• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of a temperature response function for divertor heat flux monitoring in fusion devices

    2023-03-15 00:54:50XuanNhatSonBUIHirotoMATSUURAandYousukeNAKASHIMA
    Plasma Science and Technology 2023年3期

    Xuan Nhat Son BUI, Hiroto MATSUURA and Yousuke NAKASHIMA

    1 Quantum and Radiation Engineering Department, Osaka Prefecture University, Osaka 599-8570, Japan

    2 Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan

    Abstract Temperature response functions have been developed to investigate sensor design and divertor heat flux estimation in magnetically confined plasmas.The time-dependent heat flux can be derived by fitting the response function to experimental thermocouple(TC)data.Because the TC signals have a time delay to transit events such as discharge start or confinement transition, the time delay is taken into account in a temperature response function.Such a function accurately describes the signal from each TC channel with time delay in a sensor test using a neutral beam injection.Measurement for commercial TCs shows that the time delay is caused by the finite heat capacity of TC wire and contact heat resistance between TC and target surface.

    Keywords: divertor, temperature response function, thermocouple system, primary delay

    1.Introduction

    International thermonuclear experimental reactor (ITER),which is currently under construction,is expected to be the first fusion device that produces net energy with fusion energy gain factor of more than 10.In steady-state,the plasma heat flux can reach 20 MW m-2and induce temperature increment in divertor plate, as well as other plasma-facing components(PFCs) [1, 2].SPARC tokamak, which is also under construction, is another candidate to obtain net energy with expected divertor parallel heat flux of more than 10 GW m-2[3].If the system’s cooling capacity is insufficient, the PFC target temperature will continue to rise, causing severe system damage.As a result, the heat flux must be kept under control for every fusion device to operate safely.Detached recombining plasma is a well-known method for reducing the heat load on the divertor plates [4].To verify the control ability of this process, developing divertor heat flux measurement is obligatory.This demands not only a value of temperature but also its time evolution for a precise and detailed heat flux evaluation.

    Infra-red (IR) cameras with very high time resolution have been widely used in tokamaks to monitor divertor heat flux [5].This method does, however, have some drawbacks.Because an individual IR sensor can only measure temperature in a limited range, it is impossible to observe the temperature evolution from the start to the end of a discharge,making it impossible to evaluate the heat load for the entire plasma shot.Secondly, the range of surface emissivity by plasma-surface interaction may cause the uncertainties in temperature measurement [6].To compensate such uncertainties,IR thermometer needs repeated calibration with other thermometer such as thermocouples (TCs) or resistance temperature detector[7].In addition,if the camera positioning is not precise,the recorded images will deform and reduce the temperature accuracy.Since the sensor size in the divertor must be reduced and fast time response is required,using TCs is another solution for divertor plasma heat flux estimation.

    Figure 1.A schematic of a typical heat flux sensor.Target temperature can be delayed to the applied heat flux by thermal diffusion time τ, and unknown time delay τ0 in TC system can deform the output signals.

    In [8], the heat flux evolution was indicated without temperature evolution, and how to deduce it was not fully explained.The time-dependent heat flux can be inversely evaluated from the TC temperature data using a suitable heat conduction model.Such a model assumes that the temperature measurement point is included in a control volume so that heat flux across the boundary, heat generation in the control volume,and internal energy evolution must all be balanced[9].The validity of our heat conduction model was confirmed via the experiment using hybrid directional probe in Heliotron J(Kyoto University, Japan) [10] and that using hybrid directional Langmuir probe in LHD (National Institute of Fusion Science, Japan) [11].

    As an empirical phenomenon,a common time delay in the order of several hundred ms has been observed repeatedly in our sensors data.Figure 1 shows a schematic of a heat flux sensor which consists of a target with an embedded thermocouple inside.Target thickness and TC position from the irradiated surface are denoted by L and x, respectively.Regarding time delay in sensors, plasma heat flux causes an increase in target temperature with the delay of thermal diffusion time τ.By reducing target thickness L or setting TCs closer to the plasma irradiated surface, thermal diffusion τ can be lowered.

