夏 瓊,陳澤楷,李高聰,付東洋
(1.廣東海洋大學(xué)電子與信息工程學(xué)院,廣東 湛江 524088;2.南方海洋科學(xué)與工程廣東省實驗室(珠海),廣東 珠海 519000)
氣候變暖下海平面不均勻上升可能引起海洋環(huán)流全球和區(qū)域變化,極端海平面也在發(fā)生變化。在19 世紀(jì)70 年代中期之后,太平洋驗潮站的觀測數(shù)據(jù)顯示海平面年際變化正在增大[1]。Jevrejeva等[2]通過“虛擬站”方法分析不同海洋區(qū)域的潮汐測量記錄,發(fā)現(xiàn)大多數(shù)海域的海平面2~13.9 a振蕩正在加強(qiáng)。Haigh 等[3]利用英吉利海峽海平面數(shù)據(jù)集調(diào)查整個20世紀(jì)海平面變化,發(fā)現(xiàn)在多數(shù)驗潮站年平均高水位相對于平均海平面略有增加,而年平均低水位則有所下降,從而導(dǎo)致年平均潮差整體增加。Woodworth等[4]發(fā)現(xiàn),在不列顛群島周圍和鄰近歐洲海岸線,年平均潮差的趨勢因地點而異,但通常對于平均海平面變化較大的地區(qū),年平均潮差也較大。Church 等[5]對熱帶太平洋和印度洋島嶼研究表明,自20世紀(jì)下半葉以來,年內(nèi)、年際或年代際變化的增強(qiáng)(以及平均海平面上升)也導(dǎo)致極端水位增加。但近幾十年來,在全球變暖大背景下的海洋環(huán)流和渦流的變化,以及與中尺度相關(guān)的極端海平面在整個世界海洋中的變化,相較于備受討論的平均海平面變化,其研究還相對較少。本研究利用高度計數(shù)據(jù)討論世界大洋海平面變化的兩個主要組成部分:一是空間尺度變化數(shù)百到數(shù)千公里,時間尺度大于3 a的大尺度年代際變化;另一個是時間尺度小于3 a 的變化,主要是由渦流、羅斯貝波和洋流不穩(wěn)定性引起的高能中尺度變化,以及海平面的季節(jié)性周期性變化。同時,過去對極端海平面的研究主要集中在特定區(qū)域,對極端海平面變化的全球分析是有限的,大多數(shù)報告基于對區(qū)域數(shù)據(jù)的分析[6],本研究利用衛(wèi)星高度計數(shù)據(jù)討論全球極端海平面的變化,為進(jìn)一步分析氣候變暖下的海洋活動提供參考。
1.1.1 高度計數(shù)據(jù) 使用AVISO 提供的多衛(wèi)星融合海表面高度網(wǎng)格化數(shù)據(jù)產(chǎn)品。使用基于大地水準(zhǔn)面的海表面高度,也稱為絕對動力高度(ADT),是海表面高度異常(SLA)和平均動力高度(MDT)之和。該產(chǎn)品空間分辨率為1/4°×1/4°。時間跨度為1993年1月1日至2014年5月1日,采樣時間間隔為1周。研究區(qū)域是未被冰覆蓋的全球海洋區(qū)域。
1.1.2 ENSO 指數(shù)數(shù)據(jù) 為研究EOF 分解得到的時間序列,用到El Ni?o/南方濤動(ENSO)指數(shù)數(shù)據(jù),選用由NOAA 提供的多月份融合ENSO 指數(shù)數(shù)據(jù)(MEI.v2),該數(shù)據(jù)結(jié)合熱帶太平洋區(qū)域(30°S-30°N,100°E-70°W)5 種受ENSO 影響的變量,包括海表面壓強(qiáng)、海表面溫度、海表面風(fēng)速以及向外的長波輻射,給出了用來指示ENSO強(qiáng)度的指針數(shù)據(jù)。
1.2.1 方差計算 通過海表面方差來衡量20 a 來全球海洋波動的變化。計算空間方差和時間方差。在時刻t的全球大洋絕對動力高度(ADT)的空間方差計算:
其中,HADT(xi,t)表示t時刻絕對動力高度的空間分布。N是全球范圍內(nèi)有ADT 有效值的網(wǎng)格點總數(shù)。HˉADT(t)是t時刻的全球平均ADT,是面積加權(quán)平均值,加權(quán)因子Pi等于點i處的面積除以全球具有ADT 有效值的總面積。在早期研究中,全球平均海平面被計算為全球數(shù)據(jù)簡單平均值,由于來自世界不同地區(qū)的網(wǎng)格點覆蓋面積不盡相同,會給結(jié)果帶來偏差,因此在全球分析中不應(yīng)給予同等權(quán)重。因此,ADT 的全局平均值和空間方差均用面積加權(quán)計算。
因為本研究數(shù)據(jù)采樣間隔為1 周,所以每年每個網(wǎng)格點可獲取52 個值。每年每個網(wǎng)格點時間方差計算:
