• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-icing Skin with Micro-nano Structure Inspired byFargesia Qinlingensis

    2023-05-21 02:36:58,*,*

    ,*,*

    1.Key Lab of Micro/Nano Systems for Aerospace,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,P.R.China;

    2.Shaan'xi Key Lab of MEMS/NEMS,Northwestern Polytechnical University,Xi’an 710072,P.R.China

    Abstract: Aircraft icing has a significant impact on flight safety,as ice accumulation on airfoils and engines can cause aircraft stalls.Developing anti-icing technology that can adapt to harsh and cold environment presents a challenge.Here,we propose a new anti-icing skin with micro-nano structure inspired by the bamboo leaf called Fargesia qinlingensis.A multilayer non-uniform height(MNH)micro-nano structure is proposed based on the Fargesia qinlingensis surface structure.The anti-icing mechanism of the MNH micro-nano structure is revealed.The flexible large-area MNH micro-nano structure is fabricated based on hierarchical assembly method.Compared with the smooth surface,the ice adhesion strength of the prepared bio-inspired surface is reduced by 80%,indicating that the MNH micro-nano structure inspired by Fargesia qinlingensis has ice-phobic effect.Based on this,an anti-icing hybrid skin based on bionics and electric heating is developed.The anti-icing hybrid skin has successfully completed the anti-icing function flight test on the UAV.To realize the effective anti-icing function under super cold conditions,the anti-icing hybrid skin has been applied on a certain type of UAVs.The bio-inspired anti-icing skin has broad application prospects in large transport aircraft,helicopters,wind power generation,and high-speed trains.

    Key words:aircraft anti-icing;bio-mimic surface;micro-nano structure;functional aircraft skin

    0 Introduction

    Aircraft icing has great impact on the flight safety,and the anti-icing technology for aircraft in harsh and cold environment is a challenge[1-2].According to the International Civil Aviation Organization’s “2020—2022 Global Aviation Safety Plan”,aircraft icing is still one of the important issues for the global aviation industry.However,the existing anti-icing technologies for aircraft such as liquid,pneumatic,gas-thermal,and electric-thermal methods[3-6]generally have the problems of large load and high energy consumption,so they cannot be used for aircraft with small load and low power,such as unmanned aerial vehicles(UAVs)[7-8].

    The biomimetic micro-nano structure surface provides a promising direction for anti-icing research[9].Since Barthlott et al.[10]proposed the “l(fā)otus effect” in 1997,the anti-icing effect achieved by the superhydrophobic surface has become a popular research topic[11].Superhydrophobicity generally refers to a surface where the three-phase contact angle is greater than 150°,and the contact angle hysteresis is less than 10°.The water droplets on the superhydrophobic surface are likely to bounce,which greatly shortens the solid-liquid contact time.Moreover,because the superhydrophobic surface is usually a regular array structure,it reduces the probability of ice nucleation and increases the delay time of ice formation[12].Furthermore,researchers proposed anti-icing surfaces inspired by various animals and plants[13],such as rose petals[14],butterfly wings[15],rice leaves[16].These studies are all based on the superhydrophobic phenomenon of living organisms in nature,imitating their microstructure,and preparing the anti-icing surfaces through photolithography,mechanical processing,electrochemical deposition,femtosecond laser processing and other methods[17-21].However,recent studies have pointed out the shortcomings of superhydrophobic surfaces in outdoor environments[22-23].Under the impact of outdoor rainwater,wind load,etc.,some tiny water droplets will infiltrate the surface microstructure,which will reduce the superhydrophobic performance and eventually lead to the failure of anti-icing.

    Many unique phenomena in nature are the results of thousands of years of evolution to adapt to the environment.Although the bionic superhydrophobic surface has the anti-icing effect,these plants are not in direct contact with ice and snow after all.We find that there is a unique plant in Qinling Mountains— Fargesia qinlingensis,which has a surface that is not easily adhered to ice and snow,as shown in Fig.1.As the climate boundary,since 1980—2016,there have been 114 regional alpine snow events in Qinling Mountains with an average time of 16 d each time.As an evergreen plant,F(xiàn)argesia qinlingensis can keep its leaves basically free of ice and snow in Qinling Mountains at an altitude of 1 500 m,showing excellent anti-icing effect.

