• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging

    2023-03-13 09:20:22LiMingZhao趙立明TianXiangWang王天祥RunKangMa馬潤康YaoGu顧瑤MengSiLuo羅夢絲HengChen陳恒ZhiLiWang王志立andXinGe葛昕
    Chinese Physics B 2023年2期

    Li-Ming Zhao(趙立明) Tian-Xiang Wang(王天祥) Run-Kang Ma(馬潤康) Yao Gu(顧瑤)Meng-Si Luo(羅夢絲) Heng Chen(陳恒) Zhi-Li Wang(王志立) and Xin Ge(葛昕)

    1Department of Optical Engineering,School of Physics,Hefei University of Technology,Anhui 230009,China

    2Institute of Biomedical Engineering,Shenzhen Bay Laboratory,Shenzhen 518067,China

    Keywords: x-ray imaging,analyzer-based imaging,image artefacts

    1.Introduction

    X-ray phase-contrast imaging has gained popularity owing to the ability of imaging weakly absorbing objects with a high contrast at high x-ray energies.In hard x-ray regime,the sensitivity of phase-contrast imaging is expected to be at least two orders higher than that of absorption imaging for samples made of light elements.[1]During the past two decades,x-ray phase contrast imaging relies on several interference or analyzer methods to transform the phase shifts into measurable intensity modulations in the detector plane.These techniques include x-ray crystal interferometer,[2]analyzerbased imaging,[3-6]propagation-based imaging,[7]gratingbased interferometric imaging[8-14]and edge-illumination imaging.[15,16]In recent years, the great potential of x-ray analyzer-based imaging has been explored, including but not limited to noninvasive soft tissue engineering,[17]functional lung imaging,[18]damage evolution,[19]detection of 3D printing technology,[20]measuring the airway size of emphysema[21]and imaging of fresh agricultural products.[22]

    In x-ray analyzer-based imaging, x-ray refraction and scattering images have been demonstrated to provide complementary information to conventional attenuation-based radiography and computed tomography.[23]However, the sample’s absorption, refraction, and scattering signals are measured simultaneously in the acquired radiographic images.[24]This information superposition can make the image interpretation ambiguous in practical applications.Therefore,several algorithms have been developed in order to separate the three different signals and accurately quantify them.[5,25-32]Quite recently, Gaussian generalized diffraction enhanced imaging(G2DEI)algorithm has been presented to retrieve the absorption,refraction,and scattering properties of an object by use of only three intensity measurements.[31]Owing to the extended angular acceptance range,G2DEI algorithm is expected to be a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.[31]Previous studies demonstrated that precise angular positioning of the analyzer crystal within sub-arcseconds was indispensable for the precise detection of phase shifts.[33]However,external vibrations of experimental environments,as well as mechanical imprecisions of system components,e.g.,the precision of motor,can induce deviations of analyzer angular positions,and hence errors in the acquired raw data.

    Image artefacts will deteriorate image quality,and hence hinders future practical applications of x-ray analyzer-based imaging.Therefore,it becomes quite necessary to quantify the refraction and scattering image artefacts resulting from deviations of analyzer angular positions.To the best of our knowledge,this topic has not been adequately studied in previous literatures.We note that in x-ray grating interferometry,stepping errors due to external vibration,thermal drift or mechanical inaccuracies will cause obvious Moir′e artefacts in the retrieved refraction and dark-field images.[34]Theoretical expressions of Moir′e artefacts were derived by using a Taylor series expansion.Based on those expressions,a simple algorithm was presented for correction and removal of these artefacts.[35]Laboratory experimental results confirmed the feasibility of the algorithm.