其中,T是1 a 內(nèi)的時域,i在1 a 內(nèi)可以取52 個值。ADT(x)是每個網(wǎng)格點一年內(nèi)的時間平均ADT。
1.2.2 MSS 計算 為研究海洋起伏的增強(qiáng)在何種尺度上占主導(dǎo)作用,將ADT 大致分為兩部分:全球平均海表面高度(MSS)和ADT 的殘差(RADT)。通過3 a的ADT滑動平均計算MSS:
其中,選T為3 a,通過對比不同閾值,認(rèn)為3 a 閾值最能有效分離大尺度運動與中尺度運動,因此MSS中時間尺度小于3 a的海洋振蕩被過濾掉,保留長期(大于3 a)的海平面變化。
1.2.3 EOF 分析 經(jīng)驗正交函數(shù)(EOF)分析為一種有效的現(xiàn)象識別和空間縮減的特征值方法,廣泛應(yīng)用于海洋氣象研究[7]。EOF 將時空場分離為空間模態(tài)和相應(yīng)的時間序列。因此,通過EOF 分析去除ENSO 對RADT 的影響,去除RADT 中的ENSO 成分,剩余是中尺度渦旋主導(dǎo)的海面變化。
1.2.4 高斯擬合 對全球ADT在各個時間點的統(tǒng)計分布進(jìn)行高斯擬合,擬合函數(shù):
其中,參數(shù)c反映高斯分布的標(biāo)準(zhǔn)差,b反映高斯分布的均值。高斯分布均值越大,分布曲線在坐標(biāo)軸上的位置越靠右,即ADT 平均值越大。同時,標(biāo)準(zhǔn)差越大,分布曲線跨度越大,即ADT 取得極端值概率越大。
1.2.5 信息熵計算 信息熵最早由Shannon[8]提出,亦稱Shannon 熵。一般來說,“熵”代表“無序”或不確定性,可理解為不確定性度量,系統(tǒng)無序程度越高,熵越大。本研究嘗試通過信息熵研究全球變暖背景下全球ADT分布不確定性的變化。熵可寫為
可通過信息熵來衡量ADT 概率分布的離散程度。
海表面高度(SSH)在任意海洋網(wǎng)格點的變化都可看作在幾小時到幾十年時間尺度上由各種振蕩引起的海面波動組合,如局部陸地運動引起的SSH變化、大尺度洋流變化、中尺度渦流變化等海洋變化過程。為避免局部陸地運動效應(yīng)的影響,使用從SSH 刪減了海洋大地水準(zhǔn)面的絕對動力高度(ADT)數(shù)據(jù)。全球ADT 的空間方差可以衡量某時刻全球海面波動的程度。為直觀了解全球海洋波動變化,繪制全球ADT空間方差的時間序列(圖1),其中實線表示原始時間序列,虛線表示線性擬合結(jié)果。該趨勢是根據(jù)AVISO 提供的衛(wèi)星高度計數(shù)據(jù)繪制??梢钥吹饺駻DT空間方差有增加趨勢(幅度為0.000 43 m2/a),這表明海洋起伏在這20 a 間增強(qiáng)??紤]到大尺度環(huán)流以及中尺度渦旋基本可認(rèn)為是滿足地轉(zhuǎn)平衡的,其流速正比于海表面高度的梯度,因而在全球海洋面積不變的情況下,方差增加所反映海表面起伏的增大便可對應(yīng)于地轉(zhuǎn)流的增強(qiáng),這在一定程度上反映大尺度海洋環(huán)流或者中尺度海洋渦流的增強(qiáng)。
圖1 全球ADT空間方差的時間序列Fig.1 Time series of spatial variance of global ADT
MSS 主要反映大尺度環(huán)流長期變化趨勢,粗略認(rèn)為,RADT中剩余的時間尺度小于3 a的振蕩主要反映中尺度渦旋變化。因此,由ADT方差增加所反映的海洋波動增強(qiáng),在物理上可分為主要環(huán)流的變化和中尺度過程的變化。
MSS 空間方差的計算方法遵循公式(1)、(2)。從圖2(b)可見,除由海平面上升引起的MSS 平均值增加,從1994 年到2012 年,MSS 的方差總體上也在增加,但在2000-2006 年間出現(xiàn)逆轉(zhuǎn)趨勢。對于MSS 空間方差的整體增加,將其歸因于太平洋地區(qū)海平面不均勻的上升以及大尺度環(huán)流的增強(qiáng)。從圖2(a)可見,自20 世紀(jì)90 年代初以來,太平洋地區(qū)變化模式持續(xù)存在,西太平洋暖池的上升率(超過10 mm/a)高達(dá)全球平均海表面(GMSL)的3 倍,而東太平洋大部分地區(qū)的上升率接近零或負(fù)值。熱帶北太平洋西部海平面的上升表明海洋環(huán)流發(fā)生了變化。這種海平面上升表明北太平洋副熱帶地區(qū)的赤道向地轉(zhuǎn)流加強(qiáng)。同時,2000-2006 年間MSS 方差增加的逆轉(zhuǎn)趨勢或可歸因于區(qū)域海平面的反向增加。