    The target of this study is monitoring 1 MW m-2order heat flux change in a few 10 ms.Effect of time delay was considered in the heat flux measurements in Alcator C-mod [12].To overcome it, the surface TC [13] was developed and achieved very fast response.This method has recently been applied to the surface eroding TC to monitor heat flux in DIII-D[14].In Heliotron J divertor probes array (DPA) [15] and GAMMA 10/PDX calorimeter (University of Tsukuba-Japan) [16], TCs were set in the order of 1 mm from the irradiated surface.Even so,we were unable to effectively reduce the time delay in our TC output signal.The present work is conducted with consideration of the delay in the TC system such as circuit elements, TC radius, or contact between TC and target.Because it is difficult to categorize such delays without experimental measurement,we assume them to be an unknown time delay from the TC system,denoted by τ0,for a convenient calculation.To observe the evolution of heat flux in transient events such as discharge start, edge localized modes[17],Blob transport[18],or plasma detachment[19],we attempt to lower τ0to be from 10 to 100 ms.

    Section 2 describes the primary delay mathematical model,which is used to describe TC signals subjected to time delay.Section 3 demonstrates the validation of our primary delay model using a calorimeter test with neutral beam short pulse.Section 4 discusses determining time delay in various experimental conditions.Section 5 is for discussion and section 6 is the summary.

    2.Primary delay model

    In mathematics,primary delay system with time delay τ0can be described as follows

    where u(t) is system input, and y(t) is system output.Their relation is clearly given as

    We developed several temperature response functions S(x, t) to investigate sensor design and sensor data analysis.Each function obeys the heat conduction equation and satisfies a certain boundary condition.S(x, t) describes the target temperature increment by the step-like heat flux

    where t0is the duration of the constant heat flux, and the corresponding temperature increment during t0is

    Temperature response functions for 3 different boundary conditions were provided in [7].Moreover, the asymptotic solution of insulation case in equation (4) of [7] contained a typo, the correct equation is described as follows

    where t0is the heat pulse duration,κand α are heat conductivity and thermal diffusivity of target material,(2n+1)2,and

    If the temperature response function(5)is combined with the primary delay equation(2),the influence of time delay τ0to S(x, t) can be described as

    Figure 2.Effect of target diffusion time τ and the unknown time delay τ0 to TC output signal described by the primary delay model.

    Using equations (4) and (6), the temperature evolution caused by the step-like heat pulse can be modeled.Figure 2 shows the model calculations for a copper target with a thickness of 1 cm.This target is assumed to be irradiated by a step-like heat pulse with a duration t0of 200 ms.If τ0is not taken into account and distance x between TC and the irradiated surface is small enough, the second term in equation (5) can be neglected.In this case, the TC signal demonstrates a linear increase during the timing of the heat pulse, as indicated by the black solid line.For signals deformed by thermal diffusion time τ, blue and green curves are modeled at x = 1.5, and 3.5 mm, respectively.The red curve describes the signal of TC set at x=3.5 mm with the effect of time delay τ0=50 ms.

    The thermal diffusion time at x=3.5 mm delays both signals in the green and red curves.Moreover, the signal indicated by the red curve takes longer time to reach saturation due to the influence of the unknown time delay τ0.Accordingly, the heat flux estimation cannot be precise.To overcome this problem, experimentally reducing TC system time delay is necessary.Furthermore, artificially reconstructing the real temperature evolution from the observed signal has the potential to be promising.If the time delay τ0and derivative of output signal dy(t)/dt are obtained, the reconstructed temperature evolution can be deduced using equation (1).

    3.Test with short pulse neutral beam

    In[20],Osakabe et al proposed to experimentally deduce heat flux using a sensor consisting of two TCs.Our similar calorimeter,described in figure 3,was constructed to monitor the heat flux in the end-cell of GAMMA 10/PDX(University of Tsukuba) [9].The calorimeter includes two target components,each made of copper with a thickness of 10 mm.The TCs set at 1.5, and 3.5 mm from the irradiated surface correspond to diffusion time of 8 and 42 ms, respectively.