    In this work, we present analysis of image artefacts resulting from deviations of analyzer angular positions.For refraction and scattering retrieval, we consider the G2DEI algorithm.[31]A Taylor series expansion is utilized to establish theoretical models to correlate deviations of analyzer angular positions with artefacts in the retrieved refraction and scattering images.Finally, theoretical models are verified by synchrotron radiation experiments and the obtained results are discussed.The results of this work can be useful for further development of advanced algorithms to suppress image artefacts, and for correct image interpretation, especially in applications of in-laboratory x-ray analyzer-based imaging instruments.[36-38]

    2.Theoretical analysis of image artefacts

    In the following, we will theoretically analyze the correlation between deviations of analyzer angular positions and artefacts in the refraction and scattering images retrieved by G2DEI algorithm.As detailed explained by Aefelliet al.,[31]the G2DEI algorithm can be traced back to the fact that the sample’s refraction generates a shift of the center of the local rocking curve by ΔθR, while Gaussian scattering with a standard deviationσ2sincreases the width of the measured local rocking curve.[25,26]The power of G2DEI algorithm relies on the Gaussian approximation of the measured rocking curve(RC).Under this approximation,three intensity measurements are acquired at three well separated analyzer angular positions for multi-contrast image retrieval.When the analyzer is set to a given angular positionθi, the intensity measured by the detectorI(θi)can be written as follows:[29,31,39,40]

    whereσ2is the standard deviation of Gaussian approximated intrinsic rocking curve.Equation(1)contains three unknown parameters, including the absorptionIR, the refraction ΔθR,and the scatteringσ2s.With three acquired intensity measurementsI(θi) (i=1,2,3), the G2DEI algorithm allows quantitatively retrieval of the refraction and scattering signals on a pixel-by-pixel basis,

    For further analysis, we define Δθi(i=1,2,3) as deviations of analyzer angular positions with respect to the target positions.A Taylor series expansion is used to examine the effects of deviations Δθion retrieved refraction and scattering images.In the case of slight analyzer angular position deviations, a Taylor series expansion can be reasonably truncated after the first order.This results in the following approximation of the influence of analyzer angular position deviations Δθion the retrieved refraction ΔθR:

    where Δ(ΔθR)is specified as the refraction image artefact.By use of Eqs.(1)and(2), the derivative of the refraction image with respect to analyzer angular positionsθican be calculated as follows:

    Substituting Eqs.(5)-(7)into Eq.(4)yields the following analytical expression of the refraction image artefact:

    3.Experimental results

    To verify the analytical results of image artefacts and visualize effects of analyzer angular position deviations on the retrieved refraction and scattering images, synchrotron radiation experiments were performed at the 4W1A beamline of Beijing Synchrotron Radiation Facility.[41]As schematically shown in Fig.1,x-ray ABI setup utilized a first Si(111)crystal to monochromize the incident x-rays.The beam with a photon energy of 15 keV was then selected and incident on the sample.The beam exiting from the sample was analyzed by a second Si(111)crystal.Finally,the intensities were recorded by a high-resolution x-ray digital camera system FDS694 by Photonic Science Ltd.,which has a small pixel size of 4.5μm.A demineralized mouse joint was used as the sample.A total of 85 intensity measurements were acquired,with the analyzer angular position ranging from-84μrad to 84μrad with an increment of 2 μrad.At each analyzer angular position,a flat-field image without sample was acquired.Three intensity measurements were selected and processed by the G2DEI algorithm, and the retrieved refraction and scattering images served as the ground truth,and were used as inputs for calculations of Eqs.(8)and(13),respectively.

    Fig.1.Schematic diagram of x-ray ABI setup.

    Fig.2.(a)Experimental refraction image with artefact.(b)Experimental refraction image without artefact.(c) Experimental artefact image.(d)Calculated artefact image.Scale bar is 0.45 mm.

