• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Morphologies and Luminescence Control of NaYF4∶Yb/Er Nanophosphors by Surfactants for Cancer Cell Imaging

    2023-05-18 14:30:56SHENGYangyi盛洋怡CHENGLuSONGYuelin宋岳林WANGZhaojie王兆潔JIANGWeizhong蔣偉忠CHENZhigang陳志鋼

    SHENG Yangyi(盛洋怡), CHENG Lu(程 璐), SONG Yuelin(宋岳林), WANG Zhaojie(王兆潔), JIANG Weizhong(蔣偉忠), CHEN Zhigang (陳志鋼)

    State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract:Hydrophilic rare-earth up-conversion nanophosphors (UCNPs) with small sizes and a strong up-conversion luminescence have attracted much interest. Herein the simultaneous control of morphologies and the up-conversion luminescence intensities was reported for NaYF4∶Yb/Er nanophosphors by a facile hydrothermal procedure with different surfactants. With the change of the surfactants from polyvinylpyrrolidone (PVP) to sodium citrate (CIT), edetate disodium (EDTA) or sodium dodecyl benzenesulfonate (SDBS), the morphology of NaYF4∶Yb/Er nanophosphors transformed from nanoparticles with a diameter of about 70.0 nm to hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm, nanorods with a diameter of about 700.0 nm and a length of about 2.6 μm, or nanowires with a diameter of 250.0 nm and a length of about 3.2 μm. Simultaneously, their up-conversion luminescence intensity went down gradually under laser irradiation at a wavelength of 980 nm due to the increase of photobleaching. PVP-capped NaYF4∶Yb/Er nanoparticles exhibited the smallest size and the strongest up-conversion luminescence intensity. Biological experiment results revealed that NaYF4∶Yb/Er nanophosphors exhibited a high biocompatibility and could be used as biological labels with a perfect signal-to-noise ratio for cancer cell imaging.

    Key words:NaYF4; nanophosphor; luminescence; surfactant; adjustable morphology; cancer cell imaging

    Introduction

    Rare-earth up-conversion nanophosphors (UCNPs) have attracted much interest due to the advantages including low photobleaching, superior stability and sharp absorption/emission. Currently, UCNPs have been widely used in temperature detection, 3D flat-panel displays, optical devices and biomedical applications[1-4]. For biomedical applications, UCNPs with small sizes and a strong up-conversion luminescence are widely used. To prepare UCNPs with small sizes, two kinds of synthesis methods have been well developed. One is a simple hydrothermal method with a liquid-solid-solution (LSS) process[5-6]. For example, with this LSS process, Wangetal.[7]reported the controllable synthesis of NaYF4, YbF3and LaF3nanoparticles with diameters in the range of 4 nm to 12 nm. The other one is the thermolysis of lanthanide trifluoroacetate precursors in a high boiling solvent at 280-330 ℃[8-10]. For example, Maietal.[11]obtained NaREF4(RE∶ Pr to Lu, Y) nanocrystals with adjusted sizes (5.9-155.0 nm). These small-size UCNPs can be well used in many fields, especially in biomedical applications.

    There are three kinds of strategies to obtain UCNPs with a strong up-conversion luminescence. The first one is the optimization of host materials. Many kinds of host materials have been developed, including NaYF4[12], NaGdF4[13], KMnF3[14]and CaF2[15]. The second one is the tuning of the crystalline phase. Compared with the cubic-phase NaYF4∶Yb/Er nanophosphors, hexagonal-plase NaYF4∶Yb/Er nanophosphors demonstrate a stronger up-conversion luminescence intensity[16]. The last and the most important one is design and construction of the novel structure with an excellent energy transfer efficiency[1-2,17-18]. For example, researchers have developed various UCNPs with high energy migration, including NaGdF4∶Tb@NaGdF4@NaGdF4∶Yb/Tm[19], NaYF4∶Yb/Tm@NaYF4[20]and NaErF4∶Tm@NaYF4[21]. However, the above methods have some limitations, such as high costs, complex preparation processes and difficulty in the control of morphologies and sizes. Thus, it is still indispensable to explore other novel and facile ways to control morphologies and luminescence intensities.

