• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Key Challenges and Chinese Solutions for SOTIF in Intelligent Connected Vehicles

    2023-03-22 08:04:44JunLiWenboShaoHongWang
    Engineering 2023年12期

    Jun Li, Wenbo Shao, Hong Wang

    Tsinghua Intelligent Vehicle Design and Safety Research Institute, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

    Intelligent connected vehicles (ICVs) [1] represent a crucial strategic focus for global automobile industrial transformation and advancement.ICVs also play a significant role in enhancing driving safety, improving traffic efficiency, and enabling lowcarbon transportation.Consequently, numerous countries worldwide are expediting their efforts to establish a strong foundation for ICVs, progressing from technology research, development, and testing to widespread application and commercialization.This global momentum has resulted in a thriving ICV industry, demonstrating substantial growth and encouraging prospects.

    In developing ICVs,one of the original intentions was to reduce traffic accidents caused by human error,which account for approximately 94% of total accidents.In recent years, an increasing focus on ICV safety by governments, enterprises, and academia has emerged resulting in the implementation of various policies,regulations,technical products,and research findings.However,significant challenges remain for ICV safety, particularly regarding functional safety (FuSa), cybersecurity, and safety of the intended function(SOTIF)issues.FuSa has been addressed to a certain extent through the application of mature standards and regulations,while cybersecurity is being reinforced by government legislation.However, as ICV systems increase in complexity and intelligence, with more dynamic and challenging operating environments, the SOTIF problem arising from functional insufficiencies of the intended functionality or its implementation has emerged as one of the most critical obstacles in ICV research and commercialization.Since 2016,some ICV-related traffic accidents have been reported worldwide, as illustrated in Table 1.The main causes of these accidents include insufficient perception, prediction, decision-making functions, and reasonably foreseeable misuse, all of which are categorized as typical SOTIF problems [2].Furthermore, as shown in Fig.1 [3], over 90% of intelligent driving system disengagements are attributable to SOTIF-related software issues.The SOTIF problem has become a pressing concern in ICV development, necessitating effective SOTIF solution proposals to ensure smooth industrialization progress.

    1.Key challenges for SOTIF in ICVs

    ICV can be classified as a multidisciplinary subject area that encompasses various traditional and emerging research fields,including mechanics, communication, electronics, computer science, and artificial intelligence (AI).Consequently, addressing SOTIF problems in ICVs necessitates collaborative efforts from stakeholders spanning multiple domains.Since the initiation of the development of International Organization for Standardization(ISO) 21448 [4] in 2016, research on SOTIF has made some advancements [5].However, significant challenges persist in transitioning from simple and specific to complex,open scenarios,from low-level to high-level automation, and from laboratory research to industrial applications.Three key challenges are highlighted as follows.

    1.1.The ICV long-tail scenario problem

    During ICV industrialization and deployment, long-tail challenges were inevitably encountered in the real world [6].Such real-world scenarios are complex, including special road conditions, extreme weather conditions, and unexpected road user behaviors, which can all trigger SOTIF-related hazards.Moreover,real-world scenarios exhibit significant diversity and variation in traffic conditions, and different driving habits have been observed across different countries, cities, and rural areas.Furthermore, the real world is dynamic,with the publication of policies and regulations, infrastructure developments, and the introduction of new technologies to the evolving characteristics of driving scenarios.These factors collectively contribute to the challenges associated with long-tail scenarios in SOTIF research.Specifically, long-tail scenarios that are difficult to anticipate effectively can evolve into numerous unknown and potentially dangerous situations,substantially increasing the complexity of safety analysis and design during the ICV development process.Long-tail scenarios pose obstacles to ensuring sufficient ICV safety test coverage, becauseconducting testing spanning billions of kilometers [7] is impractical in terms of cost and feasibility.Failure to effectively address long-tail scenarios challenges the proactive mitigation of unknown risks arising from real-world operations,thus,significantly impeding ICV industrialization.Furthermore,remarkably,researchers are also increasing focus on the ‘‘long tail” problem, which is evident based on a steady increase observed in the number of publications on related topics in recent years.