    Fig.1 Anti-icing performance of Fargesia qinlingensis leaves

    A multilayer non-uniform height(MNH)micro-nano structure is proposed based on the Fargesia qinlingensis surface structure.The anti-icing mechanism of the MNH micro-nano structure is elucidated,and a fabrication method based on hierarchical assembly is provided for preparing flexible,large-area MNH micro-nano structures.An anti-icing skin based on bionics and electric heating is developed.The anti-icing skin has successfully completed the anti-icing function flight test on small-to-mediumsized UAVs,and it has been applied on a certain type of UAVs.

    1 Anti-icing Mechanism of Fargesia Qinlingensis

    The surface structure and chemicals of the Fargesia qinlingensis leaves are analyzed.The leaves are from the watershed at Fengyu valley in Qinling Mountains.Plants in good growth condition are selected,and 5 leaves with the length of no less than 4 cm are selected from each plant.Leaf samples are washed with ethanol immediately after harvest,and sealed in test tubes filled with deionized water.The time from harvest to experiment is less than 6 h to ensure freshness.Scanning electron microscopy(VEGA3,SBH,TESCAN Company Ltd)is used to observe the morphology of leaf samples,and the results are shown in Fig.2.The leaf surface of Fargesia qinlingensis has a multilayer structure with the scale covering a range from 100 μm to 100 nm.Its multiscale structure is composed of four layers:The first layer is columnar structures arranged with regular spacing,with a height of about 50 μm;the second layer is a drop-like structure arranged along the leaf growth direction,with a height of 20 μm and spacing of 100 μm;the third layer is composed of densely arranged papillae structures with a diameter of 5 μm;the fourth layer is nanoscale three-dimensional sheet structure.

    Fig.2 SEM images of MNH micro-nano structure of Fargesia qinlingensis

    The unique MNH micro-nano structure of Fargesia qinlingensis is the key to its ability to repel ice.For common regular array microstructures,supercooled microscopic water droplets will infiltrate into the gaps of the structure,which will weaken the superhydrophobicity and lead to surface icing.At the same time,the ice embedded in the structure will also produce the mechanical interlocking,increasing the ice adhesion strength.However,the MNH micro-nano structure of Fargesia qinlingensis is conducive to the bouncing of supercooled water droplets,and enhances the anti-wetting ability.Even if some water droplets fail to leave the surface in time and freeze eventually because of the high liquid water content and strong airflow,the ice adhesion strength is relatively low.This is because the multilayer and multiscale micro-nano structure forms more cavities,and the ice on top is more likely to generate local stress concentration.Therefore,the ice-solid interface tends to produce micro-cracks,which effectively reduces the adhesion strength.The schematic diagram of anti-icing mechanism of Fargesia qinlingensisis shown in Fig.3.

    Fig.3 Schematic diagram of the anti-icing mechanism of Fargesia qinlingensis

    2 Fabrication of Anti-icing Skin Inspired by Fargesia Qinlingensis

    The fabrication of large-scale and complex topographical structures has always been a challenge for micro-nano processing technology.The topography of Fargesia qinlingensis involves structures at different scales.Using a single mask etching method cannot produce multilayer micro-nano structures,and adding masks to achieve structures with different heights is also difficult.Here,we propose a fabrication method based on hierarchical assembly to realize a flexible large-area MNH micro-nano structure.First,large-area single-layer structure surfaces are prepared.Then,the layers are combined by adjusting the interfacial adhesion force,and a large-area flexible multi-layer structure is obtained.The schematic diagram of the fabrication process for the MNH micro-nano structure is shown in Fig.4.