    It is well-known that surfactants can manipulate the crystal growth and thus control the morphologies of nanomaterials[22]. In addition, surfactants may have some effects on the photobleaching process of nanophosphors. These features inspire our interest in developing a simple way to simultaneously control morphologies and the up-conversion luminescence intensities of NaYF4∶Yb/Er nanophosphors by adjusting surfactants. Herein, NaYF4∶Yb/Er nanophosphors are prepared by a simple hydrothermal method assisted with different surfactants, including polyvinylpyrrolidone (PVP), sodium citrate (CIT), edetate disodium (EDTA) and sodium dodecyl benzenesulfonate (SDBS). The effects of surfactants on morphologies and luminescence are analyzed. In addition, cytotoxicity and bioimaging performance of NaYF4∶Yb/Er nanophosphors are also evaluated.

    1 Experiments

    1.1 Materials

    PVP (PVP-K30), CIT (C6H5Na3O7), ethylene-diamine tetra-acetic acid (C10H16N2O8), SDBS(C18H29NaO3S), sodium dodecyl sulfate (C12H25SO4Na), ethylene glycol ((CH2OH)2), sodium fluoride (NaF) and glycerol (C3H8O3) were purchased from Sinopharm Chemical Reagent Co., Ltd., China. All the above chemicals are of analytical grades. Rare-earth chlorides (LnCl3, Ln∶Y, Yb, Er) were prepared by dissolving the corresponding oxides (Y2O3, Yb2O3and Er2O3from Beijing Lansu Co., Ltd., China) in a hydrochloric solution (a mass fraction of 10%) and then evaporating the water completely. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) were obtained from Beyotime Biotechnology, China. HeLa cells and human umbilical vein endothelial cells (HUVECs) were bought from Type Culture Collection of the Chinese Academy of Sciences, Shanghai, China.

    1.2 Material synthesis

    PVP, CIT, EDTA or SDBS was added at a mass of 0.5 g to the mixture solution (4 mL water and 4 mL ethylene glycol). LnCl3(0.78 mmol Y3+, 0.20 mmol Yb3+and 0.02 mmol Er3+) was dissolved in the above solution. Then, NaF (7.20 mmol) was dissolved in another solution (2 mL water and 2 mL ethylene glycol), and it was dropped into the LnCl3solution. The resulting solution was agitated for 30 min, and then hydrothermally treated at 180 ℃ for 10 h. After being naturally cooled, NaYF4∶Yb/Er nanophosphors were isolatedviacentrifugation, rinsed with water and dried under vacuum at room temperature.

    1.3 Characterization

    Morphologies and sizes of NaYF4∶Yb/Er nanophosphors were characterized by a field emission scanning electron microscope (FE-SEM, Hitachi S-4800, Japan) and a high-resolution transmission electron microscope (HR-TEM, JEOL JEM-2010F, Japan). Powder X-ray diffraction (XRD) measurements were performed on a Bruker D4 X-ray diffractometer with Cu Kαradiation (Bruker, Germany). Fourier transform infrared (FTIR) spectra were measured by using an IRPRESTIGE-21 spectrometer (Shimadzu, Japan) from samples in KBr pellets. Up-conversion luminescence spectra were measured by using an FP-6600 spectrometer (JASCO, Japan), but the excitation source was a laser at a wavelength of 980 nm.

    1.4 Cytotoxicity assay in vitro

    Theinvitrocytotoxicity was measured by using the MTT assay in HeLa cells. Cells growing in a log phase were seeded into a 96-well (5×104/well) cell culture plate in Dulbecoo’s modified eagle medium (DMEM) at 37 ℃ and in the presence of CO2(a volume fraction of 5%) for 24 h. Then the cells were incubated with PVP-capped NaYF4∶Yb/Er nanoparticles at different mass concentrations (0, 0.05, 0.10, 0.15, 0.20 and 0.25 mg/mL) at 37 ℃ for 24 h in the presence of CO2. Subsequently, 10 μL MTT (5 mg/mL) was added to each well of the 96-well cell culture plate and incubated for 4 h at 37 ℃ in the presence of CO2. After the addition of sodium dodecyl sulfate (100 μL/well), the cell culture plate was allowed to stand at room temperature for 12 h. A Multiskan MK3 monochromator-based multifunction microplate reader(Thermo Fisher, USA) was used to measure the absorbance of each well with background subtraction at 492 nm. All of the tests were independently performed three times.