    Table 1SOTIF-related intelligent vehicle safety accidents.

    1.2.ICV system complexity and diversity

    ICVs are highly complex systems that integrate software and hardware [8,9].Equipped with advanced onboard sensors, controllers, and actuators, they employ various intelligent algorithms and integrate modern communication and network technologies,whose overall complexity is significantly higher than that of traditional vehicles.To illustrate, considering solely the Baidu Apollo system code volume, Apollo 1.0 comprised only 35 000 lines of code,whereas Apollo 8.0 exceeded 750 000.Moreover,the possible adoption of an ICV foundation model can cause a sharp increase in system complexity.This elevated complexity significantly increases the difficulty of SOTIF design, development, testing, certification, and online protection [10].Furthermore, currently no consensus has emerged as yet from academia or industry regarding the technical approach that should be adopted for ICVs.Variation also exists in terms of sensor configurations, system architectures,and functional modules.According to a report by GreyB [11], over 250 companies worldwide were actively striving to achieve autonomous driving, with each company’s product undergoing rapid iteration, similar to different Apollo system versions.Additionally,ICV research continually introduces new paradigms and algorithms.This level of system diversity contributes toward the unfortunate absence of a unified SOTIF development process and specification.

    1.3.AI algorithm inexplicability and uncertainty

    With outstanding advantages for handling complex tasks, AI algorithms have been widely adopted in functional modules such as ICV perception, prediction, and decision-making, and produced significant performance improvements[12].However,as complexity including the number of model parameters continues to increase,the AI interpretability[13]issue has become increasingly prominent.In particular, deep learning models, which have recently demonstrated significant performance benefits,frequently function as opaque black boxes,posing challenges for the specification, analysis, verification, and validation of relevant modules.For example,the lack of AI model interpretability impedes the effective identification of its limitations, hampers the establishment of reliable safety analysis methods, significantly raises the challenge of verification and validation, and hinders the explicit modeling and targeted mitigation of AI-related SOTIF risks.In recent years, concepts such as trustworthy AI have increasingly gained traction,particularly in safety-critical fields such as ICVs.In addition,AI models are predominantly learned based on a significant amount of data and frequently show high uncertainty [14] with insufficient data or when the learning processes or models are unreasonable,which leads to unpredictable performance degradation.These circumstances are not conducive to the requirement of adequate protection for SOTIF in ICVs.

    2.Chinese solutions for SOTIF in ICVs

    As shown in Fig.2,to effectively ensure ICV safety and management of SOTIF risks within acceptable limits, Chinese solutions have been proposed to form a full lifecycle SOTIF research foundation for an offline safety development, online safety control, and active ongoing learning system.It is anticipated that these topics will ignite valuable discussion and further research in the SOTIF community.

    Fig.1.Statistics on causes of intelligent driving systems disengagement [3].

    Fig.2.Chinese solutions for SOTIF in ICVs.

    2.1.Offline safety design and development

    Constructing a systematic, comprehensive, and actionable SOTIF design and development process represents a fundamental step in addressing the aforementioned key challenges.While standards such as ISO 21448 introduce the fundamental SOTIF activities, a lack of sufficient detail and practical guidance remains.Regarding traditional FuSa, a mature development process has been established, accompanied by a range of supporting methods and technologies, including fault tree analysis (FTA) and failure mode and effect analysis (FMEA).However, owing to the differentiation, complexity, and uncertainty associated with SOTIF development, the applicability of traditional processes and methods is considerably limited.In response to the specific requirements for ICV development, it is essential to explore SOTIF forward design and development specifications and technologies.This involves clarifying ICV SOTIF goals, identifying safety risks alongside their contributing factors,establishing safety metrics and design criteria,developing computer-aided engineering (CAE) tools for safety analysis, and completing a SOTIF forward closed-loop design.The final step before release,namely,testing and certification,occupies a crucial role in determining whether an ICV can be formally approved for market entry.Therefore,testing and certification processes and results directly affect the accident rate and societal acceptance of approved ICVs.However,SOTIF testing and certification is a complex issue that cannot be solved from within a single group.This requires collaborative efforts from governments, standards organizations, enterprises, and universities to appropriately address this challenge in an effective manner.Furthermore, for future AI,there is a necessity for effective interpretability methods to assist in the system development process, which includes AI model explanation before, during, and after the modeling phase.This is expected to ultimately improve the transparency and controllability of models used during the development process.