    In this study, calorimeter response was checked in a neutral beam (NB) test stand which is used in GAMMA 10/PDX experiment.From the data of acceleration voltage and beam current,the energy of NB pulse is roughly estimated as 200 J.Insulation amplifiers(MTT Corporation MS3700)were used to improve the S/N ratio of TC signals.The NB pulse of approximately 10 ms induced relatively clear increments in TC signals with fluctuation from the power supply as shown in figure 4.Signals of various TC channels showed different responses.They started after NB pulse termination and reached the saturation value after several hundred ms.

    Based on the calorimeter design and other parameters such as NB pulse timing,TC position x,received heat flux q0,and time delay τ0, the TC temperature evolution can be analytically reproduced using the primary delay model in equation(6).As shown in figure 5,the modelling calculations with τ0modification can clearly reproduce the experimental data whose fluctuation was removed by a low-pass filter with a cut-off frequency of 100 Hz.The main parameters for this calculation are shown in table 1.

    Although the experimental and modeling data differed at times, the tendency in TC signal response can be described using the primary delay model.Further than the thermal diffusion time, other delays of approximately 80, 120, and more than 300 ms were assumed to involve the TC signals of channels 2, 3, and 1, respectively.

    4.Time delay estimation

    Through the test with NB short pulse, even though the TCs were set in the order of 1 mm from the irradiated surface for a faster response,another delay was expected to exist in the TC system.In this section, an investigation into time delay was conducted using commercial K-type TCs.

    The time delay in the TC system was estimated in different experimental conditions.The experiment set-up is described in figure 6.A soldering iron was used as the heat source in the experiment.The heat receiving target,which is a molybdenum (Mo) plate with a thickness of 0.2 mm, had the same material and geometry as that of the plate-type calorimeter in Heliotron J DPA.TC was embedded behind the target and its signal was amplified to improve the S/N ratio before transmitting to an oscilloscope (OSC).The potential between TC and the soldering iron was recorded to check the connecting time between the heat source and target.From this timing, a temperature evolution can be generated analytically by the primary delay model in equation (6).Following that,the modeling calculation was compared to the experimental TC signal to determine the value of time delay.

    Figure 7 shows a comparison of the experimental TC signal from a bare TC with a wire diameter of 1 mm and the corresponding model calculation.In this case,the heat source contacted TC in 0.18 s (from 1.88 to 2.06 s) resulting in the signal as indicated by the green scatter.The primary delay model can describe this signal well with the time delay of τ0=50 ms.The same experiments were carried out using bare TCs with wire diameter ranging from 0.25 to 1.5 mm.

    Table 1.Primary delay model parameters in the NB test.

    Figure 3.Design of calorimeter for heat flux estimation in GAMMA 10/PDX.Two TCs (channel 2 and channel 3) were embedded in in a same copper target.The TC in channel 1 was installed in another target for reference.

    Figure 4.Raw TC signals from the neutral beam short pulse test.

    Figure 5.Comparisons between model calculation and experimental TC signals after low-pass filtering in 3 channels (shot#210304-165921).

    Figure 6.Experiment set-up for commercial TC time delay survey.

    Figure 7.Result of the time delay survey for a bare TC with the radius of 1 mm.

    Additionally, time delay in two different contact conditions between the TC and the target surface were also examined.To begin with, TC was only linked to the target.Second,using Kapton tape,TC adhered to the target.In each experiment, several values of time delay τ0were assumed,then the one that reproduced the best fit of modeling and experimental data was chosen as the representative value.Table 2 is the summary of the time delay investigation.

    Time delay of insulation amplifiers in our TC system had been tested using the same method with estimated time delay τ0of approximately 2 ms.Subsequently, amplifiers may not have a strong influence on the time delay in a TC system.Concerning TCs, it was discovered that the intrinsic timedelay of each TC is proportional to its wire diameter.Moreover,the contact between TC and target surface can dominate the TC system time delay.If the same TC is tightly adhered to target surface,the corresponding time delay can be effectively reduced.