    Definingθi+Δθi(i=1,2,3)as the target positions without deviations,we can retrieve the refraction image with artefacts by applying the G2DEI algorithm to three measured intensities with analyzer angular position deviations.The retrieved refraction image with artefacts is shown in Fig.2(a)(additional subscript ‘img, art’).As a comparison, the corresponding refraction image without artefacts is shown Fig.2(b)(additional subscript ‘img, gt’).The pixelwise difference of Figs.2(a)and 2(b)is calculated,and thus the artefact image resulting from analyzer angular position deviations is deduced.While Fig.2(c)(additional subscript‘exp’)shows experimental artefact image, Fig.2(d) (additional subscript ‘cal’) displays the calculated artefact image by using Eq.(8) and the ground truth image.Qualitatively, the visual equivalence between Figs.2(c) and 2(d) verifies the validity of Eq.(8) for calculating the refraction image artefact.

    For a quantitative evaluation, Fig.3 shows a line profile comparison along the line marked by the dashed line in Figs.2(c)and 2(d).The solid blue line corresponds to the experimental result, while the magenta line corresponds to theoretically calculated result.The agreement of the two line profiles is quantitatively excellent, confirmed by that the calculated correlation coefficient has a great value of 0.9981.However, the existence of some locally minor discrepancies between experimental and calculated line profiles can be explained by the first-order truncation of the Taylor series expansion used in the derivation of Eq.(8).

    Fig.3.Line profile comparison of refraction image artefact along the dotted line in Figs.2(c)and 2(d).

    Figure 4 shows the results of scattering images,retrieved by the G2DEI algorithm using the same experimental data as Fig.2.The scattering image with artefacts is shown in Fig.4(a) (additional subscript ‘img, art’), while the corresponding scattering image without artefacts is presented in Fig.4(b) (additional subscript ‘img, gt’), as the ground truth image for artefact image calculation.Figure 4(c) (additional subscript‘exp’)displays the experimental artefact image,obtained by the difference between Figs.4(a) and 4(b), and Fig.4(d) (additional subscript ‘cal’) depicts the calculated artefact image by use of Eq.(13),Figs.2(b)and 4(b).A qualitative comparison of Figs.4(c)and 4(d)clearly demonstrates that theoretically calculated artefact image agrees well the experimental image.

    To obtain a quantitative evaluation, Fig.5 shows a line profile comparison of the scattering image artefacts along the dotted line in Figs.4(c) and 4(d).Despite a few slight local deviations, the two line profiles exhibit a quantitatively good agreement, supported by a calculated correlation coefficient of 0.9862.The consistence between the two line profiles confirms the validity of theoretical models of the scattering image artefact.

    Fig.4.(a)Experimental scattering image with artefact.(b)Experimental scattering image without artefact.(c) Experimental artefact image.(d)Calculated artefact image.Scale bar is 0.45 mm.

    Fig.5.Line profile comparison of scattering image artefact along the dotted line in Figs.4(c)and 4(d).

    Finally, due to stochastic nature of analyzer angular position deviations, several other sets of deviations are also investigated,and the corresponding line profile comparisons are performed.The analyzer angular position deviations used for evaluations are listed in Table 1.Note that those deviations correspond to a misalignment of less than 10%of analyzer angular intervals during intensity measurements.The calculated correlation coefficients are listed in Table 2 for refraction and scattering images,respectively.

    Table 1.Several other sets of deviations in units ofμrad used for evaluations.

    Table 2.Calculated correlation coefficients between experimental and calculated artefacts.

    As summarized in Table 2,the calculated correlation coefficient has a mean value of 0.9874 with a standard deviation of 0.0071 for the refraction image artefact, and a mean value of 0.9921 with a standard deviation of 0.0074 for the scattering image artefact, respectively.Those results again confirm the good agreement between experimental results and theoretical calculations,thus validating our theoretical analysis results,i.e.,Eqs.(8)and(13).