    2.2.Online safety monitoring and protection

    The long-tail scenarios and uncertainty of autonomous driving complicate the elimination of residual risks during development.Therefore, it is necessary to ensure SOTIF through effective risk monitoring and protection during the operational phase.To address potential functional insufficiencies that may arise during autonomous driving control system operation, a parallel SOTIF real-time protection system is designed, to act as the ICV ‘‘safety control system”.This system continuously monitors Object and Event Detection and Response (OEDR) accuracy, AI model health status,and ICV compliance with road regulations in real time,thereby providing effective protection strategies.Moreover, for unavoidable risks or accidents that may occur during ICV driving,online monitoring,and recording are utilized to capture SOTIF risk sources,trigger conditions, system failure causes, real-time compliance with road regulations assessments, and other pertinent information in autonomous driving mode.This information is subsequently used to enable timely interventions and support accident cause identification and appropriate oversight by public safety departments.

    2.3.Active ongoing learning

    It is difficult for a fixed ICV safety system to manage constantly emergent long-tail scenarios, dynamically changing driving environments,and increasing functional requirements.Thus,establishing a flexible and efficient SOTIF improvement mechanism is crucial for advancing ICVs in this respect.In recent years, both industry and academia have explored various approaches in the field of autonomous driving learning and growth.Examples include Tesla’s fleet learning, Cruise’s continuous learning machine,and research topics such as continuous learning that have garnered significant attention.This study proposes the construction of a discovery mechanism for unknown-unsafe scenarios and a safety continuous learning growth model for continuous improvement of SOTIF in ICV.This aims to enhance the efficiency of identifying unknown-unsafe high-value scenarios and address the problem of ‘‘catastrophic forgetting”, where a model may forget previously learned information when learning from new data.By establishing a trinity of learning and growth processes encompassing data, models, and platforms, ICV’s continuous learning capability can be realized.Furthermore,the ongoing learning experience can be continuously and instantly fed back to offline design and development departments, offering real-time guidance for iterative upgrades in the development process.This closed-loop approach facilitates the establishment of comprehensive solutions to address SOTIF in ICVs.

    In summary, although ICVs must confront multiple challenges from the external environment and the system itself, the pursuit of SOTIF solutions has been relentless and has yielded some advancement.The proposed solutions for SOTIF in ICVs present notable advantages.Through the integration of key elements, the solutions ensure a systematic design and development process,real-time protection, and ongoing risk reduction, thereby expediting the safe industrialization of ICVs.In addition, the collaborative efforts of industry, universities, and research institutes, under the leadership of the government, serve to enhance the effectiveness and applicability of the solution.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (NSFC; 52072215, U1964203, and 52221005), the National Key Research and Development Program of China (2022YFB2503003 and 2020YFB1600303), and the State Key Laboratory of Intelligent Green Vehicle and Mobility.

