• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure

    2023-03-13 09:18:16LingLingLi李玲玲YongWei魏勇ChunLanLiu劉春蘭ZhuoRen任卓AiZhou周愛ZhiHaiLiu劉志海andYuZhang張羽
    Chinese Physics B 2023年2期
    關(guān)鍵詞:張羽志海春蘭

    Ling-Ling Li(李玲玲) Yong Wei(魏勇) Chun-Lan Liu(劉春蘭) Zhuo Ren(任卓)Ai Zhou(周愛) Zhi-Hai Liu(劉志海) and Yu Zhang(張羽)

    1College of Electronic&Information Engineering,Chongqing Three Gorges University,Chongqing 404100,China

    2National Engineering Laboratory for Fiber Optic Sensing Technology,Wuhan University of Technology,Wuhan 430070,China

    3Key Laboratory of In-fiber Integrated Optics,Ministry of Education of China,Harbin Engineering University,Harbin 150001,China

    Keywords: coaxial dual-waveguide,optical fiber D structure,optical fiber microsphere structure,dual-channel fiber-optic surface plasmon resonance(SPR)sensor

    1.Introduction

    The optical fiber surface plasmon resonance (SPR) sensor exhibits numerous prominent features (e.g.compact size,excellent real-time performance, and long-distance measurement), which have been widely used in various fields in recent years.[1-3]Traditional optical fiber SPR sensors are generally based on the Kretschmann structure,[4]which uses optical fiber as the light transmission substrate,a precious metal film as the sensing film on the surface of the optical fiber,and the material to be measured outside the sensing film.The incident angle of light,[5-7]the refractive index of the substrate,[8]the type of precious metal film,[9]and the thickness of the precious metal film[10]can all be adjusted to control the dynamic range of the working wavelength of the optical fiber SPR sensor, and thus realize the multi-channel optical fiber SPR sensor of wavelength division multiplexing.Among them,Liuet al.[5]grounded a single-mode or few-mode fiber into a wedge shape, accomplished light incidence angle modulation by adjusting the grinding angle,and acquired a high detection sensitivity,but the sensor structure is complex,and the stability is restricted.Gold and silver have higher resonance absorption peaks among noble metals.However,silver films are quickly oxidized and require specific treatment.A few types of metal sensing membranes can be used for SPR multi-channel sensing.There is a problem with controlling the thickness of the sensing film since the sensitivity is diminished when the sensing film is thin.

    The effective refractive index of the optical fiber, which serves as the Kretschmann structure’s light transmission substrate, directly impact the sensing sensitivity and dynamic range of the optical fiber SPR sensor.Its effective refractive index will be influenced by both the fiber geometry and the refractive index profile, but the geometry is easier to modify.The optical fiber’s geometric structure can be altered by sidepolishing,[11-13]etching,[14,15]tapering,[16,17]etc., to adjust its effective refractive index.Optical fiber micromachining has high requirements for processing equipment and technical operations.Some special optical fibers have special effective refractive index, which reduces the requirements for optical fiber micromachining.

    As a special optical fiber,the coaxial dual waveguide has a middle core and a ring core.Wuet al.[18]realized a temperature and pressure insensitive curvature sensor based on longperiod fiber gratings by controlling the transmission mode of a coaxial dual-waveguide ring core.There has been no report on two fiber cores of the coaxial dual waveguide that can be used for sensing simultaneously with fiber SPR research.