    1.5 Bioimaging of cancer cells by PVP-capped NaYF4∶Yb/Er nanoparticles

    HeLa cells were incubated in phosphate buffered saline (PBS) containing PVP-capped NaYF4∶Yb/Er nanophosphors(0.20 mg/mL) at 37 ℃ for 3 h in the presence of CO2, and then washed with PBS sufficiently to remove excess nanoparticles. These cells were fixed with paraformaldehyde (a mass fraction of 4%), and their nuclei were stained with 5 μg/mL DAPI in glycerol (a mass fraction of 10%). The multilabeled cells were then imaged by a laser scanning up-conversion luminescence microscope (Olympus FV1000, Japan) and a conventional confocal microscope (Olympus BX51, Japan). These cells were excited by a laser at a wavelength of 980 nm, and up-conversion luminescence signals were detected in two channels: the green channel (500-570 nm) and the red channel (600-700 nm). In addition, these cells were also irradiated by a laser at a wavelength of 405 nm to obtain the fluorescence signals of DAPI for cell nuclei.

    2 Results and Discussion

    2.1 Characterization of NaYF4∶Yb/Er nanophosphors

    NaYF4∶Yb/Er nanophosphors were fabricated through the hydrothermal method[23-25]with different surfactants (PVP, CIT, EDTA and SDBS). The morphologies of these NaYF4∶Yb/Er nanophosphors were characterized (Fig. 1). When PVP is used as the surfactant, the nanophosphors consist of nanoparticles with a diameter of about 70.0 nm (Figs. 1(a), 1(b) and 2(a)). When the surfactant is CIT, the nanophosphors appear to be hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm (Figs.1(c), 1(d), 2(b) and 2(c)). By using EDTA as the surfactant, the nanophosphors are composed of nanorods with a diameter of about 700.0 nm and a length of about 2.6 μm (Figs.1(e), 1(f), 2(d) and 2(e)). Interestingly, the SDBS surfactant results in the formation of nanowires with a diameter of about 250.0 nm and a length of about 3.2 μm (Figs. 1(g), 1(h), 2(f) and 2(g)). These facts confirm that surfactants can adjust sizes and morphologies of NaYF4∶Yb/Er nanophosphors.

    Fig. 1 FE-SEM and HR-TEM images of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants: (a) and (b) PVP; (c) and (d) CIT; (e) and (f) EDTA; (g) and (h) SDBS

    Fig. 2 Size distribution of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants: (a) PVP; (b) and (c) CIT; (d) and (e) EDTA; (f) and (g) SDBS

    Subsequently, the phases of NaYF4∶Yb/Er nanophosphors were characterized by XRD patterns (Fig.3). When CIT or EDTA is used as the surfactant, the nanophosphors exhibit six distinct peaks with 2θvalues of 17.20°, 30.06°, 30.79°, 43.49°, 53.28° and 53.75°, which respectively correspond to (100), (110), (101), (201), (300) and (211) crystal planes ofβ-NaYF4(JCPDS file No.16-0334). Interestingly, when PVP or SDBS is used as the surfactant, there are three additional diffraction peaks at 28.23°, 46.94° and 55.69° that can be respectively assigned to (111), (220) and (311) planes ofα-NaYF4(JCPDS file No. 77-2042)[26]. Thus, these NaYF4∶Yb/Er nanophosphors capped with PVP or SDBS are the mixture of cubic and hexagonal phases. The above results verify that the surfactant can regulate the phase of NaYF4∶Yb/Er nanophosphors.

    Fig. 3 XRD patterns of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants (PVP, CIT, EDTA and SDBS)

    Fig. 4 FTIR spectra of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants (PVP, CIT, EDTA and SDBS)

    Owing to the presence of these surfactants, NaYF4∶Yb/Er nanophosphors can be easily dispersed in water. The up-conversion luminescence spectra of their aqueous dispersions (1 mg/mL) were recorded under laser irradiation at the wavelength of 980 nm(Fig.5). All the nanophosphors show three different Er3+emission bands that are consistent with the previous reports[29]. Two green emissions ranging from 514 nm to 534 nm and from 534 nm to 560 nm are observed, which result from2H11/2→4I15/2and4S3/2→4I15/2transitions, respectively. There is a red emission at 635-680 nm, which should be attributed to the transition from4F9/2to4I15/2. Importantly, these surfactants have strong effects on the up-conversion luminescence intensity. Obviously, PVP-capped NaYF4∶Yb/Er nanoparticles demonstrate the strongest up-conversion luminescence intensity, as vividly shown in the luminescence photo (the inset in Fig. 5). CIT-capped NaYF4∶Yb/Er nanoblocks demonstrate the second strongest up-conversion luminescence intensity which is almost 80% as strong as that of PVP-capped NaYF4∶Yb/Er nanoparticles. However, both EDTA-capped NaYF4∶Yb/Er nanorods and SDBS-capped NaYF4∶Yb/Er nanowires exhibit a weak up-conversion luminescence intensity(Fig.5). These results reveal the successful control of the up-conversion luminescence intensity of NaYF4∶Yb/Er nanophosphors by different surfactants.