    4.Discussion

    Equation (8) revealed that the refraction image artefact is dependent on the three analyzer angular positions and their deviations, and also the sample’s refraction.However, it is expected that the three deviations contribute differently to the magnitude of image artefact.As shown in Eq.(8), the contribution is determined by the three defined coefficients.Figure 6(a) displays the coefficients of refraction image artefact as a function of the refraction signal.For the calculations,we have usedθ1=-13.6μrad,θ2=1.9μrad andθ3=15.5μrad from a recent literature.[31]These three analyzer angular positions are close to low-angle 48%, high-angle 98%, and highangle 31%,respectively.[31]The values of the coefficients have been normalized by the term (θ2-θ1)·(θ2-θ3)·(θ1-θ3).The results demonstrate that the magnitude of the coefficients can be comparable to that of refraction signal.Besides,the analyzer angular position deviations contribute quite differently for different features characterized by different refraction signals.And Eq.(8) can be used for predictions before experiments and experimental optimization.

    Similarly, Eq.(13) showed that artefact of the scattering image is dependent on analyzer angular positions and their deviations, and both the sample’s refraction and scattering, but not on absorption.However, the three angular position deviations contribute differently to the artefact magnitude.Figures 6(b) and 6(c) show the three defined coefficients as a function of refraction and scattering, respectively.The same parameters as that of Fig.6(a) were used, and the coefficient values were also normalized.Different from Fig.6(a),a linear behavior is observed, with a smaller value.However, noting the difference in the magnitude of refraction and scattering,the magnitude of scattering artefact can also be comparable to that of scattering signal.Moreover, the contribution of analyzer angular position deviations is quite different for different refraction and scattering.Thus,Eq.(13)provides a simple tool for error estimations and experimental optimizations.

    In experimental applications,especially for laboratory xray analyzer-based imaging instruments, deviations of analyzer angular positions can be easily induced by vibrations and other external influences.It is difficult to increase the stability of x-ray ABI setup sufficiently in experiments.And therefore, development of enhanced retrieval algorithms becomes quite necessary,which can effectively suppress the artefacts in the retrieved refraction and scattering images.On this sense,this work provides the foundation to develop advanced multicontrast retrieval algorithms.This will be one of our forthcoming work.

    Fig.6.(a) Coefficient of refraction image artefact as a function of refraction.(b) Coefficient of scattering image artefact as a function of refraction.(c)Coefficient of scattering image artefact as a function of scattering.

    5.Conclusion

    In this work,we presented analysis of refraction and scattering image artefacts resulting from analyzer angular position deviations in x-ray analyzer-based imaging.A first-order Taylor series expansion is utilized to establish theoretical models to correlate deviations of analyzer angular positions with artefacts in the retrieved refraction and scattering images.Theoretical models were validated by synchrotron radiation experiments.The results revealed that for the refraction image,the artefact was independent of the object’s absorption and scattering signals.By contrast, artefacts of the scattering images were dependent on both the object’s refraction and scattering signals,but not on absorption signal.The derived dependency of image artefacts on deviations of analyzer angular positions could be used to develop advanced multi-contrast image retrieval algorithms that suppress image artefacts,and for correct image interpretation especially in laboratory x-ray analyzerbased imaging instruments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.U1532113, 11475170, and 11905041), the Fundamental Research Funds for the Central Universities (Grant No.PA2020GDKC0024), and Anhui Provincial Natural Science Foundation, China (Grant No.2208085MA18).