    好看av亚洲va欧美ⅴa在| 母亲3免费完整高清在线观看| 最新在线观看一区二区三区| 国产私拍福利视频在线观看| 欧美性长视频在线观看| 午夜福利成人在线免费观看| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av高清一级| 久久精品aⅴ一区二区三区四区| 老司机深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 一进一出抽搐gif免费好疼| 国产精品乱码一区二三区的特点 | 日本一区二区免费在线视频| 国产成人精品无人区| 国产欧美日韩一区二区三| 黄色成人免费大全| 日韩国内少妇激情av| 国产精品亚洲一级av第二区| 亚洲精品国产区一区二| 日本 av在线| 亚洲熟妇中文字幕五十中出| 日本 欧美在线| 国产精品美女特级片免费视频播放器 | 午夜两性在线视频| 99久久99久久久精品蜜桃| 日日摸夜夜添夜夜添小说| 精品福利观看| 最好的美女福利视频网| 色综合亚洲欧美另类图片| 黄色视频不卡| 亚洲成av人片免费观看| 成熟少妇高潮喷水视频| 精品久久久久久久人妻蜜臀av | 亚洲国产欧美一区二区综合| 国产精品秋霞免费鲁丝片| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 韩国av一区二区三区四区| 色老头精品视频在线观看| 成人特级黄色片久久久久久久| 欧美日本亚洲视频在线播放| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 国产亚洲欧美精品永久| 国产午夜精品久久久久久| 69av精品久久久久久| aaaaa片日本免费| 亚洲中文日韩欧美视频| 97碰自拍视频| 丝袜美腿诱惑在线| 中文字幕色久视频| 久久精品亚洲精品国产色婷小说| 最好的美女福利视频网| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 亚洲国产精品合色在线| 亚洲视频免费观看视频| 禁无遮挡网站| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| or卡值多少钱| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 欧美激情 高清一区二区三区| 又大又爽又粗| 黄片播放在线免费| 亚洲全国av大片| 国产精品九九99| 九色国产91popny在线| 亚洲最大成人中文| 丰满的人妻完整版| 欧美人与性动交α欧美精品济南到| 九色国产91popny在线| 亚洲三区欧美一区| 欧美日本中文国产一区发布| 日韩一卡2卡3卡4卡2021年| 亚洲av成人一区二区三| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 校园春色视频在线观看| 在线观看免费视频日本深夜| 女性生殖器流出的白浆| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区不卡视频| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片 | 99精品在免费线老司机午夜| 天天躁夜夜躁狠狠躁躁| 大型av网站在线播放| 亚洲avbb在线观看| 亚洲成人久久性| 啦啦啦 在线观看视频| 好男人在线观看高清免费视频 | 午夜福利高清视频| 国产亚洲精品久久久久5区| 国产单亲对白刺激| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 在线av久久热| 欧美精品亚洲一区二区| 亚洲av成人av| 久久精品国产99精品国产亚洲性色 | 嫩草影视91久久| 美女高潮到喷水免费观看| 三级毛片av免费| 国产亚洲精品综合一区在线观看 | 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 色av中文字幕| 国产精品亚洲一级av第二区| 露出奶头的视频| av福利片在线| 国产国语露脸激情在线看| 操美女的视频在线观看| 黄色成人免费大全| 日本欧美视频一区| 满18在线观看网站| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 多毛熟女@视频| aaaaa片日本免费| 成人精品一区二区免费| 国产精品一区二区精品视频观看| 日韩国内少妇激情av| 婷婷精品国产亚洲av在线| 日韩欧美一区视频在线观看| 亚洲精品国产精品久久久不卡| 一进一出抽搐gif免费好疼| 午夜精品国产一区二区电影| 一a级毛片在线观看| 亚洲精品美女久久av网站| 日韩高清综合在线| 国内精品久久久久久久电影| 大码成人一级视频| 精品国内亚洲2022精品成人| 欧美精品啪啪一区二区三区| 纯流量卡能插随身wifi吗| 一区福利在线观看| 久久亚洲真实| 国内精品久久久久久久电影| 三级毛片av免费| 性欧美人与动物交配| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 麻豆国产av国片精品| 热re99久久国产66热| 亚洲美女黄片视频| 高清毛片免费观看视频网站| 国产熟女xx| 