    Fig. 5 Up-conversion luminescence spectra of aqueous dispersions containing NaYF4∶Yb/Er nanophosphors(1 mg/mL) fabricated with different surfactants (PVP, CIT, EDTA and SDBS) with luminescence photos in inset

    2.2 Applications as luminescent biological labels

    Because of their smallest size and strongest up-conversion luminescence intensity, PVP-capped NaYF4∶Yb/Er nanoparticles should have a great potential as biological labels for cancer cell imaging. To evaluate their cytotoxicity, HeLa cells were incubated with PVP-capped NaYF4∶Yb/Er dispersions (0-0.25 mg/mL) for 24 h. MTT assay results reveal that there is no obvious difference in the cell viability (Fig. 7), and the cell viability in 0.25 mg/mL NaYF4∶Yb/Er dispersions is higher than 87%, suggesting a high biocompatibility.

    Fig. 7 Cell viability estimated by MTT assay versus mass concentrations (0, 0.05, 0.10, 0.15, 0.20 and 0.25 mg/mL) of PVP-capped NaYF4∶Yb/Er nanoparticles

    To investigate the cell labeling ability, HeLa cells were incubated with PVP-capped NaYF4∶Yb/Er dispersions (0.20 mg/mL) at 37 ℃ for 3 h and then their nuclei were stained with DAPI, washed with PBS and then imaged by a microscope. Under laser irradiation at a wavelength of 980 nm, the typical HeLa cells exhibit strong up-conversion luminescence signals at 510-570 nm (green shown in Fig. 8(a)) and at 630-690 nm (red shown in Fig. 8(b)). In addition, the cell nucleus region is also displayed by DAPI (blue shown in Fig. 8(c)), and the brightfield image is also measured (Fig. 8(d)). The overlay images (Fig. 8(e)) reveal that up-conversion luminescence signals are located in the cytoplasm region but not in the DAPI-stained region. This fact suggests that PVP-capped NaYF4∶Yb/Er nanoparticles can be endocytosed by HeLa cells but cannot enter the nuclei of HeLa cells. Simultaneously, there is no obvious autofluorescence signal in the confocal images (Figs. 8(a) and 8(b)). To further quantify the signal, the up-conversion luminescence intensity across the line is recorded (Fig. 8(f)). Obviously, the up-conversion luminescence signal region has a very high intensity (counts in region 1 and region 3 are more than 4 095) and background fluorescence is zero (the count in region 2 is 0), which demonstrates a perfect signal-to-noise ratio and is similar to the previous report[31]. Therefore, such biocompatible PVP-capped NaYF4∶Yb/Er nanoparticles can be used as an efficient luminescence nanoagent for cancer cell imaging.

    Fig. 8 Confocal images of cells incubated with PVP-capped NaYF4∶Yb/Er nanoparticles: up-conversion luminescence collected (a) at 510-570 nm and (b) at 630-690 nm; (c) fluorescent image of DAPI; (d) brightfield image; (e) overlay of (a)-(d); (f) luminescence intensity across the line shown in inset

    3 Conclusions

    The simultaneous control of morphologies and up-conversion luminescence intensities of NaYF4∶Yb/Er nanophosphors has been realized by adjusting surfactants. PVP-capped NaYF4∶Yb/Er nanoparticles show the smallest size and the strongest up-conversion luminescence intensity. Especially, PVP-capped NaYF4∶Yb/Er nanoparticles exhibit a low cytotoxicity and can act as an efficient luminescence nanoagent for imaging of cancer cells. Therefore, surfactant-dependent synthesis of NaYF4∶Yb/Er nanophosphors may bring new perspectives for bioimaging.

