• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-Driven Modeling of Maritime Transportation: Key Issues,Challenges, and Solutions

    2023-03-22 08:04:40DnZhugeShuinWngLuZhenHrilosPsrftis
    Engineering 2023年12期

    Dn Zhuge, Shuin Wng, Lu Zhen, Hrilos N.Psrftis

    a School of Management, Shanghai University, Shanghai 200444, China

    b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China

    c Department of Technology, Management and Economics, Technical University of Denmark, Kgs Lyngby 2800, Denmark

    1.Uncertainty in maritime transportation

    Maritime transportation plays a central role in global logistics systems.Over 80%of international trade is carried out via the maritime transportation network [1], which has received widespread attention from academia and industry.In the shipping network,ports are the vertices where large numbers of activities occur,including cargo loading, unloading, and transshipment.Ships sailing between different ports travel along routes that form the links of the network.Shipping operation studies usually cover ship routing, schedule design, fleet deployment, and network design.

    Port operation is a typical research area in the maritime industry.Most related research works focus on a deterministic operational environment.However, port operations in reality involve many uncertain factors,such as uncertain ship arrival times,uncertain tugging process times,uncertain loading and unloading times,uncertain berth availability, uncertain quay crane availability, and uncertain yard space availability [2-5].

    Shipping operations also include numerous uncertainties.For example,sea conditions(i.e.,currents and tides)and weather conditions cannot be predicted[6],and different sea and weather conditions have different impacts on sailing speed and thus on sailing time.Moreover,transport demand between origin and destination ports—especially spot market demand—is usually uncertain [7,8],and the actual transport volume may be restricted by the availability of ship capacity[9].In addition,marine fuel price is volatile,and price fluctuations will lead to different sailing speed decisions and fuel consumption [10,11].

    All these uncertainties in port and shipping operations affect maritime transportation planning.Making port or shipping operation decisions without considering such uncertainties is rarely applicable in practice.Therefore, it is extremely important to pay attention to uncertain factors in order to improve the efficiency of port activities and shipping companies.

    2.Challenges in maritime transportation modeling under uncertainty

    As discussed above, it is both important and necessary to consider uncertain factors when addressing research problems on maritime transportation.In this section,we analyze the challenges of introducing such uncertainties into maritime transportation models.The uncertainties within port and shipping activities lead to difficulty in developing maritime transportation models.One possible reason is that it can be difficult to collect historical data related to port and shipping activities.Another reasonable explanation is that port and shipping operations cannot be predicted accurately in advance,while decisions on subsequent visited ports and sailing voyages will be affected by previous decisions; therefore, it is difficult to make optimal decisions for an entire voyage,considering the uncertainties of future maritime transportation activities.

    The joint influence of various uncertain factors further increases the modeling difficulty.Take an Asian Pacific liner service route in COSCO Shipping Lines as an example (Fig.1) [12].A liner ship departs from the first port of call (Xiamen) according to the schedule designed by the shipping company; then,the sailing time to the second port of call (Shekou) is uncertain,mainly due to the uncertain conditions of sea, weather, and machines.As a result, the arrival time at the port of Shekou is uncertain, which is combined with an uncertain port time due to uncertain loading and unloading container volumes, as well as available port facilities.Therefore, the departure time from the port of Shekou also cannot be predicted.The liner ship then visits the ports of Hong Kong, Sydney, Melbourne, and Brisbane and returns to the port of Xiamen, with the designed schedule of each port being affected by the uncertainties of previous voyages and current port activities.The combination of all the uncertain factors on a service route complicates the construction of an optimization model for the route, and the model is even more complicated when extended to the whole shipping network.

    Solving a maritime transportation model under a multitude of uncertain factors is extremely difficult, due to its complexity.Therefore, when developing maritime transportation models,how to present a solution method that can simultaneously guarantee the accuracy of the solutions while requiring an acceptable computation time is a key concern.A focus on developing solution methods will further increase the difficulty of model construction.

    Fig.1.An Asian Pacific liner service route.

    3.Data-driven modeling in maritime transportation optimization

    The challenges of the construction of maritime transportation models that stem from uncertainties indicate a demand for data gathering.Hence, several measures have been applied to collect and handle maritime industry data in order to develop data-driven models.A common measure is to generate port and shipping operation scenarios based on historical data.Maritime transportation data can be obtained from various databases, such as Shipping Intelligence Network, The Shipping Database, and VesselsValue.For research problems with limited cases, uncertainties can be investigated by generating a few scenarios; for research problems with numerous cases, the Monte-Carlo sampling method is often used to produce a considerable number of scenarios in order to simulate the real operation environment.Compared with deterministic models,maritime transportation models based on simulation scenarios can generate solutions with lower expected costs or higher expected profits.