    Table 2.TC delay estimated in different experimental condition.

    5.Discussion

    The primary delay model accurately describes temperature evolution under the influence of target thermal diffusion time and system time delay.In the NB test, the model calculation results fit better with signals from channels 1 and 3.The signal overshoot in channel 2 from 700 to 1200 ms is still being investigated.However, the hypothesis regarding time delay is not contradicted by previous research.Regarding TC issues, the intrinsic time delay of bare TCs is proportional to their wire diameters,owing to the differences in heat capacity.Furthermore,the time delay can be caused by the contact heat resistance between the TC wire and the target surface.If the TC is not tightly embedded,its output signal will have longer delay.From table 2, the longest time delay of 330 ms corresponds to the experiment in which the TC with 1 mm of wire diameter was only connected to the target surface.This delay was reduced to more than half(150 ms)when the same TC was tightly adhered to the target surface using Kapton tape.Using the same embedding method, TCs with smaller wire diameter could minimize the time delay to the expected range of 20-35 ms.

    The TC system time delay τ0can be reasonably determined in advance with the well-defined response tests described in this paper.If a sensor has a good design and construction, the time-dependent heat flux during discharge start or plasma detachment can be reproduced.However,it is still difficult to distinguish fast-transient events like edge localize modes and Blob transport by using the sensors with embedded commercial TCs.

    6.Summary

    With the consideration of time delay in the TC system, a temperature response function has been modified that can successfully describe the delayed signals in experimental sensor data.According to the findings, the main causes of delayed signals in TC systems are the intrinsic delay of TC wires with finite heat capacity, and contact heat resistance between TC and target surface.Incorporating the primary delay model into the temperature response functions could be a promising method for future heat flux monitoring if the timed delay is measured in advance.When reducing such a time delay is impossible, a compensation method for reconstructing the real temperature evolution should be considered.This will be a task for further research.

    Acknowledgments

    The authors would like to thank the members of the GAMMA 10/PDX (University of Tsukuba) and Heliotron J (Kyoto University) for their collaboration in the experiments and helpful discussion.This work is partially performed with the support and under the auspices of the NIFS Collaborative Research Program (Nos.NIFS20KLPR051, NIFS20-KUHL099 and NIFS20KUGM153).