    Fig.4 Fabrication process of MNH micro-nano structures

    Patterned photoresist structures on the nickel substrate are obtained through photolithography,and then the nickel mold master with fine microstructure is obtained through electroforming.Multiple nickel molds of the same size are obtained by secondary electroforming.An aligner is used to realize the preparation of large-area negative templates(Step A).Furthermore,large-area single-layer microstructures are obtained on the polyimide substrate by imprinting and photocuring(Step B).Here,the drop-like structure(Structure A)is fabricated differently from the papillae structure(Structure B).More specifically,for the drop-like structure,a pre-prepared smooth and thin ultravioletcured polymer(UV-cured polymer)is placed in 1H,1H,2H,2H-perfluorooctyltriethoxysilane solution for 2 h,and is dried in the oven with 60 ℃,30 min.The adhesion of the silaneized surface is reduced due to the formation of CF3groups.The silanized UV polymer,used as a transfer layer,is covered on the nickel template that has been coated with UV-cured prepolymer,and is irradiated with the UV curing machine for 10 s with the irradiation energy of 12 950 mJ/cm2.Then Structure A is obtained after the UV-cured polymer is peeled off.For the papillae structure,UV-cured polymer is applied to the nickel template and covered with a PI film.Structure B is also fabricated after photocuring and peeling.Referring to the wafer bonder,a set of multilayer microstructure alignment device is designed.The single-layer Structure A is attached upside down to the upper glass platform.The image of Structure A is transferred to a display screen by a charge-coupled device,and calibration lines are drawn along the feature edges of Structure A on the screen.Structure B is placed on the lower platform,with the three-axis turntable and microscope,the alignment of the multi-layer structure is realized by adjusting Structure B according to the calibration line.The aligned structure is treated by corona discharge for 1 min,so that the structural layers are fully bonded(Step C).Since the adhesion force between the interface of Structures A and B is greater than that between the interface of the transfer layer and Structure A,Structure A can be successfully peeled off and the large-area MNH micro-nano structure is finally obtained(Step D).

    The SEM image of the simplified structure inspired by Fargesia qinlingensisis shown in Fig.5.The MNH micro-nano structure has a staggered arrangement of drop-like and papillae structures,in which the length of the drop-liked structure is 45 μm,the width is 20 μm,the height is 20 μm,and the lateral spacing is 50 μm.The papillae structure is 5 μm in diameter and 5 μm in height.The static contact angle of the surface is 140.9°,and the sliding angle is 10.2°,demonstrating a fine hydrophobic property.

    Fig.5 SEM image of the prepared MNH micro-nano structure

    The ice adhesion strength of the prepared MNH micro-nano structure is measured by a selfmade adhesion force measuring equipment with the ambient temperature -10 ℃,and the water droplet is 15 μL.After the water drop freezing on the surface,the force probe is driven by the motor to remove the ice,and the force curve is recorded.According to the image method,the contact area between the ice drop and the surface is obtained,and the ice adhesion strength is calculated.Fig.6 shows the results of ice adhesion strength of the MNH micro-nano structure and the smooth surface.The results indicate that the MNH micro-nano structure reduces the ice adhesion strength by 80% compared with the smooth surface.

    Fig.6 Results of ice adhesion strength of MNH micro-nano structure and smooth surface

    3 Ice Wind Tunnel Test of Anti-icing Skin

    Previous research has proved that under the impact of high-speed cold airflow,it is difficult to achieve long-term and efficient anti-icing effect only by passive anti-icing technology.The consensus is that a combination of active and passive anti-icing technologies is currently the most reliable solution to aircraft icing problems.Therefore,we propose an anti-icing scheme,adding a surface insulation layer,a metal heating layer and a bottom insulation layer under the bionic anti-icing structure layer to obtain an anti-icing hybrid skin.The bionic anti-icing structure layer can prevent the accumulation of supercooled water droplet,and the electric heating layer ensures the efficient anti-icing process in extremely harsh environments.The upper and lower insulation layers are both PI films.The metal heating layer is made from constantan and fabricated by photolithography and etching.Constantan has high resistivity and thermal conductivity(4.8×10-7Ω·m and 118 W/m·K,respectively).At the same time,the good ductility and bending resistance of constantan guarantee the integrity when attaching to the airfoil.

    When an aircraft passes through a supercooled cloud,the impact of supercooled water droplets in different areas of the airfoil is various.Adopting a single electrothermal power density cannot achieve a reasonable distribution of energy and may even cause shortage for aircraft energy supply.Therefore,it is necessary to perform chordwise power density partitioning on the electric heating of the skin to reduce anti-icing energy consumption and ensure a longer endurance time.A low energy consumption bionic anti-icing system based on power density partition is proposed.The numerical calculation method is used to analyze the anti-icing power density distribution regularity of the airfoil surface under specific working conditions,and the anti-icing hybrid skin is designed according to the calculated power density distribution.