    Another effective measure is to provide real-time data—typically, automatic identification system (AIS) data.The AIS is an automatic tracking system that uses transceivers on ships.All passenger ships and international voyaging ships with 300 or more gross tonnage are required to install the AIS.Ships equipped with AIS transceivers can deliver voyage information to base stations and allow maritime authorities to monitor ship movements.The AIS can provide considerable amounts of real-time information,including the ship name, ship draft, location, course, speed, and other details.A large number of reports can be produced by analyzing AIS data.According to updated real-time and forecast data based on AIS data and reports, port and shipping activities (e.g.,ship schedule, sailing path and speed, and port service time window) can be redesigned for cost savings or profit maximization.AIS data has also been used in recent greenhouse gas(GHG)studies by the International Maritime Organization(IMO)to estimate GHG emissions from the world commercial fleet.

    The introduction of the emerging technology of blockchain into the maritime industry is also effective in optimizing port and shipping operations.Blockchain can facilitate information sharing and communication within the maritime transportation network and mitigate the management complexity caused by uncertainties.Information in a blockchain scheme can be divided into interdependent blocks, such as shipping companies, consignors, and port operators.By introducing a blockchain, the data from different blocks of maritime industry—such as the AIS data from ship voyages, the container transportation demand information from consignors, and reports on container handling progress from port operators—can be integrated.The blocks in the blockchain can exchange information and take advantage of the shared data to improve operation management.Some practical applications of blockchain are as follows: Blockchain in Transport Alliance was built as a trade data-sharing platform enterprise alliance in 2017,and Maersk and IBM established a shipping transaction platform(TradeLens) using blockchain in 2018.

    The three measures discussed above—that is, generating port and shipping operation scenarios based on historical data, providing real-time information such as AIS data, and introducing blockchain into the maritime industry—can overcome the challenges in data collection and the joint effect of various uncertain factors.Based on the obtained historical or real-time data, data-driven models can be proposed for maritime transportation problems with uncertain factors.It should be noted that, when building data-driven models, methods for solving models—such as neural network and other machine learning models and sample average approximation methods—should be developed simultaneously in order to validate that the proposed models can be solved effectively and efficiently.To further alleviate the effect of uncertainties in port and shipping activities,the development of maritime transportation models from a data-driven perspective by integrating maritime transportation data and blockchain is essential.However,the application of blockchain in maritime transportation still presents significant obstacles, which predominantly include incomplete information records in the maritime industry, the incompatibility of different systems, and blockchain’s immature technology and application.Therefore, the blockchain system in the maritime industry must be improved, on the basis of which port and shipping models can be developed to further optimize maritime transportation decisions.

    Acknowledgments

    The authors would like to thank the editor and anonymous reviewers for their constructive suggestions on improving this paper.This research was supported by the National Natural Science Foundation of China (71831008, 72025103, and 72071173).