    不卡视频在线观看欧美| 欧美xxⅹ黑人| 欧美变态另类bdsm刘玥| 天天躁日日操中文字幕| 国产不卡一卡二| av.在线天堂| 久久久精品免费免费高清| 亚洲精品成人av观看孕妇| 亚洲av免费高清在线观看| 一个人免费在线观看电影| 色吧在线观看| 国产三级在线视频| 亚洲在久久综合| 国产伦精品一区二区三区四那| 国产一级毛片在线| 最近2019中文字幕mv第一页| 国产亚洲精品久久久com| 日本免费a在线| www.色视频.com| 久久久久久久大尺度免费视频| 一级毛片我不卡| 色吧在线观看| 亚洲熟女精品中文字幕| 人妻制服诱惑在线中文字幕| av黄色大香蕉| 一级黄片播放器| 欧美成人a在线观看| 五月玫瑰六月丁香| 男女啪啪激烈高潮av片| 91精品一卡2卡3卡4卡| 亚洲av电影不卡..在线观看| 最近手机中文字幕大全| 欧美性感艳星| 日日撸夜夜添| 亚洲av成人精品一二三区| 亚洲精品久久久久久婷婷小说| av天堂中文字幕网| 美女被艹到高潮喷水动态| 男人狂女人下面高潮的视频| 午夜福利视频1000在线观看| 乱人视频在线观看| 一级毛片 在线播放| 久久99精品国语久久久| 免费av不卡在线播放| 中文字幕av在线有码专区| 国产久久久一区二区三区| 女人被狂操c到高潮| 一本一本综合久久| 久久99热这里只频精品6学生| av又黄又爽大尺度在线免费看| 亚洲欧美精品专区久久| 国产精品三级大全| 久久久久久久大尺度免费视频| 欧美丝袜亚洲另类| 亚洲精品国产av成人精品| 综合色丁香网| 欧美性猛交╳xxx乱大交人| 国产精品国产三级国产av玫瑰| 日韩中字成人| 亚洲av日韩在线播放| 天天一区二区日本电影三级| 成人美女网站在线观看视频| 成人二区视频| 能在线免费看毛片的网站| 国产亚洲午夜精品一区二区久久 | 高清欧美精品videossex| 国产黄a三级三级三级人| 久久久午夜欧美精品| 国产精品一区二区在线观看99 | 久久久久久久久久久丰满| 亚洲av免费高清在线观看| 国产亚洲91精品色在线| 国产av码专区亚洲av| 精品亚洲乱码少妇综合久久| 在现免费观看毛片| 五月玫瑰六月丁香| 免费看a级黄色片| 免费av不卡在线播放| 国产伦理片在线播放av一区| 水蜜桃什么品种好| 成人漫画全彩无遮挡| 日本猛色少妇xxxxx猛交久久| 日韩一本色道免费dvd| 天堂网av新在线| 好男人视频免费观看在线| 日本wwww免费看| 日本色播在线视频| 亚洲av国产av综合av卡| 精品人妻偷拍中文字幕| 三级国产精品欧美在线观看| 国产熟女欧美一区二区| av天堂中文字幕网| 三级经典国产精品| 亚洲欧美日韩东京热| 国产午夜精品论理片| 午夜免费男女啪啪视频观看| 亚洲欧美成人精品一区二区| 搞女人的毛片| 日韩,欧美,国产一区二区三区| 搞女人的毛片| 亚洲最大成人中文| av卡一久久| 国产av不卡久久| 床上黄色一级片| av免费在线看不卡| 婷婷色综合大香蕉| 亚洲欧洲国产日韩| 午夜日本视频在线| 黄色日韩在线| 不卡视频在线观看欧美| 亚洲成色77777| 国产男女超爽视频在线观看| 伦理电影大哥的女人| 亚洲最大成人中文| 波野结衣二区三区在线| 国产精品1区2区在线观看.| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 大香蕉久久网| 国产黄片美女视频| 色综合色国产| 1000部很黄的大片| 国产不卡一卡二| 久久精品国产自在天天线| 婷婷色综合大香蕉| 亚洲真实伦在线观看| 久久久久久九九精品二区国产| 精品熟女少妇av免费看| 国产精品一区二区在线观看99 | 日韩在线高清观看一区二区三区| 精品一区二区三卡| 中文字幕人妻熟人妻熟丝袜美| 直男gayav资源| 亚洲久久久久久中文字幕| 91精品国产九色| 99热这里只有是精品在线观看| 五月天丁香电影| 亚洲四区av| 大香蕉97超碰在线| 午夜精品在线福利| 好男人在线观看高清免费视频| 一区二区三区乱码不卡18| 国产在视频线精品| 最后的刺客免费高清国语| 成人无遮挡网站| 国产黄片视频在线免费观看| 一区二区三区乱码不卡18| 亚洲高清免费不卡视频| 欧美成人a在线观看| 久久97久久精品| 嫩草影院新地址| 国产成人a∨麻豆精品| 日本一二三区视频观看| 人妻少妇偷人精品九色| 99热6这里只有精品| 晚上一个人看的免费电影| 内地一区二区视频在线| 亚洲在线观看片| 亚洲精华国产精华液的使用体验| 不卡视频在线观看欧美| 国产免费福利视频在线观看| 蜜臀久久99精品久久宅男| 日本与韩国留学比较| 免费看a级黄色片| 国产 一区精品| 精品久久久久久电影网| 一级a做视频免费观看| 国产视频首页在线观看| 69人妻影院| 