    Considering the actual flight requirements,the energy consumption requirements for the UAV antiicing system are the most stringent among other aircraft.Here,a certain type of the UAV is selected as the experimental object for research.According to the flight altitude,speed,attack angle of the UAV,and the meteorological design standards under typical conditions in Appendix C of CCAR-25[24],the specific working conditions are determined as:wind speed 40 m/s,temperature -10 ℃,attack angle 2°,LWC 0.503 g/m3,MVD 20 μm(LWC refers to the supercooled water content and MVD the average diameter of supercooled water droplets).In this experiment,an airfoil model scaled down by a factor of 0.5 is used,and the airfoil profile at approximately 7.7 m away from the aircraft centerline is extracted from the original wing as the scaled object.The coupled algorithm is used to calculate the external flow field of the airfoil,and the water droplet phase control equation is solved to obtain the local water droplet collection coefficient on the surface,as shown in Fig.7(a).The icing protection range determined by the droplet collection isS:-40—30 mm.Srepresents chordwise distance along the airfoil surface,with negative values indicating distance along the lower surface and positive values indicating distance along the upper surface.The theoretical anti-icing power density distribution regularity is obtained by calculating the anti-icing heat load in different areas of the airfoil.

    Considering the anti-icing effect of the MNH micro-nano structure,the accumulation of water droplets is decreased,leading to the reduction of the heat flow related to water droplets.Therefore,the correction coefficient is used here to characterize the influence of the MNH micro-nano structure surface on the calculation of the anti-icing heat flow.Experiments on the capture rate of supercooled water droplets are carried out on the surface of MNH micro-nano structure in a low temperature environment.The experimental results show that under the working conditions mentioned above,the MNH micro-nano structure surface can reduce the water collection by about 90% compared with the ordinary surface.The corrected theoretical anti-icing thermal load is shown in Fig.7(b),in which the line is the calculated theoretical anti-icing power density distribution regularity and the histogram is the partition power density value(the maximum theoretical anti-icing thermal load in each area).A handheld thermal camera(Fluke,TiS60+,Shanghai,measurement accuracy within ±2 ℃ or within 2%,thermal sensitivity ≤0.045 ℃)is used to test the thermal distribution characteristics at -10 ℃,and the results reveal that the thermal distribution of the anti-icing hybrid skin has good uniformity under low temperature conditions,as shown in Figs.7(c,d),where A—F represent different areas of airfoil and L1,L2,L3 the temperature test line selected in Fig.7(c).

    Fig.7 Design of anti-icing hybrid skin

    The anti-icing performance of the anti-icing hybrid skin is verified in the ice wind tunnel.The antiicing hybrid skin is attached to the surface of the airfoil,and the test conditions are shown in Table 1.The test results are displayed in Fig.8.There is no obvious icing on the leading edge and the upper and lower airfoil parts,which is obviously distinct from the part without the skin.Therefore,it is verified that the anti-icing hybrid skin has good anti-icing ice performance.

    Table 1 Experimental conditions for anti-icing performance test of anti-icing skin

    Fig.8 Ice wind tunnel test results for anti-icing hybrid skin

    4 Applications

    The flight test of the developed anti-icing hybrid skin demonstrates that the tested UAV successfully completes the flight mission at an altitude of 1 —4 km,a maximum flight altitude of 8 km,a cruising speed of 40 m/s and a temperature of-10—-3 ℃.At present,the anti-icing hybrid skin has been successfully applied on a certain type of UAVs,becoming the world’s first mid-airway longendurance UAV with anti-icing function.Fig.9 is the photo of the flight test of the anti-icing hybrid skin.Moreover,the anti-icing skin inspired byFargesia qinlingensishas broad application prospects in the fields of large transport aircraft,helicopters,wind power generation,and high-speed trains.