    久久精品国产99精品国产亚洲性色| 国产精品蜜桃在线观看 | 亚洲激情五月婷婷啪啪| 日本熟妇午夜| www日本黄色视频网| 午夜福利视频1000在线观看| 欧美色欧美亚洲另类二区| 国产真实伦视频高清在线观看| 蜜桃久久精品国产亚洲av| 中文亚洲av片在线观看爽| 欧美变态另类bdsm刘玥| 久久人妻av系列| 久久久久久久久中文| 欧美丝袜亚洲另类| 日韩高清综合在线| 中国国产av一级| 午夜亚洲福利在线播放| 青青草视频在线视频观看| a级毛片免费高清观看在线播放| 中文字幕熟女人妻在线| 淫秽高清视频在线观看| 国产一区二区三区在线臀色熟女| 国产精品精品国产色婷婷| 国产精品三级大全| 99热只有精品国产| 亚洲国产欧洲综合997久久,| av又黄又爽大尺度在线免费看 | 免费av观看视频| 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 色哟哟哟哟哟哟| 久久久久久九九精品二区国产| 婷婷精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 欧美最新免费一区二区三区| 婷婷精品国产亚洲av| 国产在线男女| 免费av观看视频| 国产色爽女视频免费观看| 日本av手机在线免费观看| 一进一出抽搐动态| 中文字幕制服av| 自拍偷自拍亚洲精品老妇| 精品免费久久久久久久清纯| 色5月婷婷丁香| 看黄色毛片网站| ponron亚洲| 欧美三级亚洲精品| 六月丁香七月| 国产一区亚洲一区在线观看| 免费看a级黄色片| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看| 伦理电影大哥的女人| 久久久久久国产a免费观看| 网址你懂的国产日韩在线| 成人永久免费在线观看视频| 欧美极品一区二区三区四区| 女人十人毛片免费观看3o分钟| 亚洲成人中文字幕在线播放| 日日啪夜夜撸| 人体艺术视频欧美日本| 成人特级黄色片久久久久久久| 看十八女毛片水多多多| 日日摸夜夜添夜夜添av毛片| 在线播放国产精品三级| 国产美女午夜福利| 亚洲av熟女| 久久这里只有精品中国| 不卡一级毛片| 免费av不卡在线播放| 日日摸夜夜添夜夜添av毛片| 日韩一区二区视频免费看| 久久久a久久爽久久v久久| 成人二区视频| 国产精品蜜桃在线观看 | 欧美另类亚洲清纯唯美| 少妇人妻精品综合一区二区 | 亚洲av成人av| 国产精品乱码一区二三区的特点| 国产激情偷乱视频一区二区| 国产成人aa在线观看| 草草在线视频免费看| 色5月婷婷丁香| 99热精品在线国产| 十八禁国产超污无遮挡网站| 亚洲一区高清亚洲精品| 91久久精品国产一区二区成人| 久久久久久大精品| 精品一区二区免费观看| 亚洲乱码一区二区免费版| 日韩av不卡免费在线播放| 不卡一级毛片| 日本成人三级电影网站| 亚洲国产欧美人成| 国产爱豆传媒在线观看| 在线a可以看的网站| 亚洲国产精品合色在线| 亚洲人成网站在线播| 亚洲成人久久爱视频| 嫩草影院新地址| 亚洲av成人av| www.色视频.com| 2021天堂中文幕一二区在线观| 永久网站在线| 欧美激情久久久久久爽电影| av专区在线播放| 免费人成在线观看视频色| 亚洲丝袜综合中文字幕| 久久久久久久久久久丰满| 亚洲人成网站高清观看| 天堂网av新在线| 国产91av在线免费观看| 啦啦啦啦在线视频资源| 欧美日韩一区二区视频在线观看视频在线 | 国产成人影院久久av| 国产精品久久视频播放| 亚洲欧美清纯卡通| 丰满乱子伦码专区| 午夜a级毛片| 国产一级毛片七仙女欲春2| 日日摸夜夜添夜夜添av毛片| 亚洲,欧美,日韩| 国内精品久久久久精免费| 中文字幕人妻熟人妻熟丝袜美| 成年av动漫网址| 欧美极品一区二区三区四区| 特大巨黑吊av在线直播| 蜜桃久久精品国产亚洲av| 级片在线观看| 亚洲天堂国产精品一区在线| 久久久久久久亚洲中文字幕| 国产色婷婷99| 久久久久免费精品人妻一区二区| 91狼人影院| a级一级毛片免费在线观看| 人妻少妇偷人精品九色| 欧美激情在线99| 狠狠狠狠99中文字幕| 丰满的人妻完整版| 亚洲中文字幕一区二区三区有码在线看| 欧美高清成人免费视频www| 九九爱精品视频在线观看| 十八禁国产超污无遮挡网站| 国产大屁股一区二区在线视频| 亚洲在线观看片| 91狼人影院| 日本熟妇午夜| 欧美区成人在线视频| 日本成人三级电影网站| 人妻夜夜爽99麻豆av| 日韩精品青青久久久久久| 国产精品综合久久久久久久免费| 亚洲欧美精品综合久久99| 麻豆成人午夜福利视频| 国产亚洲精品久久久com| 天天躁日日操中文字幕| 午夜亚洲福利在线播放| 国产精品一区二区三区四区久久| 91麻豆精品激情在线观看国产| 国产蜜桃级精品一区二区三区| 亚洲欧洲国产日韩| 日韩欧美精品v在线| 亚洲乱码一区二区免费版| 