陳 涵, 嚴可欣, 蔣先江
兩分量Novikov方程的爆破準則和持續(xù)性
陳 涵, 嚴可欣, 蔣先江*
(寧波大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)院, 浙江 寧波 315211)
兩分量Novikov系統(tǒng); 柯西問題; 爆破準則; 持續(xù)性
本文研究下列兩分量Novikov系統(tǒng):
這個方程最早是由Novikov[4]在研究非局部偏微分方程的對稱分類中得出的. Novikov方程具有非常豐富的研究結(jié)果, Hone和Wang等[5-6]證明了其具有雙哈密頓結(jié)構(gòu)和無窮守恒律, 并且完全可積. 進一步, 關(guān)于方程(2)式在Besov空間和Soblev空間的局部適定性、持續(xù)性、解的爆破現(xiàn)象和全局存在性等結(jié)論可以參考文獻[7-10].
另外一個兩分量Novikov系統(tǒng)稱之為Geng- Xue方程:
首先, 回憶方程組(1)式的局部適定性結(jié)論, 通過Littlewood-Paley定理及Besov空間定義性質(zhì), 得到在Sobolev空間上局部適定性的結(jié)果如下:
下面給出Morse-type估計和一維運輸方程一些常用的引理.
引理1[17]
引理2[17]考慮如下線性運輸方程的初值問題:
其中,
在文獻[2]中得到已有的爆破結(jié)論:
其中,
借助上面的估計和引理1有
代入(11)式, 得到
同樣地,
結(jié)合式(14)和(15), 應(yīng)用Gronwall不等式得到
可推斷出
利用引理1以及式(12)和(13), 有下列估計:
代入(18)式, 得到
同樣地,
利用引理1以及式(12)和(13), 有下面的估計:
同樣地,
結(jié)合式(23)和(24), 應(yīng)用Gronwall不等式
或
根據(jù)式(28)和Sobolev嵌入不等式, 有
這和定理3產(chǎn)生矛盾.
另一方面, 利用Sobolev嵌入定理, 若
或
首先, 給出一些輔助函數(shù)定義[19]:
注如果取一般的標準權(quán)重函數(shù):
證明 將方程組(1)改寫成弱解形式:
對式(35)每項作估計
另一方面從定理5的證明中, 容易得到
將上面2個估計代入(44)式
同樣地,
[1] Li H M, Li Y Q, Chen Y. Bi-Hamiltonian structure of multi-component Novikov equation[J]. Journal of Nonlinear Mathematical Physics, 2014, 21(4):509-520.
[2] Qu C Z, Fu Y. On the Cauchy problem and peakons of a two-component Novikov system[J]. 中國科學(xué)(數(shù)學(xué)英文版), 2020, 63(10):1965-1996.
[3] Wang H Q, Chen M M , Jin Y P. On the Cauchy problem for the two-component Novikov system with peakons[J]. Applicable Analysis, 2022, 10:1-26.
[4] Novikov V. Generalizations of the Camassa-Holm equation[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(34):342002.
[5] Degasperis A, Holm D D, Hone A W. A new integral equation with peakon solutions[J]. Theoretical and Mathematical Physics, 2002, 133:1463-1474.
[6] Hone A N W, Wang J P. Integrable peakon equations with cubic nonlinearity[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(37):372002.
[7] Himonas A, Holliman C. The Cauchy problem for the Novikov equation[J]. Nonlinearity, 2012, 25:449-479.
[8] Ni L D, Zhou Y. Well-posedness and persistence properties for the Novikov equation[J]. Journal of Differential Equations, 2011, 250(7):3002-3021.
[9] Wu X L, Yin Z Y. Well-posedness and global existence for the Novikov equation[J]. Annali Scuola Normale Superiore – Classe Di Scienze, 2012, 11:707-727.
[10] Wu X L, Yin Z Y. A note on the Cauchy problem of the Novikov equation[J]. Applicable Analysis, 2013, 92(6): 1116-1137.
[11] Geng X G, Xue B. An extension of integrable peakon equations with cubic nonlinearity[J]. Nonlinearity, 2009, 22(8):1847-1856.
[12] Chen R, Qiao Z J, Zhou S M. Persistence properties and wave-breaking criteria for the Geng-Xue system[J]. Mathematical Methods in the Applied Sciences, 2019, 42(18):6999-7010.
[13] Himonas A A, Mantzavinos D. The initial value problem for a Novikov system[J]. Journal of Mathematical Physics, 2016, 57(7):319-1252.
[14] Mi Y S, Mu C L, Tao W A. On the Cauchy problem for the two-component Novikov equation[J]. Advances in Mathematical Physics, 2013, 2013:810725.
[15] Li N H, Liu Q P. On bi-Hamiltonian structure of two-component Novikov equation[J]. Physics Letters A, 2013, 377(3/4):257-261.
[16] Wang H Q, Fu Y. A note on the Cauchy problem for the periodic two-component Novikov system[J]. Applicable Analysis, 2020, 99(6):1042-1065.
[17] Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
[18] Gui G L, Liu Y. On the global existence and wave- breaking criteria for the two-component Camassa-Holm system[J]. Journal of Functional Analysis, 2010, 258(12): 4251-4278.
[19] Brandolese L. Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces[J]. International Mathematics Research Notices, 2011, 2012(22):5161-5181.
Blow-up criterion and persistence properties for a two-component Novikov system
CHEN Han, YAN Kexin, JIANG Xianjiang*
( School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China )
two-component Novikov system; Cauchy problem; blow-up criterion; persistence properties
O175
A
1001-5132(2023)03-0036-07
2022?07?08.
寧波大學(xué)學(xué)報(理工版)網(wǎng)址: http://journallg.nbu.edu.cn/
浙江省自然科學(xué)基金(LY22A010005).
陳涵(1998-), 女, 浙江寧波人, 在讀碩士研究生, 主要研究方向: 可積系統(tǒng). E-mail: 354186140@qq.com
通信作者:蔣先江(1976-), 男, 浙江象山人, 講師, 主要研究方向: 偏微分方程. E-mail: jiangxianjiang@nbu.edu.cn
(責(zé)任編輯 章踐立)