    Fig.9 Photo of the flight test of the anti-icing hybrid skin

    5 Conclusions

    Aircraft icing poses a great threat to flight safety,and the bionic micro-nano structured surface provides a new direction for anti-icing technology.A unique plant in Qinling Mountains with excellent anti-icing effect called Fargesia qinlingensisis found.The MNH micro-nano structure inspired by Fargesia qinlingensisis proposed,and the anti-icing mechanism of the multilayer structure is discussed.The multilayer and multiscale structure enhances the bouncing behavior of supercooled water droplets,and the large number of cavities reduce ice adhesion by facilitating formation of micro-cracks on the interface.A method for the preparation of flexible largearea micro-nano structures based on hierarchical assembly is proposed.The monolayer is fabricated through imprinting and photocuring,and surface modification by fluorosilanes and corona discharge is applied to realize the combination of the layers.The ice adhesion strength of the obtained anti-icing MNH micro-nano structure surface is reduced by 80%,comparing with the smooth surface.Considering the actual flight environment,a low energy consumption bionic anti-icing system based on power density partition is proposed.The UAV flight test demonstrates that the developed anti-icing hybrid skin has great anti-icing performance at an altitude of 1—4 km,a maximum flight altitude of 8 km,a cruising speed of 40 m/s,and a temperature of-10—-3 ℃.The developed anti-icing hybrid skin has been applied on a certain type of UAVs.The bio-inspired anti-icing skin has broad application prospects in large transport aircraft,helicopters,wind power generation,and high-speed trains.