    自线自在国产av| 看十八女毛片水多多多| 国产精品 国内视频| www.色视频.com| 免费观看性生交大片5| 97精品久久久久久久久久精品| 久久久久久人妻| 亚洲精品aⅴ在线观看| 黑丝袜美女国产一区| videos熟女内射| 性高湖久久久久久久久免费观看| 国产高清三级在线| 十八禁高潮呻吟视频| 晚上一个人看的免费电影| 蜜桃国产av成人99| 欧美丝袜亚洲另类| 久久精品国产鲁丝片午夜精品| 精品国产一区二区三区四区第35| 国产一区有黄有色的免费视频| av播播在线观看一区| 26uuu在线亚洲综合色| 久久久久精品久久久久真实原创| 少妇的逼好多水| 美女xxoo啪啪120秒动态图| 一区二区三区乱码不卡18| 久热这里只有精品99| 国产又色又爽无遮挡免| 免费在线观看完整版高清| 亚洲性久久影院| 国产又色又爽无遮挡免| 欧美激情 高清一区二区三区| 免费看光身美女| 亚洲,欧美,日韩| 黄色配什么色好看| 欧美激情极品国产一区二区三区 | 欧美精品一区二区大全| 日韩人妻精品一区2区三区| 日韩人妻精品一区2区三区| 最新的欧美精品一区二区| 美女主播在线视频| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 亚洲精华国产精华液的使用体验| 日本av免费视频播放| 亚洲国产精品一区三区| 国产一级毛片在线| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 久久青草综合色| 亚洲成人一二三区av| 色5月婷婷丁香| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 成年av动漫网址| 五月开心婷婷网| av福利片在线| 精品久久久精品久久久| 在线观看免费视频网站a站| 在线看a的网站| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 成年动漫av网址| 国产免费一级a男人的天堂| 五月玫瑰六月丁香| 九色亚洲精品在线播放| 久久精品国产亚洲av涩爱| av播播在线观看一区| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 岛国毛片在线播放| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 亚洲少妇的诱惑av| 亚洲精品aⅴ在线观看| 国产精品三级大全| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 超色免费av| 久久热在线av| 免费黄网站久久成人精品| 女性生殖器流出的白浆| 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在 | 亚洲综合色惰| 丝袜脚勾引网站| av视频免费观看在线观看| 一级,二级,三级黄色视频| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 国产欧美日韩综合在线一区二区| 婷婷色综合www| 日本欧美视频一区| 国产黄色免费在线视频| 亚洲国产精品一区三区| 伊人久久国产一区二区| 亚洲欧美精品自产自拍| 国产精品一区二区在线不卡| 久久久久久久国产电影| 黑丝袜美女国产一区| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| 黄色毛片三级朝国网站| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 黄片播放在线免费| 男女午夜视频在线观看 | 久久99热6这里只有精品| 伦精品一区二区三区| 国产熟女午夜一区二区三区| 国产在视频线精品| 97超碰精品成人国产| 亚洲美女黄色视频免费看| 啦啦啦中文免费视频观看日本| 男人舔女人的私密视频| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| 日韩制服丝袜自拍偷拍| 免费女性裸体啪啪无遮挡网站| 午夜激情久久久久久久| 超碰97精品在线观看| 岛国毛片在线播放| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 亚洲综合色网址| 国产精品99久久99久久久不卡 | 夜夜爽夜夜爽视频| 超色免费av| 黄色毛片三级朝国网站| 久热这里只有精品99| 免费高清在线观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 国产午夜精品一二区理论片| 最新中文字幕久久久久| 热99国产精品久久久久久7| 精品一区二区三卡| 深夜精品福利| 蜜桃国产av成人99| 伊人久久国产一区二区| av有码第一页| 午夜av观看不卡| 亚洲av福利一区| 国产综合精华液| 国产精品嫩草影院av在线观看| 国产亚洲一区二区精品| 亚洲伊人色综图| 日韩成人伦理影院| 在线观看www视频免费| 国产深夜福利视频在线观看| 国产av一区二区精品久久| 免费高清在线观看日韩| 男女边摸边吃奶| 亚洲精品乱久久久久久| 性色avwww在线观看| 如何舔出高潮| 另类亚洲欧美激情| 亚洲伊人久久精品综合| 水蜜桃什么品种好| 国产白丝娇喘喷水9色精品| 777米奇影视久久| 99热这里只有是精品在线观看| 五月开心婷婷网| 久久久久久久国产电影| 日本91视频免费播放| xxxhd国产人妻xxx| 人妻少妇偷人精品九色| 国产乱人偷精品视频| 欧美激情 高清一区二区三区| 男女免费视频国产| 亚洲av成人精品一二三区| 天美传媒精品一区二区| 日韩一区二区三区影片| 精品一区二区三卡| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 天堂8中文在线网| 久久精品夜色国产| 精品一区二区三卡| 狠狠婷婷综合久久久久久88av| 26uuu在线亚洲综合色| 搡老乐熟女国产| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 日本午夜av视频| 日韩免费高清中文字幕av| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 一边摸一边做爽爽视频免费| 成人免费观看视频高清| 国产高清国产精品国产三级| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 男女无遮挡免费网站观看| 日本午夜av视频| www日本在线高清视频| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| av有码第一页| 