男插女下体视频免费在线播放| 国产老妇伦熟女老妇高清| 国产片特级美女逼逼视频| 成人av在线播放网站| 亚洲四区av| 久久久久精品性色| 观看美女的网站| 欧美激情在线99| 亚洲精品成人av观看孕妇| 99热这里只有是精品50| 久久久久久久久久久免费av| 亚洲电影在线观看av| 国产男女超爽视频在线观看| 国产免费一级a男人的天堂| 日韩精品青青久久久久久| 国产 亚洲一区二区三区 | 亚洲国产精品专区欧美| 深爱激情五月婷婷| 久久99热这里只频精品6学生| 性色avwww在线观看| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av天美| 亚洲精华国产精华液的使用体验| 大陆偷拍与自拍| 久久久久久久久久成人| 网址你懂的国产日韩在线| 午夜福利在线观看免费完整高清在| 欧美区成人在线视频| 国产午夜福利久久久久久| 高清午夜精品一区二区三区| 大话2 男鬼变身卡| 2021天堂中文幕一二区在线观| 欧美日韩在线观看h| 色综合亚洲欧美另类图片| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性xxxx在线观看| 在线观看美女被高潮喷水网站| videossex国产| 国产精品嫩草影院av在线观看| 国产精品国产三级国产专区5o| 亚洲av电影不卡..在线观看| 高清在线视频一区二区三区| 午夜精品一区二区三区免费看| 国产在线男女| 尾随美女入室| 国产黄片美女视频| 亚洲精品aⅴ在线观看| 亚洲精品乱码久久久久久按摩| 只有这里有精品99| 久久精品久久久久久噜噜老黄| 免费电影在线观看免费观看| 国产黄a三级三级三级人| 国国产精品蜜臀av免费| 建设人人有责人人尽责人人享有的 | 亚洲怡红院男人天堂| 少妇人妻一区二区三区视频| 99热这里只有精品一区| 伦精品一区二区三区| 亚洲电影在线观看av| 肉色欧美久久久久久久蜜桃 | 插逼视频在线观看| 国产一区二区在线观看日韩| 国产一区亚洲一区在线观看| 毛片一级片免费看久久久久| 777米奇影视久久| 1000部很黄的大片| 久久久久久伊人网av| 一级毛片久久久久久久久女| 少妇猛男粗大的猛烈进出视频 | 国产高潮美女av| 三级男女做爰猛烈吃奶摸视频| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 99九九线精品视频在线观看视频| 51国产日韩欧美| 国产淫语在线视频| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 国产大屁股一区二区在线视频| 午夜福利在线在线| 2021少妇久久久久久久久久久| 熟妇人妻久久中文字幕3abv| 成人特级av手机在线观看| 日本三级黄在线观看| 日韩av在线免费看完整版不卡| 六月丁香七月| 国产成人一区二区在线| 亚洲欧洲日产国产| 亚洲图色成人| 免费看a级黄色片| 最近手机中文字幕大全| 三级经典国产精品| 欧美一区二区亚洲| 80岁老熟妇乱子伦牲交| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| 欧美日韩国产mv在线观看视频 | 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 一本久久精品| 亚洲色图av天堂| 国产亚洲最大av| 乱码一卡2卡4卡精品| 国产一区二区三区av在线| 亚洲av免费高清在线观看| 免费大片黄手机在线观看| 九色成人免费人妻av| 欧美高清性xxxxhd video| freevideosex欧美| 老司机影院成人| 九草在线视频观看| 免费看美女性在线毛片视频| 赤兔流量卡办理| 一级毛片 在线播放| 国产单亲对白刺激| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 一级毛片aaaaaa免费看小| 亚洲国产av新网站| 中文字幕制服av| 亚洲av国产av综合av卡| 人妻少妇偷人精品九色| 大话2 男鬼变身卡| 国内精品宾馆在线| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 国产亚洲91精品色在线| 日本一本二区三区精品| 日韩三级伦理在线观看| 日韩欧美国产在线观看| 最新中文字幕久久久久| 晚上一个人看的免费电影| 午夜日本视频在线| 国产成人aa在线观看| 国产精品久久久久久久电影| 欧美激情在线99| 国产伦在线观看视频一区| 免费不卡的大黄色大毛片视频在线观看 | 欧美xxⅹ黑人| 午夜免费激情av| 伦理电影大哥的女人| 日本av手机在线免费观看| 80岁老熟妇乱子伦牲交| a级毛片免费高清观看在线播放| 