    26uuu在线亚洲综合色| 美女高潮的动态| 少妇人妻一区二区三区视频| 中文字幕av在线有码专区| 日本一本二区三区精品| 91精品国产九色| 久久韩国三级中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 99久国产av精品国产电影| 卡戴珊不雅视频在线播放| 深夜a级毛片| 三级国产精品欧美在线观看| www.av在线官网国产| 熟女人妻精品中文字幕| 欧美zozozo另类| 国产精品一及| 2021天堂中文幕一二区在线观| 全区人妻精品视频| 成人午夜精彩视频在线观看| 极品教师在线视频| 麻豆成人午夜福利视频| 超碰av人人做人人爽久久| 哪个播放器可以免费观看大片| 身体一侧抽搐| 老熟妇乱子伦视频在线观看| 国产成人aa在线观看| 少妇裸体淫交视频免费看高清| 亚州av有码| 色综合亚洲欧美另类图片| 亚洲精品成人久久久久久| 97人妻精品一区二区三区麻豆| 一进一出抽搐gif免费好疼| 国产精品1区2区在线观看.| 看黄色毛片网站| 亚洲天堂国产精品一区在线| 美女高潮的动态| 国产人妻一区二区三区在| 久久6这里有精品| 综合色丁香网| 91久久精品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 性欧美人与动物交配| 老司机影院成人| 精品一区二区三区视频在线| 毛片一级片免费看久久久久| 一级毛片电影观看 | av福利片在线观看| 人人妻人人澡人人爽人人夜夜 | 国产亚洲5aaaaa淫片| 天堂中文最新版在线下载 | 久久精品国产99精品国产亚洲性色| 午夜精品在线福利| 日韩亚洲欧美综合| 在现免费观看毛片| 欧美成人一区二区免费高清观看| 91久久精品国产一区二区成人| 综合色av麻豆| 久久久精品94久久精品| 国产亚洲91精品色在线| 美女国产视频在线观看| 丰满人妻一区二区三区视频av| 91麻豆精品激情在线观看国产| 婷婷色综合大香蕉| 看非洲黑人一级黄片| 国产一区二区在线观看日韩| 婷婷色综合大香蕉| 国产成人福利小说| 免费av毛片视频| 国产精品av视频在线免费观看| 亚洲国产精品sss在线观看| 久久久午夜欧美精品| 免费看a级黄色片| 国产极品精品免费视频能看的| 国产精品久久久久久久电影| 熟女电影av网| av天堂中文字幕网| 亚洲第一区二区三区不卡| 夜夜看夜夜爽夜夜摸| 少妇熟女aⅴ在线视频| 亚洲在久久综合| 日本熟妇午夜| 搞女人的毛片| 人妻制服诱惑在线中文字幕| 亚洲最大成人中文| 一个人看的www免费观看视频| 日本熟妇午夜| 国产老妇女一区| 国产免费一级a男人的天堂| 久久久久久九九精品二区国产| 1000部很黄的大片| 精品人妻偷拍中文字幕| 国产精品无大码| 亚洲成人中文字幕在线播放| 亚洲国产精品sss在线观看| 国产乱人视频| 日韩欧美 国产精品| 插逼视频在线观看| 国产老妇女一区| 日本黄大片高清| 白带黄色成豆腐渣| 国产午夜福利久久久久久| 国产免费一级a男人的天堂| 大型黄色视频在线免费观看| 又粗又爽又猛毛片免费看| 人妻夜夜爽99麻豆av| 两个人的视频大全免费| 国内少妇人妻偷人精品xxx网站| 只有这里有精品99| 日本与韩国留学比较| 黄片无遮挡物在线观看| 色综合亚洲欧美另类图片| 亚洲av男天堂| 一边亲一边摸免费视频| 精品久久国产蜜桃| 国产精品日韩av在线免费观看| a级毛片免费高清观看在线播放| 色综合站精品国产| 我要看日韩黄色一级片| 亚洲av一区综合| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 国产日本99.免费观看| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久免费视频| 在线免费观看不下载黄p国产| 日本一二三区视频观看| 国产淫片久久久久久久久| 麻豆精品久久久久久蜜桃| 精品一区二区三区视频在线| 国产成人aa在线观看| 少妇人妻精品综合一区二区 | 亚洲久久久久久中文字幕| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有精品一区| 亚洲国产精品国产精品| 亚洲人成网站高清观看| 成人美女网站在线观看视频| 成人欧美大片| 内射极品少妇av片p| 欧美日韩综合久久久久久| 日韩欧美 国产精品| 亚洲乱码一区二区免费版| 亚洲精品日韩av片在线观看| 国产国拍精品亚洲av在线观看| 国产黄色小视频在线观看| 一区二区三区免费毛片| 简卡轻食公司| 男人狂女人下面高潮的视频| 精品日产1卡2卡| 精品久久久噜噜| 欧美变态另类bdsm刘玥| 国产午夜精品论理片| 在线观看免费视频日本深夜| 国产精品综合久久久久久久免费| 12—13女人毛片做爰片一| 婷婷色综合大香蕉| 亚洲精品色激情综合| 亚洲精品色激情综合| 国产精品日韩av在线免费观看| 国产视频首页在线观看| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 久久人人爽人人片av| av在线老鸭窝| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 久久人人爽人人爽人人片va| 夜夜爽天天搞| 久久精品国产亚洲网站| 欧洲精品卡2卡3卡4卡5卡区| 99精品在免费线老司机午夜| 黄色欧美视频在线观看| 成人高潮视频无遮挡免费网站| 变态另类成人亚洲欧美熟女| 天天躁夜夜躁狠狠久久av| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品久久男人天堂| 99热精品在线国产| 内射极品少妇av片p| ponron亚洲| 在线观看一区二区三区| 国产精品免费一区二区三区在线| 最近中文字幕高清免费大全6| 舔av片在线| 久久精品人妻少妇| 99热全是精品| 久久草成人影院| 免费一级毛片在线播放高清视频| 嫩草影院入口| 成人特级av手机在线观看| 18禁在线无遮挡免费观看视频| 美女 人体艺术 gogo| 老司机福利观看| 小蜜桃在线观看免费完整版高清| 岛国毛片在线播放| 成人毛片a级毛片在线播放| 国产三级中文精品| 99热网站在线观看| 国产高清有码在线观看视频| 能在线免费观看的黄片| 中文字幕制服av| 亚洲三级黄色毛片| 免费av不卡在线播放| 中文欧美无线码| 国产精品免费一区二区三区在线| 日本免费a在线| 人妻少妇偷人精品九色| 老女人水多毛片| 波多野结衣巨乳人妻| 国产极品精品免费视频能看的| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 男插女下体视频免费在线播放| 成人鲁丝片一二三区免费| 国产精品人妻久久久久久| 成年女人看的毛片在线观看| 