国产一区二区三区av在线 | 日本免费a在线| 免费观看人在逋| 亚洲精品国产av成人精品| 日韩亚洲欧美综合| 18禁裸乳无遮挡免费网站照片| 给我免费播放毛片高清在线观看| 性色avwww在线观看| 欧美zozozo另类| av视频在线观看入口| 在线观看美女被高潮喷水网站| 一级毛片电影观看 | 身体一侧抽搐| 亚洲成人久久性| 欧美精品一区二区大全| 国产午夜福利久久久久久| 国产伦理片在线播放av一区 | 亚洲性久久影院| 久久久欧美国产精品| 中文字幕av在线有码专区| 最近最新中文字幕大全电影3| 亚洲在线观看片| 伦精品一区二区三区| 欧美日韩综合久久久久久| 色哟哟哟哟哟哟| 亚洲第一区二区三区不卡| 亚洲国产精品sss在线观看| 18禁黄网站禁片免费观看直播| 亚洲国产欧美在线一区| 欧美日韩乱码在线| 亚洲国产欧美人成| 国产私拍福利视频在线观看| 成人三级黄色视频| 99热只有精品国产| 26uuu在线亚洲综合色| 日韩一本色道免费dvd| 日本五十路高清| 国产亚洲精品久久久久久毛片| 不卡视频在线观看欧美| 日本一本二区三区精品| 国产探花在线观看一区二区| 特级一级黄色大片| 永久网站在线| 看非洲黑人一级黄片| 国产成人福利小说| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| av在线老鸭窝| 免费av观看视频| .国产精品久久| 少妇被粗大猛烈的视频| 精品免费久久久久久久清纯| 麻豆av噜噜一区二区三区| 亚洲av免费在线观看| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 3wmmmm亚洲av在线观看| 观看美女的网站| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 在线a可以看的网站| 深夜a级毛片| 亚洲熟妇中文字幕五十中出| 最近手机中文字幕大全| 精品久久久久久久久久久久久| 亚洲性久久影院| 你懂的网址亚洲精品在线观看 | 青春草视频在线免费观看| 欧美激情国产日韩精品一区| 精品熟女少妇av免费看| 日韩av不卡免费在线播放| 在线免费观看的www视频| 国国产精品蜜臀av免费| 春色校园在线视频观看| 午夜精品国产一区二区电影 | 中文字幕制服av| 国产大屁股一区二区在线视频| 国产精品1区2区在线观看.| 午夜a级毛片| 亚洲婷婷狠狠爱综合网| 男女那种视频在线观看| 亚洲av二区三区四区| av免费观看日本| 国产一区亚洲一区在线观看| 美女内射精品一级片tv| 午夜爱爱视频在线播放| 精品99又大又爽又粗少妇毛片| av在线老鸭窝| 久久精品国产亚洲av涩爱 | 精品免费久久久久久久清纯| 国产精华一区二区三区| 秋霞在线观看毛片| 国内精品久久久久精免费| 国产毛片a区久久久久| 色哟哟哟哟哟哟| 欧美日韩精品成人综合77777| 国产精品三级大全| 观看美女的网站| 成人性生交大片免费视频hd| av黄色大香蕉| 男女那种视频在线观看| 波野结衣二区三区在线| 3wmmmm亚洲av在线观看| 97在线视频观看| 亚洲最大成人手机在线| 色视频www国产| 午夜久久久久精精品| 夫妻性生交免费视频一级片| 欧美+亚洲+日韩+国产| 久久精品影院6| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 一级毛片久久久久久久久女| 亚洲七黄色美女视频| 亚洲七黄色美女视频| 国产日本99.免费观看| 婷婷色av中文字幕| 日韩大尺度精品在线看网址| av黄色大香蕉| 岛国毛片在线播放| 国产精品福利在线免费观看| av免费在线看不卡| 国产黄a三级三级三级人| 欧美在线一区亚洲| 国产一级毛片在线| 在线国产一区二区在线| 国产免费一级a男人的天堂| 亚洲乱码一区二区免费版| 欧美精品国产亚洲| 一本久久精品| 国产精品永久免费网站| 欧美人与善性xxx| ponron亚洲| 中国国产av一级| 国产成人aa在线观看| 99久久精品一区二区三区| 久久欧美精品欧美久久欧美| 精品免费久久久久久久清纯| 国产 一区 欧美 日韩| 久久久午夜欧美精品| 一夜夜www| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 国产毛片a区久久久久| 精品人妻视频免费看| 亚洲国产精品成人综合色| 午夜激情福利司机影院| 免费观看精品视频网站| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 少妇被粗大猛烈的视频| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 99久久人妻综合| 波野结衣二区三区在线| 自拍偷自拍亚洲精品老妇| 哪里可以看免费的av片| 久久午夜福利片| 天堂网av新在线| 亚洲最大成人中文| 