    两人在一起打扑克的视频| 此物有八面人人有两片| 久久精品aⅴ一区二区三区四区| 露出奶头的视频| 中国美女看黄片| 欧美一级毛片孕妇| www日本在线高清视频| 午夜视频精品福利| 精品乱码久久久久久99久播| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 亚洲欧美精品综合一区二区三区| 久久这里只有精品中国| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 一区福利在线观看| 色精品久久人妻99蜜桃| 级片在线观看| 亚洲电影在线观看av| 九九久久精品国产亚洲av麻豆 | 国产伦精品一区二区三区四那| 亚洲中文字幕日韩| 国产精品一区二区三区四区久久| 1024手机看黄色片| 脱女人内裤的视频| 日韩人妻高清精品专区| 色综合站精品国产| 亚洲五月婷婷丁香| 97超级碰碰碰精品色视频在线观看| 欧美中文日本在线观看视频| 久久久久精品国产欧美久久久| 亚洲国产日韩欧美精品在线观看 | 女生性感内裤真人,穿戴方法视频| 国产亚洲精品久久久com| www.熟女人妻精品国产| 欧美日韩精品网址| 亚洲激情在线av| 最近最新免费中文字幕在线| 久久人妻av系列| 欧美日韩综合久久久久久 | 成人鲁丝片一二三区免费| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 久久久国产精品麻豆| 国产麻豆成人av免费视频| 91老司机精品| 久久久久久九九精品二区国产| 波多野结衣高清作品| 成年人黄色毛片网站| 国产精品 欧美亚洲| 午夜精品一区二区三区免费看| 久久人妻av系列| 亚洲av成人一区二区三| 亚洲av五月六月丁香网| 成人av一区二区三区在线看| 亚洲成人中文字幕在线播放| 97超视频在线观看视频| 听说在线观看完整版免费高清| 中亚洲国语对白在线视频| 日韩有码中文字幕| 亚洲精品乱码久久久v下载方式 | 亚洲最大成人中文| 美女午夜性视频免费| 亚洲精品中文字幕一二三四区| 久久草成人影院| 特级一级黄色大片| 国产高清激情床上av| cao死你这个sao货| 精品一区二区三区av网在线观看| 亚洲 国产 在线| or卡值多少钱| 成人鲁丝片一二三区免费| 熟妇人妻久久中文字幕3abv| 久久精品aⅴ一区二区三区四区| 欧美黑人巨大hd| 精品久久久久久成人av| 全区人妻精品视频| 亚洲国产欧洲综合997久久,| 99精品久久久久人妻精品| 啦啦啦韩国在线观看视频| 国产高潮美女av| 亚洲精品粉嫩美女一区| 亚洲国产欧美人成| 成年女人毛片免费观看观看9| 国产精品99久久久久久久久| 久久精品aⅴ一区二区三区四区| 中亚洲国语对白在线视频| 国产人伦9x9x在线观看| 久久久久久人人人人人| 我要搜黄色片| www.精华液| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| 欧美日韩福利视频一区二区| 国内精品久久久久精免费| 三级国产精品欧美在线观看 | 99国产精品一区二区三区| 99re在线观看精品视频| 亚洲成av人片免费观看| 在线观看舔阴道视频| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片| 国产又黄又爽又无遮挡在线| 国产一级毛片七仙女欲春2| 精品乱码久久久久久99久播| 久久久久性生活片| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 欧美xxxx黑人xx丫x性爽| av黄色大香蕉| 91字幕亚洲| 叶爱在线成人免费视频播放| 色尼玛亚洲综合影院| 全区人妻精品视频| 久久香蕉国产精品| 成人亚洲精品av一区二区| 国产精品99久久99久久久不卡| 亚洲激情在线av| 亚洲国产色片| 免费在线观看视频国产中文字幕亚洲| 国内揄拍国产精品人妻在线| 桃红色精品国产亚洲av| 亚洲成av人片在线播放无| 18禁黄网站禁片免费观看直播| 母亲3免费完整高清在线观看| 中文字幕最新亚洲高清| 97碰自拍视频| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 欧美又色又爽又黄视频| 一个人免费在线观看电影 | 国产黄a三级三级三级人| 热99re8久久精品国产| 国产午夜精品论理片| www日本黄色视频网| 日本 欧美在线| 久久久久久久午夜电影| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| 综合色av麻豆| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| 综合色av麻豆| 美女扒开内裤让男人捅视频| 久久精品人妻少妇| 久久精品91无色码中文字幕| 国产亚洲精品综合一区在线观看| 精品国产三级普通话版| bbb黄色大片| 亚洲专区字幕在线| 97超视频在线观看视频| 中出人妻视频一区二区| 99视频精品全部免费 在线 | 