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看 | 午夜老司机福利剧场| 婷婷色av中文字幕| 国产精品永久免费网站| 黄色一级大片看看| 精品久久久久久久久亚洲| 国产精品日韩av在线免费观看| 亚洲av熟女| 成人性生交大片免费视频hd| 亚洲不卡免费看| 天堂网av新在线| 伦理电影大哥的女人| 日本-黄色视频高清免费观看| 欧美bdsm另类| 丰满乱子伦码专区| 99riav亚洲国产免费| 国产精品伦人一区二区| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 91aial.com中文字幕在线观看| 99久久精品热视频| 我要看日韩黄色一级片| 简卡轻食公司| 天堂网av新在线| 99久久九九国产精品国产免费| 久久热精品热| 一级毛片电影观看 | 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 成人鲁丝片一二三区免费| 国产伦理片在线播放av一区 | 麻豆国产97在线/欧美| 毛片一级片免费看久久久久| 又爽又黄无遮挡网站| 99久久精品一区二区三区| 不卡一级毛片| www.色视频.com| 六月丁香七月| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 国产精品免费一区二区三区在线| 国产亚洲精品久久久com| 99久久成人亚洲精品观看| 少妇高潮的动态图| 色噜噜av男人的天堂激情| 青青草视频在线视频观看| 成人二区视频| 亚洲国产日韩欧美精品在线观看| 色哟哟哟哟哟哟| 国产国拍精品亚洲av在线观看| 亚洲最大成人手机在线| 天堂影院成人在线观看| 欧美最新免费一区二区三区| 亚洲欧美成人综合另类久久久 | 综合色丁香网| 久久久久性生活片| 免费人成在线观看视频色| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 麻豆乱淫一区二区| 看黄色毛片网站| 久久久久久九九精品二区国产| 深夜精品福利| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| 亚洲性久久影院| 只有这里有精品99| 深爱激情五月婷婷| 麻豆乱淫一区二区| 亚洲成av人片在线播放无| 成人毛片a级毛片在线播放| 色综合站精品国产| 最近的中文字幕免费完整| 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产成人福利小说| 最近2019中文字幕mv第一页| 日本熟妇午夜| 美女国产视频在线观看| 国产精品一区www在线观看| 欧美日本视频| av国产免费在线观看| 免费观看人在逋| 女的被弄到高潮叫床怎么办| 在线播放无遮挡| 中文欧美无线码| 岛国在线免费视频观看| 99热这里只有精品一区| 小说图片视频综合网站| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 小蜜桃在线观看免费完整版高清| 亚洲精品久久久久久婷婷小说 | 免费观看a级毛片全部| av视频在线观看入口| 国产av一区在线观看免费| 不卡一级毛片| 国国产精品蜜臀av免费| 日韩一区二区三区影片| 色5月婷婷丁香| 精品久久久久久久久亚洲| 一个人观看的视频www高清免费观看| 老司机福利观看| 亚洲电影在线观看av| 亚洲国产欧美人成| 成年免费大片在线观看| 国语自产精品视频在线第100页| 亚洲国产欧美在线一区| 日本黄色片子视频| 两性午夜刺激爽爽歪歪视频在线观看| eeuss影院久久| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久免费视频| 久久久久久九九精品二区国产| 狂野欧美激情性xxxx在线观看| 欧美成人免费av一区二区三区| 三级经典国产精品| 国产高清视频在线观看网站| 99热全是精品| 一级黄色大片毛片| 久久人人爽人人爽人人片va| 干丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av香蕉五月| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 乱人视频在线观看| 精品久久久久久久久久久久久| 18禁黄网站禁片免费观看直播| av女优亚洲男人天堂| 久久久久久久久久久免费av| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 国产成人一区二区在线| eeuss影院久久| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| 一个人免费在线观看电影| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 天美传媒精品一区二区| 中文字幕免费在线视频6| 国产亚洲精品久久久久久毛片| 亚洲最大成人av| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 久久综合国产亚洲精品| 国产综合懂色| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 22中文网久久字幕| 毛片一级片免费看久久久久| 日韩视频在线欧美| 国产一区二区三区av在线 | 少妇熟女aⅴ在线视频| 高清日韩中文字幕在线| 成人av在线播放网站| 国产白丝娇喘喷水9色精品| 国产一区二区亚洲精品在线观看| 嘟嘟电影网在线观看| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 亚洲美女搞黄在线观看| 色哟哟哟哟哟哟| av在线天堂中文字幕| 免费看日本二区| 国产精品人妻久久久久久| 久久这里只有精品中国| 亚洲av第一区精品v没综合| 国产精品伦人一区二区| 不卡一级毛片| av在线播放精品| 久久久久久久亚洲中文字幕| 国产极品天堂在线| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久 | 禁无遮挡网站| 人人妻人人看人人澡| 99久久精品热视频| 亚洲成人久久爱视频| 国产精品.