人人澡人人妻人| 国产亚洲av片在线观看秒播厂| 亚洲一区二区三区欧美精品| 国产精品嫩草影院av在线观看| 久久久久精品人妻al黑| 精品久久国产蜜桃| videos熟女内射| 国产黄频视频在线观看| 国产亚洲精品久久久com| 午夜福利,免费看| 七月丁香在线播放| 国产69精品久久久久777片| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 国产亚洲av片在线观看秒播厂| 亚洲美女黄色视频免费看| 热99国产精品久久久久久7| 久久久久精品人妻al黑| 97在线视频观看| 欧美成人午夜免费资源| 亚洲精品久久久久久婷婷小说| 人妻人人澡人人爽人人| 伦理电影大哥的女人| 精品久久国产蜜桃| 亚洲伊人色综图| 日本与韩国留学比较| 夜夜骑夜夜射夜夜干| 色5月婷婷丁香| 国产欧美另类精品又又久久亚洲欧美| 亚洲av在线观看美女高潮| 亚洲一区二区三区欧美精品| a级毛片黄视频| 久久精品人人爽人人爽视色| 成人漫画全彩无遮挡| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 亚洲一码二码三码区别大吗| 99九九在线精品视频| 亚洲,欧美精品.| 欧美精品国产亚洲| 丝袜喷水一区| 草草在线视频免费看| 建设人人有责人人尽责人人享有的| 国产av码专区亚洲av| 日本爱情动作片www.在线观看| 国产xxxxx性猛交| 亚洲av成人精品一二三区| 三级国产精品片| 永久网站在线| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| videos熟女内射| 五月伊人婷婷丁香| 丰满饥渴人妻一区二区三| 国产免费一级a男人的天堂| 美女福利国产在线| www.av在线官网国产| 久久久精品94久久精品| h视频一区二区三区| 日本wwww免费看| 建设人人有责人人尽责人人享有的| 寂寞人妻少妇视频99o| av卡一久久| 欧美人与善性xxx| 国国产精品蜜臀av免费| 男女午夜视频在线观看 | 狂野欧美激情性bbbbbb| 全区人妻精品视频| 美女内射精品一级片tv| 黄色配什么色好看| 国产精品一区二区在线不卡| 少妇的逼水好多| 色婷婷av一区二区三区视频| 午夜精品国产一区二区电影| 国产精品无大码| 最近的中文字幕免费完整| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 少妇被粗大的猛进出69影院 | 欧美日韩亚洲高清精品| 午夜日本视频在线| 侵犯人妻中文字幕一二三四区| 日本免费在线观看一区| 国产av国产精品国产| 美女中出高潮动态图| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 汤姆久久久久久久影院中文字幕| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 女的被弄到高潮叫床怎么办| 精品人妻熟女毛片av久久网站| 18禁观看日本| 久久精品国产亚洲av涩爱| 色视频在线一区二区三区| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 我要看黄色一级片免费的| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 亚洲五月色婷婷综合| 十八禁网站网址无遮挡| 国产麻豆69| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 国产麻豆69| 国产精品一区www在线观看| 国产欧美亚洲国产| 黑人高潮一二区| 一二三四在线观看免费中文在 | av福利片在线| av免费在线看不卡| 精品久久蜜臀av无| 少妇人妻精品综合一区二区| 国产探花极品一区二区| 多毛熟女@视频| 精品国产一区二区三区四区第35| 777米奇影视久久| 老女人水多毛片| 亚洲av成人精品一二三区| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 亚洲精品456在线播放app| 一区二区三区精品91| 国产老妇伦熟女老妇高清| 国产精品久久久久久久电影| 性色avwww在线观看| 亚洲人成77777在线视频| av国产精品久久久久影院| 亚洲久久久国产精品| 9色porny在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美成人精品一区二区| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| www.熟女人妻精品国产 | 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av| 一二三四中文在线观看免费高清| 免费看光身美女| 黄色怎么调成土黄色| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 在线观看美女被高潮喷水网站| 天天影视国产精品| 色哟哟·www| 精品国产一区二区三区四区第35| 亚洲欧洲日产国产| 18禁国产床啪视频网站| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 看免费av毛片| 国产一区二区激情短视频 | 久久精品国产鲁丝片午夜精品| 久久这里只有精品19| 亚洲美女搞黄在线观看| 桃花免费在线播放| 国产xxxxx性猛交| 一级片'在线观看视频| 亚洲国产看品久久| 国产亚洲午夜精品一区二区久久| 少妇的逼水好多| 成人影院久久| 少妇的逼水好多| 成人影院久久| 久久久久精品人妻al黑| 热re99久久国产66热| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频| 午夜老司机福利剧场| 亚洲av电影在线进入| 热re99久久国产66热| 老司机影院毛片| 一区二区三区乱码不卡18| 国产精品久久久久久久电影| 久久久久精品性色| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 99热这里只有是精品在线观看| 两性夫妻黄色片 | 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 香蕉国产在线看| 免费看av在线观看网站| 日韩不卡一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 黑人高潮一二区| 男人添女人高潮全过程视频| 亚洲精品色激情综合| 