国产精品乱码一区二三区的特点| 一二三四社区在线视频社区8| 熟女人妻精品中文字幕| 精品福利观看| 亚洲无线在线观看| 欧美大码av| 午夜视频精品福利| 精品久久久久久久末码| 欧美乱码精品一区二区三区| 国产私拍福利视频在线观看| 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点| 床上黄色一级片| 精品久久蜜臀av无| 12—13女人毛片做爰片一| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| 淫秽高清视频在线观看| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 国产精品野战在线观看| 亚洲激情在线av| 三级毛片av免费| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 日本熟妇午夜| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 999久久久国产精品视频| 两个人视频免费观看高清| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 成人永久免费在线观看视频| 天堂动漫精品| 日韩欧美在线二视频| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 国产成人av激情在线播放| 亚洲精品一区av在线观看| a级毛片在线看网站| 窝窝影院91人妻| 午夜福利欧美成人| 国产麻豆成人av免费视频| 手机成人av网站| 亚洲国产欧洲综合997久久,| svipshipincom国产片| 日韩人妻高清精品专区| 久久久久九九精品影院| 好看av亚洲va欧美ⅴa在| 国产精品一及| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 午夜福利免费观看在线| 高清在线国产一区| www日本黄色视频网| 亚洲国产色片| 熟女电影av网| 91av网站免费观看| 午夜精品一区二区三区免费看| 日韩成人在线观看一区二区三区| 一本一本综合久久| 网址你懂的国产日韩在线| 久久精品综合一区二区三区| 男女那种视频在线观看| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 91在线观看av| 老汉色av国产亚洲站长工具| 99久久成人亚洲精品观看| 午夜免费成人在线视频| 久久久国产成人免费| 手机成人av网站| 成人特级av手机在线观看| 黄色丝袜av网址大全| 91字幕亚洲| 精品久久久久久久末码| 国产精品99久久久久久久久| 亚洲无线在线观看| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 在线观看日韩欧美| 精品一区二区三区视频在线观看免费| 免费搜索国产男女视频| 99国产精品一区二区三区| 国产成人福利小说| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| bbb黄色大片| 在线观看免费视频日本深夜| 亚洲av熟女| 天堂网av新在线| 男人舔女人的私密视频| 长腿黑丝高跟| 十八禁人妻一区二区| 亚洲在线自拍视频| 日韩人妻高清精品专区| 国产精品自产拍在线观看55亚洲| 国产69精品久久久久777片 | 制服丝袜大香蕉在线| 色视频www国产| 少妇熟女aⅴ在线视频| 最新中文字幕久久久久 | 国产一区二区在线观看日韩 | 免费人成视频x8x8入口观看| 两个人看的免费小视频| 成年女人看的毛片在线观看| 变态另类丝袜制服| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩东京热| 香蕉av资源在线| 最近在线观看免费完整版| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费一区二区三区在线| 后天国语完整版免费观看| xxx96com| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 级片在线观看| 日本黄大片高清| 国产成人福利小说| 精品一区二区三区视频在线 | 在线国产一区二区在线| 18禁黄网站禁片免费观看直播| 亚洲欧美一区二区三区黑人| 亚洲国产精品久久男人天堂| 亚洲熟女毛片儿| 变态另类丝袜制服| 国产97色在线日韩免费| 激情在线观看视频在线高清| 免费av毛片视频| 久久久国产成人免费| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 免费看光身美女| 99热只有精品国产| 国产综合懂色| 丰满人妻一区二区三区视频av | 国产激情欧美一区二区| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 午夜福利欧美成人| 欧美极品一区二区三区四区| 一级a爱片免费观看的视频| 亚洲人成伊人成综合网2020| 日韩欧美国产一区二区入口| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 性色avwww在线观看| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| 国产精品1区2区在线观看.