男人舔女人下体高潮全视频| 99riav亚洲国产免费| 日日爽夜夜爽网站| 欧美在线黄色| 一本久久中文字幕| 亚洲av成人一区二区三| 久久天堂一区二区三区四区| aaaaa片日本免费| 曰老女人黄片| 国产精品日韩av在线免费观看 | 黑人巨大精品欧美一区二区mp4| 91精品三级在线观看| 日本撒尿小便嘘嘘汇集6| 岛国在线观看网站| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 国产精品综合久久久久久久免费 | 少妇的丰满在线观看| 亚洲最大成人中文| 国产午夜精品久久久久久| www国产在线视频色| 亚洲av五月六月丁香网| 欧美激情 高清一区二区三区| bbb黄色大片| 欧美绝顶高潮抽搐喷水| 黄片小视频在线播放| 日韩有码中文字幕| 一二三四在线观看免费中文在| 亚洲第一青青草原| 国内精品久久久久久久电影| 一区二区三区激情视频| 午夜福利免费观看在线| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看 | 免费女性裸体啪啪无遮挡网站| 国产精品影院久久| 国产亚洲精品综合一区在线观看 | 久久久久亚洲av毛片大全| 精品国产超薄肉色丝袜足j| 欧美国产精品va在线观看不卡| 看免费av毛片| 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 国产在线观看jvid| 一夜夜www| 成熟少妇高潮喷水视频| 不卡av一区二区三区| 999久久久精品免费观看国产| 国产精品,欧美在线| 亚洲五月天丁香| 午夜久久久在线观看| 免费在线观看视频国产中文字幕亚洲| 香蕉久久夜色| 99国产综合亚洲精品| 一边摸一边抽搐一进一小说| 国产熟女午夜一区二区三区| 色尼玛亚洲综合影院| 免费一级毛片在线播放高清视频 | av在线天堂中文字幕| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 精品第一国产精品| 又紧又爽又黄一区二区| 精品一品国产午夜福利视频| 国产成人精品久久二区二区91| 人人澡人人妻人| 村上凉子中文字幕在线| 一区在线观看完整版| 国产免费男女视频| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 波多野结衣高清无吗| 亚洲五月天丁香| 精品国产国语对白av| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 久久婷婷成人综合色麻豆| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清 | 久久人妻av系列| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 成人国产综合亚洲| 久久久精品欧美日韩精品| 伦理电影免费视频| 美女免费视频网站| 老司机午夜十八禁免费视频| 在线观看66精品国产| 久久亚洲精品不卡| 亚洲成人精品中文字幕电影| 日韩精品中文字幕看吧| 国产午夜福利久久久久久| av视频免费观看在线观看| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 欧美激情久久久久久爽电影 | www国产在线视频色| 女性被躁到高潮视频| 国产真人三级小视频在线观看| 免费女性裸体啪啪无遮挡网站| 丝袜人妻中文字幕| 精品日产1卡2卡| 99国产精品一区二区三区| 免费在线观看影片大全网站| 午夜福利,免费看| 夜夜爽天天搞| 又大又爽又粗| 黄色丝袜av网址大全| 免费在线观看视频国产中文字幕亚洲| 纯流量卡能插随身wifi吗| 国产一区二区激情短视频| 午夜福利,免费看| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 精品国产一区二区久久| 日本黄色视频三级网站网址| 亚洲五月天丁香| 亚洲专区字幕在线| 露出奶头的视频| 黄色a级毛片大全视频| 午夜福利欧美成人| 首页视频小说图片口味搜索| 97碰自拍视频| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 国产精华一区二区三区| 免费无遮挡裸体视频| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 欧美午夜高清在线| 日韩欧美在线二视频| 亚洲国产精品sss在线观看| av福利片在线| 久久久久久人人人人人| 香蕉国产在线看| 在线观看66精品国产| 国产高清有码在线观看视频 | 国产熟女午夜一区二区三区| 欧美日韩黄片免| 电影成人av| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 国产99久久九九免费精品| 国产私拍福利视频在线观看| 午夜久久久久精精品| 国产真人三级小视频在线观看| 亚洲成a人片在线一区二区| ponron亚洲| 国产成人影院久久av| 手机成人av网站| 午夜亚洲福利在线播放| 香蕉久久夜色| 精品国产乱码久久久久久男人| 精品久久久久久久人妻蜜臀av | www.