裘波等[9]發(fā)現(xiàn)20 世紀(jì)90 年代的年代際SSH 信號主要表現(xiàn)為在30°-50°S 波段呈增加趨勢,而在南太平洋中部50°S 的近極地地區(qū)則有減少趨勢。自2002年以來的幾年中,這兩種趨勢都發(fā)生了逆轉(zhuǎn)。Cummins 等[10]指出,2002 年-2003 年末,加強(qiáng)的北太平洋環(huán)流有所減弱。從圖3 中可知,這幾年間南北太平洋都出現(xiàn)了區(qū)別于1994 年到2012年MSS 的總體變化趨勢,表現(xiàn)出相反變化趨勢,即西太平洋海表面下降且東太平洋海表面上升。若將太平洋海域(120°E-60°W,80°S-80°N)的數(shù)據(jù)去除后再計算MSS 空間方差的時間序列(如圖3(b)所示),則該反轉(zhuǎn)趨勢不顯著,說明MSS空間方差的反轉(zhuǎn)主要由太平洋海域海平面的反向變化所造成。
圖2 全球MSS年平均變化趨勢的空間分布以及全球平均MSS和MSS空間方差的時間序列Fig.2 Spatial distribution of the mean global MSS trend and time series of the global average MSS and the spatial variance of MSS
圖3 MSS年平均變化趨勢的空間分布以及去除太平洋海域后平均MSS和MSS空間方差的時間序列Fig.3 Spatial distribution of the mean global MSS trend and time series of spacial/space-average MSS and the spatial vari‐ance of MSS when the Pacific Ocean area has been removed
中尺度過程僅為整個深海海平面變率的組成之一,通過去除MSS后的ADT 殘差(RADT)研究中尺度變化。圖4顯示了時間平均的RADT 空間分布以及空間平均的RADT時間序列。RADT中除包含中尺度信號外,還包含由大尺度、低頻的變化(如ENSO)導(dǎo)致的全球海平面變化。為消除ENSO 信號,對全球RADT 進(jìn)行EOF 分解。ENSO 信號包含在EOF 分解的第三模態(tài)(占比4.3%)中(圖5),比對第三模態(tài)的時間序列與NOAA 提供的ENSO 指數(shù)MEI.v2,其相關(guān)性達(dá)0.746。
圖4 時間平均RADT的空間分布以及空間平均RADT的時間序列Fig.4 Spatial distribution of time-mean RADT and time series of spacial/space-mean RADT
圖5 全球RADT第三EOF模態(tài)(ENSO模態(tài))的空間分布、時間序列和ENSO指數(shù)MEI.v2Fig.5 Spatial distribution of the third EOF mode of global RADT and its related time series and the ENSO index MEI.v2
從RADT 中去除ENSO 信號后,余下的主要是與中尺度變化相關(guān)的季節(jié)性信號。全球RADT 的時間方差計算遵循公式(3),其中T取52,表示計算1 a 的時間方差。由圖6(a)可知,在大多數(shù)地區(qū),方差變化趨勢接近于0,除在西邊界地區(qū)和ACC 地區(qū)中尺度的變化相對明顯一些。本研究認(rèn)為這是由于這些地區(qū)的中尺度渦旋豐富且更加活躍,因此其振蕩比其他地區(qū)更加復(fù)雜[11]。同時,從圖6(b)也可知,空間方差在這十幾年中只有季節(jié)性振蕩,沒有明顯的長期變化趨勢。這兩組數(shù)據(jù)都表明海洋環(huán)流的中尺度成分在氣候變暖大背景下是穩(wěn)定的。同時,Woodworth 等[12]通過研究沿軌海表面高度的方差變化也發(fā)現(xiàn)中尺度渦旋在氣候變暖大背景下沒有明顯變化。
圖6 去除ENSO后的RADT時間方差空間分布以及RADT空間方差時間序列Fig.6 Spatial distribution of temporal variance of RADT and time series of spatial variance of RADT when ENSO mode has been removed