| 国产高清有码在线观看视频| 亚洲无线观看免费| 国产精品自产拍在线观看55亚洲| 成人精品一区二区免费| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 日韩欧美三级三区| 淫妇啪啪啪对白视频| 国产精品一及| xxx96com| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 88av欧美| 午夜精品一区二区三区免费看| 宅男免费午夜| 日韩欧美国产在线观看| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 亚洲国产看品久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女黄片视频| 很黄的视频免费| 男人舔女人的私密视频| 一进一出抽搐动态| 九九在线视频观看精品| 麻豆av在线久日| 色老头精品视频在线观看| 免费看美女性在线毛片视频| 欧美日本视频| 噜噜噜噜噜久久久久久91| 看免费av毛片| 亚洲精品色激情综合| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆| 欧美色欧美亚洲另类二区| 神马国产精品三级电影在线观看| 午夜激情欧美在线| 成人国产一区最新在线观看| 热99re8久久精品国产| 国产高清视频在线播放一区| 一级作爱视频免费观看| 两个人的视频大全免费| 亚洲成av人片免费观看| 999精品在线视频| 毛片女人毛片| 精品国产亚洲在线| 亚洲欧美日韩高清专用| 色哟哟哟哟哟哟| 日本一二三区视频观看| 国产极品精品免费视频能看的| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 嫁个100分男人电影在线观看| 全区人妻精品视频| 久久久国产成人免费| 国产高潮美女av| 成人性生交大片免费视频hd| 日韩欧美国产一区二区入口| 午夜激情福利司机影院| 免费看a级黄色片| 久久久久性生活片| 91av网一区二区| 国产69精品久久久久777片 | 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 波多野结衣高清作品| 国产成人av激情在线播放| 亚洲av免费在线观看| 久久热在线av| 99热只有精品国产| xxx96com| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 男女那种视频在线观看| 国产av不卡久久| 国产激情欧美一区二区| 一个人免费在线观看的高清视频| 一本综合久久免费| av视频在线观看入口| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 国产精品99久久久久久久久| 欧美激情在线99| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 99热6这里只有精品| 精品人妻1区二区| e午夜精品久久久久久久| 亚洲精品一区av在线观看| 在线看三级毛片| 午夜影院日韩av| 少妇的丰满在线观看| 18禁黄网站禁片免费观看直播| 99久久综合精品五月天人人| 男女做爰动态图高潮gif福利片| 亚洲第一电影网av| 99精品欧美一区二区三区四区| 国产人伦9x9x在线观看| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 久久久久九九精品影院| 日韩人妻高清精品专区| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 国产 一区 欧美 日韩| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 色精品久久人妻99蜜桃| 黄色成人免费大全| 欧美色视频一区免费| 18禁观看日本| 久久久国产成人精品二区| 国内揄拍国产精品人妻在线| 淫妇啪啪啪对白视频| 琪琪午夜伦伦电影理论片6080| 久久久久免费精品人妻一区二区| 母亲3免费完整高清在线观看| 国产精品久久久久久久电影 | 国产精品电影一区二区三区| 黄色视频,在线免费观看| 在线十欧美十亚洲十日本专区| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 伦理电影免费视频| 国产精品日韩av在线免费观看| 亚洲一区二区三区不卡视频| 午夜福利在线观看吧| 身体一侧抽搐| 欧美黄色淫秽网站| 欧美午夜高清在线| 丁香六月欧美| 亚洲精品中文字幕一二三四区| 