久久久| 亚洲无线在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲5aaaaa淫片| 午夜免费激情av| 伦精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 中文欧美无线码| 性色avwww在线观看| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 人妻久久中文字幕网| 午夜福利高清视频| 欧美在线一区亚洲| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 青春草国产在线视频 | 亚洲国产欧美在线一区| 成人二区视频| 久久热精品热| 最后的刺客免费高清国语| 久久精品国产亚洲av涩爱 | 尤物成人国产欧美一区二区三区| 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| av专区在线播放| 日日撸夜夜添| 如何舔出高潮| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 午夜福利在线在线| videossex国产| 免费一级毛片在线播放高清视频| 少妇被粗大猛烈的视频| 一边摸一边抽搐一进一小说| 中文字幕精品亚洲无线码一区| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 乱码一卡2卡4卡精品| 色噜噜av男人的天堂激情| 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 春色校园在线视频观看| www.av在线官网国产| 18禁在线播放成人免费| 精品久久久久久久久久免费视频| 91av网一区二区| 日本黄色片子视频| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| kizo精华| 亚州av有码| 亚洲国产精品国产精品| 国产不卡一卡二| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 观看美女的网站| 亚洲在线自拍视频| 亚洲综合色惰| 亚洲av电影不卡..在线观看| 不卡一级毛片| 好男人视频免费观看在线| 欧美人与善性xxx| 国产精品久久久久久精品电影| 国产成人aa在线观看| 一级黄色大片毛片| 一级毛片电影观看 | 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 桃色一区二区三区在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品粉嫩美女一区| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 夜夜爽天天搞| kizo精华| 我的女老师完整版在线观看| 国产美女午夜福利| av天堂中文字幕网| 午夜亚洲福利在线播放| 欧美一级a爱片免费观看看| av免费观看日本| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 久久精品综合一区二区三区| 日本三级黄在线观看| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 日韩一区二区视频免费看| 最新中文字幕久久久久| 乱系列少妇在线播放| 成年版毛片免费区| 免费大片18禁| 99精品在免费线老司机午夜| 九九久久精品国产亚洲av麻豆| 国产视频内射| 你懂的网址亚洲精品在线观看 | 免费av毛片视频| 国产v大片淫在线免费观看| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 欧美不卡视频在线免费观看| or卡值多少钱| 亚洲人成网站高清观看| 久久精品国产自在天天线| 午夜激情福利司机影院| 变态另类成人亚洲欧美熟女| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 熟女人妻精品中文字幕| 亚洲成人av在线免费| av卡一久久| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 天堂影院成人在线观看| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 毛片一级片免费看久久久久| 91狼人影院| 麻豆国产97在线/欧美| 99久久成人亚洲精品观看| 精华霜和精华液先用哪个| 99热全是精品| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 天堂中文最新版在线下载 | 三级经典国产精品| 久久综合国产亚洲精品| a级一级毛片免费在线观看| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 亚洲成人中文字幕在线播放| 午夜激情福利司机影院| 国产三级中文精品| 亚洲va在线va天堂va国产| 内射极品少妇av片p| 一个人免费在线观看电影| 日韩国内少妇激情av| 亚洲av熟女| 国产精品一区二区三区四区免费观看| а√天堂www在线а√下载| 黄色配什么色好看| 久久韩国三级中文字幕| 婷婷亚洲欧美| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 嫩草影院新地址| www.av在线官网国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 亚洲精品国产av成人精品| 日本成人三级电影网站| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 此物有八面人人有两片| 秋霞在线观看毛片| 亚洲欧美日韩无卡精品| 极品教师在线视频| 亚洲精品成人久久久久久| 高清毛片免费看| 国产成人91sexporn| 亚洲人成网站高清观看| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| 最近视频中文字幕2019在线8| 免费av观看视频| 中国国产av一级| 岛国毛片在线播放| 国产精品久久视频播放| 天堂中文最新版在线下载 | 禁无遮挡网站| 欧美一区二区精品小视频在线| 久久久久性生活片| 亚洲乱码一区二区免费版| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 国产综合懂色| 亚洲内射少妇av| 国产精品人妻久久久久久| 日日干狠狠操夜夜爽| 免费av不卡在线播放| 男插女下体视频免费在线播放| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| 亚洲欧美精品专区久久| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 青春草视频在线免费观看| 综合色av麻豆| 久久鲁丝午夜福利片| 欧美成人a在线观看| 亚洲欧美精品自产自拍| 少妇熟女欧美另类| 日韩中字成人| 老女人水多毛片| 有码 亚洲区| 精品少妇黑人巨大在线播放 | 一边摸一边抽搐一进一小说| 人妻夜夜爽99麻豆av| 99热这里只有是精品在线观看| 黄片wwwwww| 又黄又爽又刺激的免费视频.|