• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩類支撐3-設(shè)計(jì)的線性碼

    2023-04-29 00:44:03劉琪唐春明
    關(guān)鍵詞:維數(shù)設(shè)計(jì)

    劉琪 唐春明

    摘 要:代數(shù)編碼與組合設(shè)計(jì)的交叉領(lǐng)域一直是近年來的研究熱點(diǎn)。雖然長度為q+1的支撐3-設(shè)計(jì)的線性碼的無窮類已經(jīng)被構(gòu)造出來了,但是目前已知的構(gòu)造還非常稀少。綜合利用代數(shù)編碼理論、組合設(shè)計(jì)和群論,構(gòu)造出了兩類長度為q+1的支撐3-設(shè)計(jì)的線性碼,并且確定了它們的參數(shù)。最后證明了這兩類線性碼的支集構(gòu)成的集族在一般射影線性群PGL(2,q)的作用下是不變的。

    關(guān)鍵詞:線性碼;t-設(shè)計(jì);維數(shù);循環(huán)碼;一般射影線性群

    中圖分類號:O157.4;O29 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-5072(2023)03-0253-08

    3 結(jié)束語

    本文主要構(gòu)造出了一類支撐3-設(shè)計(jì)的6維的長度為q+1的線性碼,此類碼的維數(shù)較大,并給出了這類碼及其對偶碼的最小距離的范圍。今后的工作將進(jìn)一步縮小最小距離的范圍,并尋找其他的支撐3-設(shè)計(jì)的線性碼。

    參考文獻(xiàn):

    [1] BETH T,JUNGNICKEL D,LENZ H.Design theory:volume 1[M].Cambridge:Cambridge University Press,1999.

    [2] COLBOURN C J,DINITZ J H.The CRC handbook of combinatorial designs[M].Boca Raton,F(xiàn)L:CRC Press,2007.

    [3] DING C S.Designs from linear codes[M].Singapore:World Scientific,2018.

    [4] DING C S,TANG C M,TONCHEV V D.The projective general linear group PGL(2,2m) and linear codes of length 2m+1[J].Designs,Codes and Cryptography,2021,89(7):1713-1734.

    [5] STURMFELS B.Two lectures on grbner bases[Z/OL].Mathematical Sciences Research Institute.New Horizons in Undergraduate Mathematics,VMath Lecture Series,Berkeley,California,2005.[2021-12-01].http://www.msri.org/communications/vmath/special_productions/.

    [6] STURMFELS B.What is…a Grobner basis?[J].Notices of the American Mathematical Society,2005,52(10):1199.

    [7] 牛永鋒,陳揚(yáng),亓延峰.多變量p元函數(shù)構(gòu)造的小重量線性碼[J].西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,38(2):176-183.

    [8] DELSARTE P.On subfield subcodes of modified Reed-Solomon codes(Corresp.)[J].IEEE Transactions on Information Theory,1975,21(5):575-576.

    [9] GIORGETTI M,PREVITALI A.Galois invariance,trace codes and subfield subcodes[J].Finite Fields and Their Applications,2010,16(2):96-99.

    [10]HUFFMAN W C,PLESS V.Fundamentals of error-correcting codes[M].Cambridge:Cambridge University Press,2003.

    [11]TANG C M,DING C S.An infinite family of linear codes supporting 4-designs[J].IEEE Transactions on Information Theory,2020,67(1):244-254.

    Abstract:The cross field of algebraic coding and combinatorial design has been a research hotspot in recent years.The known structures of infinite classes of linear codes with length q+1supporting 3-design are still very rare despite the construction of some infinite classes.Two classes of linear codes with length q+1supporting 3-design are constructed and their parameters are determined by the algebraic coding theory,combinatorial design and group theory.Finally,it is proved that the set family composed of the supports of these two classes of linear codes is invariant under the action of general projective linear group PGL(2,q).

    Keywords:linear codes;t-design;dimension;cyclic code;general projective linear group

    基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(11871058)

    作者簡介:劉琪(1996—),女,碩士研究生,主要從事基礎(chǔ)數(shù)學(xué)、代數(shù)編碼理論及應(yīng)用研究。

    通信作者:唐春明(1982—),男,博士,研究員,主要從事基礎(chǔ)數(shù)學(xué)、網(wǎng)絡(luò)空間安全、通信工程、密碼與代數(shù)編碼理論及應(yīng)用研究。Email:tangchunmingmath@163.com

    引文格式:劉琪,唐春明.兩類支撐3-設(shè)計(jì)的線性碼[J].西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,44(3):253-260.

    猜你喜歡
    維數(shù)設(shè)計(jì)
    β-變換中一致丟番圖逼近問題的維數(shù)理論
    何為設(shè)計(jì)的守護(hù)之道?
    一類齊次Moran集的上盒維數(shù)
    《豐收的喜悅展示設(shè)計(jì)》
    流行色(2020年1期)2020-04-28 11:16:38
    關(guān)于一維Moran集Hausdorff維數(shù)的一個(gè)新證明和一個(gè)新結(jié)果
    瞞天過?!律O(shè)計(jì)萌到家
    設(shè)計(jì)秀
    海峽姐妹(2017年7期)2017-07-31 19:08:17
    有種設(shè)計(jì)叫而專
    Coco薇(2017年5期)2017-06-05 08:53:16
    關(guān)于齊次Moran集的packing維數(shù)結(jié)果
    涉及相變問題Julia集的Hausdorff維數(shù)
    历史| 利津县| 常德市| 北流市| 嘉黎县| 马关县| 四子王旗| 宁城县| 临猗县| 额尔古纳市| 吉水县| 临沭县| 新郑市| 进贤县| 金门县| 东至县| 瑞金市| 玛纳斯县| 富顺县| 慈利县| 玉山县| 长兴县| 汾西县| 高台县| 连平县| 莱州市| 房山区| 湘阴县| 吉木萨尔县| 麻江县| 乐平市| 曲松县| 上栗县| 慈利县| 当雄县| 维西| 秭归县| 临洮县| 石城县| 崇仁县| 新密市|