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 亚洲国产精品成人久久小说| 欧美最新免费一区二区三区| 欧美成人a在线观看| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 青春草视频在线免费观看| 亚洲av.av天堂| 亚洲av不卡在线观看| 国产精品福利在线免费观看| a级毛色黄片| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 国产精品一区二区在线观看99 | 人人妻人人看人人澡| 一级a做视频免费观看| 国产高清三级在线| 久久久久久久久久黄片| 天堂网av新在线| 国产成人免费观看mmmm| 又爽又黄a免费视频| 亚洲怡红院男人天堂| 狠狠精品人妻久久久久久综合| 人人妻人人澡欧美一区二区| 国产精品一二三区在线看| 国产爱豆传媒在线观看| 男人和女人高潮做爰伦理| av天堂中文字幕网| 好男人视频免费观看在线| 日本熟妇午夜| 啦啦啦中文免费视频观看日本| 内射极品少妇av片p| 国产高清国产精品国产三级 | 18禁动态无遮挡网站| 亚洲精品日韩av片在线观看| 亚洲成人久久爱视频| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡 | 国产午夜精品一二区理论片| 一级片'在线观看视频| 丝袜喷水一区| 黑人高潮一二区| 99久久人妻综合| 五月伊人婷婷丁香| 久久久久久久国产电影| 成人国产麻豆网| 18禁动态无遮挡网站| 黄片wwwwww| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 欧美高清性xxxxhd video| 精品久久久久久久久亚洲| 亚洲av电影不卡..在线观看| 在线观看一区二区三区| 尤物成人国产欧美一区二区三区| 26uuu在线亚洲综合色| 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 亚洲国产欧美人成| 欧美高清成人免费视频www| 久久久久久久午夜电影| 亚洲性久久影院| 国产黄色小视频在线观看| 天堂av国产一区二区熟女人妻| 久久99蜜桃精品久久| 国产免费视频播放在线视频 | 午夜亚洲福利在线播放| 少妇熟女欧美另类| 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 一夜夜www| 精品一区二区三卡| 九九久久精品国产亚洲av麻豆| 国产精品熟女久久久久浪| 日韩国内少妇激情av| 一级片'在线观看视频| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 亚洲av福利一区| av女优亚洲男人天堂| 精品不卡国产一区二区三区| 啦啦啦中文免费视频观看日本| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 99久久精品热视频| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久 | 97精品久久久久久久久久精品| 国产精品.久久久| 国产精品国产三级国产av玫瑰| 一级av片app| 欧美精品一区二区大全| 插阴视频在线观看视频| 久久久久国产网址| 国产亚洲午夜精品一区二区久久 | 成人亚洲精品av一区二区| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利视频1000在线观看| 伦精品一区二区三区| 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| ponron亚洲| 一本一本综合久久| 大香蕉久久网| 国产精品爽爽va在线观看网站| 成人美女网站在线观看视频| 国产不卡一卡二| 三级国产精品片| 午夜福利网站1000一区二区三区| 欧美xxxx黑人xx丫x性爽| 日本熟妇午夜| 欧美性感艳星| 联通29元200g的流量卡| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 亚洲精品亚洲一区二区| 国产精品一区www在线观看| 人体艺术视频欧美日本| 久久6这里有精品| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 精品一区二区三卡| 亚洲av.av天堂| 久久精品国产鲁丝片午夜精品| 免费观看无遮挡的男女| 岛国毛片在线播放| 午夜精品在线福利| 91午夜精品亚洲一区二区三区| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 