又紧又爽又黄一区二区| 亚洲成人久久爱视频| 亚洲欧美日韩无卡精品| 久久午夜综合久久蜜桃| a级毛片a级免费在线| 亚洲午夜理论影院| 夜夜爽天天搞| 午夜视频精品福利| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 香蕉丝袜av| 网址你懂的国产日韩在线| 成年人黄色毛片网站| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 五月玫瑰六月丁香| 欧美日本视频| 欧美成人一区二区免费高清观看 | 久久久国产成人精品二区| 久久久成人免费电影| 成人一区二区视频在线观看| 一夜夜www| 午夜两性在线视频| 三级毛片av免费| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 舔av片在线| 757午夜福利合集在线观看| 午夜免费激情av| 日韩人妻高清精品专区| 一卡2卡三卡四卡精品乱码亚洲| 99精品欧美一区二区三区四区| 黑人操中国人逼视频| 欧美在线一区亚洲| 国产精品综合久久久久久久免费| 特大巨黑吊av在线直播| 亚洲国产欧洲综合997久久,| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产三级在线视频| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 99国产精品一区二区三区| 日本一二三区视频观看| 午夜影院日韩av| 国产人伦9x9x在线观看| 中文字幕熟女人妻在线| 婷婷精品国产亚洲av| 操出白浆在线播放| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 国产熟女xx| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 日韩精品中文字幕看吧| 91久久精品国产一区二区成人 | 神马国产精品三级电影在线观看| 日本三级黄在线观看| 亚洲中文av在线| 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| 亚洲国产精品sss在线观看| 国产aⅴ精品一区二区三区波| 国产精品自产拍在线观看55亚洲| 国产视频一区二区在线看| 老司机午夜十八禁免费视频| 久久99热这里只有精品18| 一级毛片高清免费大全| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 国内久久婷婷六月综合欲色啪| 视频区欧美日本亚洲| 一二三四在线观看免费中文在| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 一区二区三区国产精品乱码| 嫩草影院入口| 一进一出抽搐gif免费好疼| 欧美一级毛片孕妇| 免费高清视频大片| 手机成人av网站| 亚洲人与动物交配视频| 黄色女人牲交| 91九色精品人成在线观看| 男人的好看免费观看在线视频| 午夜影院日韩av| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 三级国产精品欧美在线观看 | 亚洲精品美女久久久久99蜜臀| 免费看光身美女| 麻豆成人午夜福利视频| 亚洲片人在线观看| 国产激情偷乱视频一区二区| 久久亚洲真实| 午夜免费成人在线视频| 国产高清三级在线| 一个人免费在线观看电影 | 成年女人毛片免费观看观看9| 一二三四社区在线视频社区8| 色老头精品视频在线观看| 熟女人妻精品中文字幕| 日韩欧美一区二区三区在线观看| 亚洲av成人一区二区三| 国产精华一区二区三区| 巨乳人妻的诱惑在线观看| 国产探花在线观看一区二区| 久久亚洲真实| 人人妻人人澡欧美一区二区| 最新美女视频免费是黄的| 黄频高清免费视频| 国产爱豆传媒在线观看| www.熟女人妻精品国产| 国产精品女同一区二区软件 | 精品久久蜜臀av无| 国产一区二区在线av高清观看| 亚洲欧美精品综合一区二区三区| av片东京热男人的天堂| www.999成人在线观看| 久久久久国产精品人妻aⅴ院| 国产麻豆成人av免费视频| 国产欧美日韩一区二区三| 欧美乱色亚洲激情| 1024手机看黄色片| 男女做爰动态图高潮gif福利片| 亚洲国产日韩欧美精品在线观看 | 免费在线观看日本一区| 国产精品久久久久久人妻精品电影| 波多野结衣高清无吗| 男女那种视频在线观看| 69av精品久久久久久| 午夜福利在线在线| 日本一本二区三区精品| 69av精品久久久久久| 日本五十路高清| 国内精品久久久久精免费| 天天躁日日操中文字幕| 午夜免费成人在线视频| 高潮久久久久久久久久久不卡| 欧美黑人巨大hd| 色在线成人网| 国产欧美日韩精品一区二区| 日韩高清综合在线| 欧美在线黄色| 一区二区三区国产精品乱码| 毛片女人毛片| 热99在线观看视频| 在线观看舔阴道视频| 国产淫片久久久久久久久 | 亚洲成人免费电影在线观看| 精品日产1卡2卡| 国产精品自产拍在线观看55亚洲|