精华液| 午夜影院日韩av| 国产欧美日韩综合在线一区二区| 午夜福利高清视频| 日本一区二区免费在线视频| 久久人人97超碰香蕉20202| 久久性视频一级片| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 欧美日韩精品网址| 色播亚洲综合网| 国产成+人综合+亚洲专区| 91成年电影在线观看| 高潮久久久久久久久久久不卡| 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 亚洲国产中文字幕在线视频| 人人妻人人澡欧美一区二区 | 在线观看免费视频网站a站| 亚洲免费av在线视频| 国产精品久久久久久亚洲av鲁大| 人人妻人人澡人人看| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 一边摸一边做爽爽视频免费| 男人的好看免费观看在线视频 | 久久久久国产精品人妻aⅴ院| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 高清黄色对白视频在线免费看| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 一级毛片高清免费大全| 亚洲人成77777在线视频| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 亚洲精品粉嫩美女一区| 男男h啪啪无遮挡| av有码第一页| 99久久99久久久精品蜜桃| 国产成人精品在线电影| 亚洲av成人一区二区三| 免费看美女性在线毛片视频| 欧美乱色亚洲激情| 高清黄色对白视频在线免费看| 亚洲最大成人中文| 老鸭窝网址在线观看| 又黄又爽又免费观看的视频| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| av视频在线观看入口| 搞女人的毛片| 满18在线观看网站| 一级a爱视频在线免费观看| 中亚洲国语对白在线视频| 国产精品98久久久久久宅男小说| 国产精品久久视频播放| 亚洲国产高清在线一区二区三 | 国产成人一区二区三区免费视频网站| 97碰自拍视频| 成人国语在线视频| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 久热这里只有精品99| svipshipincom国产片| 久久婷婷人人爽人人干人人爱 | 一二三四社区在线视频社区8| 夜夜躁狠狠躁天天躁| 长腿黑丝高跟| 丝袜美足系列| 亚洲av成人av| 在线国产一区二区在线| 国产伦人伦偷精品视频| 成年版毛片免费区| а√天堂www在线а√下载| 久久久久国产精品人妻aⅴ院| 男女下面插进去视频免费观看| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 最新美女视频免费是黄的| 88av欧美| 精品高清国产在线一区| 国产精品精品国产色婷婷| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区| 又黄又爽又免费观看的视频| a级毛片在线看网站| 精品不卡国产一区二区三区| 波多野结衣一区麻豆| 麻豆成人av在线观看| 国产亚洲av嫩草精品影院| 黄色 视频免费看| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 色av中文字幕| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 露出奶头的视频| 午夜福利影视在线免费观看| 一个人观看的视频www高清免费观看 | 女人被躁到高潮嗷嗷叫费观| 欧美色欧美亚洲另类二区 | xxx96com| 欧美日韩中文字幕国产精品一区二区三区 | 麻豆久久精品国产亚洲av| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 国产成+人综合+亚洲专区| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 99香蕉大伊视频| 久久久久亚洲av毛片大全| 久久精品国产99精品国产亚洲性色 | 一夜夜www| 97人妻天天添夜夜摸| 18美女黄网站色大片免费观看| 日韩中文字幕欧美一区二区| 一区二区三区精品91| 午夜视频精品福利| 欧美日本视频| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 日韩有码中文字幕| 国产在线观看jvid| av天堂久久9| 国产黄a三级三级三级人| 亚洲黑人精品在线| 一级a爱视频在线免费观看| 亚洲五月婷婷丁香| 999久久久国产精品视频| 国产区一区二久久| 国产av一区二区精品久久| 精品久久久久久久久久免费视频| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲| 这个男人来自地球电影免费观看| 老司机靠b影院| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 久久精品国产综合久久久| 18禁美女被吸乳视频| 在线观看66精品国产| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 人妻久久中文字幕网| 