一级毛片aaaaaa免费看小| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 1000部很黄的大片| 亚洲精品456在线播放app| 搡女人真爽免费视频火全软件| 国产成人a区在线观看| 国产精品日韩av在线免费观看| 欧美日本视频| 午夜福利视频精品| 欧美精品一区二区大全| 日韩一区二区三区影片| 最新中文字幕久久久久| 亚洲在线自拍视频| 搡老乐熟女国产| 少妇熟女aⅴ在线视频| 欧美日韩国产mv在线观看视频 | 精品不卡国产一区二区三区| 亚洲人与动物交配视频| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频 | 亚洲在线观看片| 青春草亚洲视频在线观看| 欧美激情久久久久久爽电影| 最近手机中文字幕大全| 免费看a级黄色片| 亚洲精品一区蜜桃| 国产精品三级大全| 国产成人freesex在线| 美女cb高潮喷水在线观看| 久久久亚洲精品成人影院| 一级av片app| 丰满人妻一区二区三区视频av| 久久这里有精品视频免费| 青青草视频在线视频观看| 国产精品一区二区在线观看99 | 高清午夜精品一区二区三区| 人妻系列 视频| 亚洲美女视频黄频| 一级毛片aaaaaa免费看小| 国产黄片视频在线免费观看| 寂寞人妻少妇视频99o| 青春草国产在线视频| 热99在线观看视频| 成人一区二区视频在线观看| 一个人免费在线观看电影| 国产精品久久久久久久电影| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 中文字幕av成人在线电影| 国产91av在线免费观看| 精品久久国产蜜桃| 白带黄色成豆腐渣| 亚洲国产精品成人久久小说| 少妇被粗大猛烈的视频| 国产欧美日韩精品一区二区| 啦啦啦中文免费视频观看日本| 寂寞人妻少妇视频99o| 成人二区视频| 亚洲国产欧美在线一区| 欧美+日韩+精品| 18禁裸乳无遮挡免费网站照片| 日韩av不卡免费在线播放| 欧美高清性xxxxhd video| 男女边吃奶边做爰视频| 亚洲av二区三区四区| 在线免费十八禁| 男人舔女人下体高潮全视频| 日韩一区二区视频免费看| 久久精品久久精品一区二区三区| 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 亚洲熟妇中文字幕五十中出| 免费大片黄手机在线观看| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久亚洲| 国产淫语在线视频| 色播亚洲综合网| 中文天堂在线官网| 亚洲图色成人| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 亚洲怡红院男人天堂| 日本免费在线观看一区| 男人狂女人下面高潮的视频| 久久人人爽人人爽人人片va| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久| 又大又黄又爽视频免费| 亚洲av中文字字幕乱码综合| av国产久精品久网站免费入址| 亚洲精品亚洲一区二区| videos熟女内射| 听说在线观看完整版免费高清| 亚洲国产高清在线一区二区三| 国产精品伦人一区二区| 五月玫瑰六月丁香| 色综合色国产| 51国产日韩欧美| 亚洲av.av天堂| 内射极品少妇av片p| 国产淫片久久久久久久久| 成人国产麻豆网| 97超碰精品成人国产| 春色校园在线视频观看| 亚洲精品成人久久久久久| 联通29元200g的流量卡| 亚洲高清免费不卡视频| 日韩精品青青久久久久久| 最近最新中文字幕大全电影3| 深爱激情五月婷婷| 精品熟女少妇av免费看| 中文字幕制服av| 综合色av麻豆| 插逼视频在线观看| 极品教师在线视频| 国产成年人精品一区二区| 十八禁网站网址无遮挡 | 免费观看a级毛片全部| 可以在线观看毛片的网站| 在线观看免费高清a一片| 91午夜精品亚洲一区二区三区| videos熟女内射| 91在线精品国自产拍蜜月| 中文天堂在线官网| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 国产爱豆传媒在线观看| videos熟女内射| 两个人视频免费观看高清| 男人舔奶头视频| 在线观看人妻少妇| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 免费黄频网站在线观看国产| 搡老妇女老女人老熟妇| 精品人妻偷拍中文字幕| 免费黄频网站在线观看国产| 女人十人毛片免费观看3o分钟| 神马国产精品三级电影在线观看| 在线观看人妻少妇| 免费观看无遮挡的男女| 免费高清在线观看视频在线观看|