這里展示全球ADT的統(tǒng)計分布,并對兩個極端進(jìn)行分析,發(fā)現(xiàn)全球ADT的統(tǒng)計分布具有類高斯分布,圖7 所示為從1993 年到2014 年每隔7 a 繪制的原始ADT分布以及其高斯函數(shù)擬合分布,高斯擬合函數(shù)詳見1.2.4中的公式(6),擬合系數(shù)均在0.9以上。同時,比對1993-2014 年每10 a 的ADT 高斯擬合曲線(圖8),發(fā)現(xiàn)在氣候變暖大背景下,全球ADT的高斯分布曲線明顯右移(圖8(a))以及輕微向極端值分布增加的趨勢(峰度在減小)(如圖8(b))。進(jìn)一步對高斯曲線的擬合參數(shù)進(jìn)行分析,也發(fā)現(xiàn)高斯分布的擬合參數(shù)a有減小趨勢,大概-0.002 m(如圖9(a)),說明標(biāo)準(zhǔn)差增大了,海平面取得極端值的概率增加了。同時擬合參數(shù)b也有明顯增加,大概0.002 6 m(如圖9(b)),這說明隨氣候變暖平均海平面上升了,上升幅度為2.6 mm/a,這與前人研究結(jié)果是一致的[13]。
圖7 原始ADT分布以及高斯函數(shù)擬合Fig.7 Original ADT distribution and the Gaussian fitting
圖8 ADT在1993年1月、2003年1月和2013年1月的高斯分布Fig.8 Gaussian distribution of ADT in Jan 1993,Jan 2003 and Jan 2013
圖9 高斯擬合參數(shù)a與參數(shù)b隨時間的變化Fig.9 Time series of Gaussian fitting parameter a and parameter b
考慮到全球ADT分布并不完全遵循高斯分布,且圖8 以及圖9 中所反映的高斯分布向兩端取極端值的概率增加并不明顯,進(jìn)一步使用信息熵來衡量ADT 概率分布的離散程度。信息熵及其計算公式詳見1.2.5 節(jié)。通過公式(7)計算全球ADT 分布的信息熵,并繪制其隨時間變化的曲線圖(圖10),從圖10 可以知,在這20 a 間信息熵有輕微增加趨勢(0.000 948 bip/a),這說明全球ADT 分布的不確定性在增加,或者說全球ADT分布出現(xiàn)極端值的概率增加了,這與本研究之前的分析一致。當(dāng)然也有其他方法可以研究極端海平面(比如也可以用MK 方法檢測最高/低水位的變化情況),但將信息熵引入該研究中是一種創(chuàng)新,且信息熵考慮到全球ADT的全部取值,而不是單個最大或者最小值,這樣會避免單個極值的出現(xiàn)誤導(dǎo)研究結(jié)果。
圖10 全球ADT分布的信息熵隨時間變化Fig.10 Time series shows the variation of information entropy of global ADT with time
本研究利用全球ADT 數(shù)據(jù)研究在全球變暖下海洋中大中尺度洋流的變化情況。通過CMIP5 各個模式的運行結(jié)果以及AVISO 高度計數(shù)據(jù),發(fā)現(xiàn)1993-2014年全球ADT空間方差的時間序列增加,表明海洋波動增強(qiáng),地轉(zhuǎn)切變和速度也在增強(qiáng)。通過進(jìn)一步對ADT進(jìn)行分解,發(fā)現(xiàn)地轉(zhuǎn)切變的增強(qiáng)主要集中在太平洋副極地和副熱帶環(huán)流等大尺度海洋環(huán)流上,而中尺度海洋渦流變化并不明顯。本研究表明,在海洋不斷升溫的情況下,尚無明確證據(jù)證明中尺度渦流活動在擴(kuò)大或者加強(qiáng)。最后,通過對全球ADT統(tǒng)計分布研究,發(fā)現(xiàn)在氣候變暖下全球海平面取極端值的概率增大。本研究僅對已有數(shù)據(jù)進(jìn)行統(tǒng)計分析,至于環(huán)流的擴(kuò)張和加強(qiáng)不會產(chǎn)生更活躍的中尺度渦流的原因有待進(jìn)一步探究。
本研究通過計算海表面高度方差來判斷海洋大尺度以及中尺度運動在全球變暖大背景下的變化,該方法有一定理論依據(jù),且使用較方便,毋需通過繁瑣的渦旋探測即可得到中尺度渦旋信號變化,也避免因為渦旋探測方法以及探測人員不同所帶來的結(jié)果誤差。但也存在一定不足,比如中尺度信號通過3 a濾波得到,而大尺度或中尺度過程通常指空間上信號的尺度大小,單純通過時間濾波提取會存在一定誤差,同時單純的EOF 分解不能完全去除所提取中尺度信號中摻雜的ENSO 信號。因此,本研究結(jié)果具有一定的參考價值,也具可改進(jìn)的地方。