天堂激情| 久久久久国产精品人妻aⅴ院| 亚洲性夜色夜夜综合| 两性午夜刺激爽爽歪歪视频在线观看| 免费看十八禁软件| 亚洲 国产 在线| 老司机午夜福利在线观看视频| 黄色女人牲交| 国产av麻豆久久久久久久| 香蕉丝袜av| 一二三四在线观看免费中文在| 亚洲成av人片免费观看| 国产三级在线视频| 高清在线国产一区| 久久香蕉国产精品| 岛国在线观看网站| 1024手机看黄色片| 欧美av亚洲av综合av国产av| 黄色丝袜av网址大全| 久久久水蜜桃国产精品网| 亚洲专区字幕在线| 午夜免费激情av| 大型黄色视频在线免费观看| 欧美极品一区二区三区四区| 99精品欧美一区二区三区四区| 99久久99久久久精品蜜桃| 欧美在线一区亚洲| 一区二区三区高清视频在线| 中出人妻视频一区二区| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 色播亚洲综合网| 老汉色∧v一级毛片| 美女高潮的动态| 欧美午夜高清在线| 少妇的逼水好多| 亚洲aⅴ乱码一区二区在线播放| 精品国产亚洲在线| 亚洲一区高清亚洲精品| 亚洲激情在线av| 在线国产一区二区在线| 中亚洲国语对白在线视频| 久久久久久九九精品二区国产| 亚洲第一欧美日韩一区二区三区| 黄片小视频在线播放| netflix在线观看网站| 一个人观看的视频www高清免费观看 | 中文字幕人妻丝袜一区二区| 国产成+人综合+亚洲专区| 成人无遮挡网站| 嫩草影视91久久| 精品99又大又爽又粗少妇毛片 | 一个人看视频在线观看www免费 | 怎么达到女性高潮| 18禁美女被吸乳视频| 亚洲国产高清在线一区二区三| bbb黄色大片| 午夜a级毛片| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 国产一级毛片七仙女欲春2| 欧美3d第一页| 美女高潮喷水抽搐中文字幕| 亚洲午夜理论影院| 日本免费a在线| 成人高潮视频无遮挡免费网站| 欧美在线一区亚洲| 黑人巨大精品欧美一区二区mp4| 一本久久中文字幕| 老汉色∧v一级毛片| 亚洲人成电影免费在线| 午夜福利在线在线| 老司机午夜福利在线观看视频| 亚洲国产看品久久| 级片在线观看| 天堂√8在线中文| 波多野结衣巨乳人妻| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区成人 | 91在线观看av| 性色av乱码一区二区三区2| 日韩精品中文字幕看吧| 国模一区二区三区四区视频 | 国产精华一区二区三区| 两个人的视频大全免费| 三级毛片av免费| 免费看a级黄色片| 欧美中文日本在线观看视频| 国产一区在线观看成人免费| 高清在线国产一区| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区四那| or卡值多少钱| 一个人看视频在线观看www免费 | 久久久色成人| 男人舔奶头视频| 给我免费播放毛片高清在线观看| www日本在线高清视频| 九九热线精品视视频播放| 又爽又黄无遮挡网站| 亚洲国产精品久久男人天堂| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 一a级毛片在线观看| 首页视频小说图片口味搜索| 在线视频色国产色| 特大巨黑吊av在线直播| 国产伦精品一区二区三区视频9 | 一本久久中文字幕| 日本黄大片高清| 熟女人妻精品中文字幕| 人人妻,人人澡人人爽秒播| 性欧美人与动物交配| 一a级毛片在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区三区四区久久| 9191精品国产免费久久| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 婷婷精品国产亚洲av在线| 99久久综合精品五月天人人| 在线永久观看黄色视频| 天堂网av新在线| or卡值多少钱| 日韩精品中文字幕看吧| 高清毛片免费观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 国产视频内射| 最新中文字幕久久久久 | 12—13女人毛片做爰片一| aaaaa片日本免费| avwww免费| 精品久久久久久久久久免费视频| 色综合站精品国产| 少妇熟女aⅴ在线视频| 免费看十八禁软件| 精品电影一区二区在线| 欧美一级毛片孕妇| 久久久久久久久久黄片| 亚洲av成人一区二区三| 国产精品女同一区二区软件 | 狂野欧美激情性xxxx| 美女大奶头视频| 国产97色在线日韩免费| 一区福利在线观看| 夜夜躁狠狠躁天天躁| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点| 国产精品久久久久久人妻精品电影| 午夜两性在线视频| 亚洲人与动物交配视频| 日韩欧美精品v在线| 国产av一区在线观看免费| 变态另类丝袜制服| 特级一级黄色大片| www.www免费av| 国产乱人视频| 91麻豆av在线|