国产午夜精品久久久久久一区二区三区| 久久久久久久久大av| 51国产日韩欧美| 国产色婷婷99| 日韩,欧美,国产一区二区三区 | 日韩视频在线欧美| 婷婷精品国产亚洲av| 国产精品福利在线免费观看| 久久久久久久午夜电影| 精品一区二区三区视频在线| 国产亚洲av片在线观看秒播厂 | 99热网站在线观看| 爱豆传媒免费全集在线观看| 三级毛片av免费| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 亚洲av一区综合| 国产日韩欧美在线精品| 婷婷亚洲欧美| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 村上凉子中文字幕在线| 欧美性猛交黑人性爽| 欧美成人a在线观看| 欧美高清性xxxxhd video| 99久久九九国产精品国产免费| 久久欧美精品欧美久久欧美| 色综合站精品国产| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 少妇被粗大猛烈的视频| or卡值多少钱| 一本一本综合久久| 久久久久久久亚洲中文字幕| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 日韩高清综合在线| 中文在线观看免费www的网站| 精品熟女少妇av免费看| 国产伦精品一区二区三区视频9| 国产精品女同一区二区软件| 亚洲欧美中文字幕日韩二区| 18+在线观看网站| 白带黄色成豆腐渣| 男女啪啪激烈高潮av片| 色吧在线观看| 男女视频在线观看网站免费| 久99久视频精品免费| 天堂网av新在线| 波野结衣二区三区在线| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 美女高潮的动态| 赤兔流量卡办理| 亚洲一区二区三区色噜噜| 免费电影在线观看免费观看| 亚洲精品国产av成人精品| 国产精品野战在线观看| 久久久久久九九精品二区国产| 久久久久久久久久黄片| 久久九九热精品免费| 啦啦啦观看免费观看视频高清| 国产极品精品免费视频能看的| 99久久中文字幕三级久久日本| 成人午夜高清在线视频| 久99久视频精品免费| 午夜免费男女啪啪视频观看| av天堂在线播放| 亚洲国产欧洲综合997久久,| 国模一区二区三区四区视频| 直男gayav资源| 美女脱内裤让男人舔精品视频 | 哪个播放器可以免费观看大片| 听说在线观看完整版免费高清| 久久久久性生活片| 久久久久免费精品人妻一区二区| 91aial.com中文字幕在线观看| 欧美性猛交╳xxx乱大交人| 99久国产av精品国产电影| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播放欧美日韩| 丰满的人妻完整版| 免费搜索国产男女视频| 国产久久久一区二区三区| 一个人看视频在线观看www免费| 2022亚洲国产成人精品| 色哟哟·www| 午夜精品在线福利| 亚洲欧美成人精品一区二区| 午夜a级毛片| 简卡轻食公司| 中文资源天堂在线| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 国产免费男女视频| 99热网站在线观看| 国产精品久久视频播放| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 成人国产麻豆网| 亚洲七黄色美女视频| 直男gayav资源| 午夜福利高清视频| 一个人免费在线观看电影| 久久精品国产亚洲网站| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 欧美成人一区二区免费高清观看| 国产色婷婷99| 婷婷色综合大香蕉| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 国产伦精品一区二区三区视频9| 2022亚洲国产成人精品| 波多野结衣高清作品| 啦啦啦啦在线视频资源| 全区人妻精品视频| 免费大片18禁| 青春草国产在线视频 | 免费看光身美女| 少妇丰满av| videossex国产| 国产在线精品亚洲第一网站| 少妇被粗大猛烈的视频| 九色成人免费人妻av| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 国产成人91sexporn| 亚洲成a人片在线一区二区| 成人亚洲欧美一区二区av| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 国产午夜福利久久久久久| 舔av片在线| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6| 亚洲人成网站高清观看| 国产精品无大码| 