亚洲视频免费观看视频| 看片在线看免费视频| 性色av乱码一区二区三区2| 亚洲欧美日韩另类电影网站| 操出白浆在线播放| 国产一区在线观看成人免费| 久久久久久久久免费视频了| 亚洲性夜色夜夜综合| 欧美不卡视频在线免费观看 | 一级片免费观看大全| 国产99白浆流出| 性少妇av在线| 久久精品国产亚洲av香蕉五月| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 亚洲av成人av| 超碰成人久久| 给我免费播放毛片高清在线观看| 人人妻人人澡欧美一区二区 | 亚洲中文av在线| 99国产精品一区二区三区| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 99久久综合精品五月天人人| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 亚洲aⅴ乱码一区二区在线播放 | 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 少妇熟女aⅴ在线视频| 一级,二级,三级黄色视频| 老汉色∧v一级毛片| 欧美黄色淫秽网站| 国产主播在线观看一区二区| 啦啦啦观看免费观看视频高清 | 一边摸一边做爽爽视频免费| 亚洲人成伊人成综合网2020| 黄色女人牲交| 午夜日韩欧美国产| 久久亚洲真实| 久久人人97超碰香蕉20202| 校园春色视频在线观看| 黄色视频不卡| 9热在线视频观看99| 国产av又大| 男女午夜视频在线观看| 久久影院123| 国产av精品麻豆| 亚洲五月色婷婷综合| 美女 人体艺术 gogo| 国产高清激情床上av| 啦啦啦韩国在线观看视频| 国产av精品麻豆| 欧美成人午夜精品| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 99国产精品99久久久久| 国产精品 国内视频| 在线观看www视频免费| 在线av久久热| 亚洲成av片中文字幕在线观看| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 亚洲第一av免费看| 亚洲 欧美一区二区三区| 亚洲精品中文字幕一二三四区| 不卡一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 长腿黑丝高跟| 亚洲午夜精品一区,二区,三区| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲| 国产精品野战在线观看| 一级片免费观看大全| 欧美+亚洲+日韩+国产| 国产精品久久电影中文字幕| videosex国产| 国产精品一区二区精品视频观看| 久久这里只有精品19| 国产欧美日韩一区二区三| 国产亚洲精品av在线| 黄片大片在线免费观看| 国产av在哪里看| 国产高清videossex| 午夜福利免费观看在线| 国产亚洲av高清不卡| 亚洲免费av在线视频| 深夜精品福利| 不卡av一区二区三区| 久久久国产成人免费| 啦啦啦免费观看视频1| 国产激情欧美一区二区| 国产精品 国内视频| 神马国产精品三级电影在线观看 | 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜 | 国产一区二区三区视频了| 两个人视频免费观看高清| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 悠悠久久av| tocl精华| 涩涩av久久男人的天堂| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 窝窝影院91人妻| 香蕉丝袜av| 曰老女人黄片| 91国产中文字幕| 日本免费一区二区三区高清不卡 | 悠悠久久av| 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| www国产在线视频色| 精品人妻在线不人妻| 欧美久久黑人一区二区| 久久精品影院6| 欧美日本视频| 色播亚洲综合网| 精品一区二区三区视频在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 免费在线观看黄色视频的| 神马国产精品三级电影在线观看 | 岛国视频午夜一区免费看| 一级毛片高清免费大全| 亚洲欧美一区二区三区黑人| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 国产精品久久久久久亚洲av鲁大| 性少妇av在线| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 久久香蕉国产精品| 亚洲av片天天在线观看| 国产成人精品久久二区二区91| 中文亚洲av片在线观看爽| 黄色片一级片一级黄色片| 国产一卡二卡三卡精品| 又黄又粗又硬又大视频| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久精品电影 | 国产精品香港三级国产av潘金莲| 99久久99久久久精品蜜桃| 波多野结衣一区麻豆| 在线永久观看黄色视频| 欧美性长视频在线观看| 久久这里只有精品19| 亚洲精品美女久久久久99蜜臀|