久久人人97超碰香蕉20202| 在线天堂最新版资源| 永久免费av网站大全| 黄色毛片三级朝国网站| 亚洲在久久综合| 欧美少妇被猛烈插入视频| 久久精品国产a三级三级三级| 1024视频免费在线观看| 日韩欧美精品免费久久| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 草草在线视频免费看| 人妻系列 视频| 久久久久久久久久人人人人人人| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美清纯卡通| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 天天躁夜夜躁狠狠久久av| 日韩欧美精品免费久久| 亚洲国产日韩一区二区| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 国产精品久久久久久精品古装| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 极品人妻少妇av视频| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 岛国毛片在线播放| 99久久精品国产国产毛片| 男女下面插进去视频免费观看 | 99香蕉大伊视频| 高清毛片免费看| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 久久久久久久精品精品| 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| 最新的欧美精品一区二区| 激情视频va一区二区三区| 免费大片黄手机在线观看| 黑人欧美特级aaaaaa片| 人人妻人人澡人人爽人人夜夜| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 少妇 在线观看| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 国产亚洲av片在线观看秒播厂| 有码 亚洲区| 国产成人一区二区在线| 午夜91福利影院| 欧美精品一区二区大全| 亚洲av综合色区一区| 日韩不卡一区二区三区视频在线| 欧美97在线视频| 中国国产av一级| 日韩熟女老妇一区二区性免费视频| 最后的刺客免费高清国语| 最近最新中文字幕大全免费视频 | 免费播放大片免费观看视频在线观看| 在线亚洲精品国产二区图片欧美| 五月伊人婷婷丁香| 成人二区视频| 久久人妻熟女aⅴ| 亚洲美女视频黄频| 熟女人妻精品中文字幕| 亚洲精品视频女| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| 婷婷色综合www| 国产免费一级a男人的天堂| 成人国语在线视频| 少妇精品久久久久久久| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 99热网站在线观看| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 免费看不卡的av| 有码 亚洲区| 熟女av电影| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 成人无遮挡网站| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 五月天丁香电影| 日本-黄色视频高清免费观看| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版| 在现免费观看毛片| 母亲3免费完整高清在线观看 | 亚洲精品久久午夜乱码| 精品酒店卫生间| 久久韩国三级中文字幕| 亚洲成人av在线免费| 又黄又粗又硬又大视频| 国产色婷婷99| 国产成人精品婷婷| 赤兔流量卡办理| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区 | 熟女电影av网| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 婷婷成人精品国产| 一区在线观看完整版| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 在线观看一区二区三区激情| 少妇的逼好多水| 国产av一区二区精品久久| 亚洲精品久久午夜乱码| 老司机影院毛片| 9热在线视频观看99| 国产黄频视频在线观看| 自线自在国产av| 久久久久视频综合| 精品人妻在线不人妻| 夫妻午夜视频| 国产日韩欧美亚洲二区| 日日撸夜夜添| 高清毛片免费看| 少妇人妻久久综合中文| 国产精品麻豆人妻色哟哟久久| 国产精品三级大全| 高清视频免费观看一区二区| 久久青草综合色| 免费av不卡在线播放| 欧美人与性动交α欧美软件 | 2021少妇久久久久久久久久久| 在线看a的网站| 少妇人妻精品综合一区二区| 大香蕉久久成人网| 亚洲av综合色区一区| 成人国产麻豆网| 国产又爽黄色视频| 在线观看国产h片| 久久久久久久久久成人| 成人18禁高潮啪啪吃奶动态图| www.av在线官网国产| 性色avwww在线观看| 精品福利永久在线观看| 一二三四在线观看免费中文在 | 伦理电影免费视频| 国产毛片在线视频| 9色porny在线观看| 国产一区二区三区综合在线观看 | 在线天堂中文资源库| 美女福利国产在线| 国产有黄有色有爽视频| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 亚洲天堂av无毛| 99久久人妻综合| 日韩中文字幕视频在线看片| 亚洲国产看品久久| 多毛熟女@视频| 尾随美女入室| 中文字幕av电影在线播放| 少妇高潮的动态图| 国产1区2区3区精品| 人体艺术视频欧美日本| 99久国产av精品国产电影| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 三级国产精品片| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| 亚洲在久久综合| 午夜福利视频精品| 99精国产麻豆久久婷婷| www日本在线高清视频| 亚洲精品日韩在线中文字幕| a级毛色黄片| 美女主播在线视频| videos熟女内射| 国国产精品蜜臀av免费| 亚洲,欧美精品.| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 亚洲精品第二区| 搡女人真爽免费视频火全软件| 天天影视国产精品| 青春草亚洲视频在线观看| 捣出白浆h1v1|