亚洲四区av| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 成人二区视频| 身体一侧抽搐| 两个人视频免费观看高清| 免费观看精品视频网站| 成人国产麻豆网| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 中国国产av一级| 大又大粗又爽又黄少妇毛片口| 在线观看一区二区三区| 麻豆乱淫一区二区| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 搞女人的毛片| 男女边吃奶边做爰视频| 亚洲第一电影网av| 国产 一区精品| 国产淫片久久久久久久久| 九草在线视频观看| 九色成人免费人妻av| 国产精品久久电影中文字幕| av天堂在线播放| 久久久久网色| 美女脱内裤让男人舔精品视频 | 亚洲精品国产av成人精品| 久久久欧美国产精品| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 人妻夜夜爽99麻豆av| 好男人视频免费观看在线| 大香蕉久久网| 免费看美女性在线毛片视频| 99久久精品一区二区三区| 日韩制服骚丝袜av| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 久久6这里有精品| 尾随美女入室| 长腿黑丝高跟| 老师上课跳d突然被开到最大视频| 亚洲国产精品sss在线观看| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱 | 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| 欧美一区二区亚洲| 成人一区二区视频在线观看| 精品人妻视频免费看| 三级毛片av免费| 人人妻人人澡人人爽人人夜夜 | 能在线免费观看的黄片| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 精品久久久久久久久av| 免费黄网站久久成人精品| 中文欧美无线码| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| а√天堂www在线а√下载| 午夜视频国产福利| av又黄又爽大尺度在线免费看 | 日韩成人av中文字幕在线观看| 亚洲av中文字字幕乱码综合| 国产精品无大码| 人妻系列 视频| 男女啪啪激烈高潮av片| 久久久久网色| 久久精品91蜜桃| 亚洲精品国产av成人精品| 黄色日韩在线| 色播亚洲综合网| 亚洲最大成人中文| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 国产激情偷乱视频一区二区| 亚洲内射少妇av| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂 | 有码 亚洲区| 级片在线观看| 3wmmmm亚洲av在线观看| 欧美成人精品欧美一级黄| 国产乱人视频| 99久国产av精品国产电影| 国产老妇女一区| 69人妻影院| 日日摸夜夜添夜夜添av毛片| 天堂√8在线中文| 成人美女网站在线观看视频| 亚洲综合色惰| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆| 国产91av在线免费观看| 久久精品久久久久久噜噜老黄 | 99热全是精品| 男人舔奶头视频| 一级黄片播放器| 亚洲精品日韩在线中文字幕 | 99久久久亚洲精品蜜臀av| 99久久精品国产国产毛片| 国产熟女欧美一区二区| 禁无遮挡网站| 亚洲欧美精品自产自拍| 国产真实乱freesex| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 日本一二三区视频观看| 亚洲经典国产精华液单| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 久久久久九九精品影院| 在线a可以看的网站| 日韩高清综合在线| 在线观看免费视频日本深夜| 欧美成人一区二区免费高清观看| 夫妻性生交免费视频一级片| 午夜福利在线观看吧| 欧美日韩综合久久久久久| 一本久久精品| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩卡通动漫| 老熟妇乱子伦视频在线观看| 18禁裸乳无遮挡免费网站照片| 不卡一级毛片| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久久久毛片| 男插女下体视频免费在线播放| 精品熟女少妇av免费看| 国产精品嫩草影院av在线观看| 91久久精品电影网| 精品无人区乱码1区二区| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 国产不卡一卡二| 在线播放国产精品三级|