    Based on this, this paper proposes a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dualwaveguide D-type and microsphere structure.This paper will make a D-type SPR sensing area utilizing side-polishing, because the outer diameter of the ring core of a coaxial dualwaveguide is 76 μm, and its evanescent field can easily leak by side-throwing; then, by melting a microsphere behind the D-type SPR sensing area,the cladding mode is excited,a sensing film is coated directly on the cladding surface behind the microsphere to construct a microsphere SPR sensing area, so as to realize the dual-channel SPR sensor based on coaxial dual-waveguide.When the light is injected into the middle core of the coaxial dual-waveguide,single-stage sensing with spherical sensor is realized, and its detection sensitivity and work waveband can be altered by adjusting the radius of microsphere.When the light is injected into the ring core of the coaxial dual-waveguide, which realizes a dual-channel sensor of D-type SPR sensing area and microsphere SPR sensing area.This paper makes the full use of the two special cores of the coaxial dual waveguide.The SPR excitation at the Dtype structure is dominated by low-order modes, the microsphere structure is often excited by high-order modes, which is equivalent to adjusting the two SPR incident angle.For the SPR sensor,if the incident angle can be slightly adjusted,the adjustment of the SPR resonance operating band and sensitivity is relatively large.And for the microsphere, the SPR resonance band and sensitivity can be continuously adjusted through different microsphere diameters.D-type and microsphere structure,combined with film thickness adjustment can often achieve the two-level working band fully separated and the two-level resonance valley depth is basically the same,and the microsphere structure has a higher sensitivity.If the requirements for the separation degree of the working band,the consistency of valley depth and the sensitivity are not high,the dual-channel sensing of the double D-type structure can also be adopted.

    2.Sensing principles and probe fabrication

    2.1.Sensing principles

    We used RSoft software to theoretically study the transmitting light field of the coaxial dual waveguide microsphere fiber.The diameter of the middle core and of the cladding are 9μm and 125μm,and their refractive indexes are 1.4902 and 1.485, respectively.The thickness of the ring core is 9 μm and the diameter of the microsphere is 276μm.The simulated results are shown in Fig.1,figure 1(a)shows the propagation path of light when passing light to the middle core, and figure 1(c)is an enlarged view of the spherical area of panel(a).Figure 1(b)shows the propagation path of light when passing light to the ring core,and figure 1(d)is an enlarged view of the spherical area of panel(b).According to the simulated results,whether to pass light to the middle core or to the ring core,the beam passes through the microsphere and causes the cladding mode to be excited, the resulting longitudinal light field distribution propagates stably.However, the excited cladding modes are different.

    Fig.1.Simulation results of(a)longitudinal light field distribution of the coaxial dual waveguide middle core with a microsphere,(b)longitudinal light field distribution of the coaxial dual waveguide ring core with a microsphere,panel(c)is an enlarged view of the spherical area of panel(a),panel(d)is an enlarged view of the spherical area of panel(b).

    The coaxial dual-waveguide used in this paper has two cores: a middle core and a coaxial ring core, the diameter of the middle core is 9 μm; the ring core and the middle core have an axisymmetric distribution, with the ring core having an inner and outer diameter of 67μm and 76μm,respectively,and a thickness of 9μm,which is the same as the middle core.The inner cladding is located between the middle core and the ring core,while the outer cladding,whose diameter is 125μm,is located on the exterior of the ring core.In this paper, the ring core of the coaxial dual-waveguide is exposed to air by side-throwing, which makes the evanescent wave in the ring core contact with the gold film to form a D-type SPR sensing area; a microsphere structure is fabricated by melting on the coaxial dual-waveguide,which makes the evanescent wave in the cladding mode excited by the microsphere expanding contact with the gold film to form a microsphere SPR sensing area.Under the operation of the microsphere, the transmitted light in the middle core readily excites the cladding mode.In the sensing area,however,the SPR phenomena created by the cladding mode and the ring core mode differ significantly.Therefore, this paper combines the cladding mode excited by the middle core of the coaxial dual-waveguide with the ring core mode together to produce an optical fiber SPR dual-channel sensor.

    2.2.D-type sensing probe structure and fabrication

    Figure 2(a) is the schematic diagram of the structure of the D-type sensing probe.The cladding in the middle section of the coaxial dual-waveguide is removed by side-polishing,the gold film coated on the exposed area of the ring core,then welded coarse core step multimode fiber on the right.The single-mode fiber faces the ring core and transmits light to the ring core.When the transmitted light reaches the sidepolishing area,it leaks into the interface between the ring core and the gold film,resulting in the evanescent wave in the ring core contacts with the gold film to generate SPR effects.The coarse core step multimode fiber collects the transmitted light that generated the SPR effects and sends it to spectrometer.Finally, the spectral data are analyzed by a computer.Figure 2(b) is the end face light field diagram of coaxial dual waveguide before side-polishing when the light is injected into the ring core,and figure 2(c)is the end face light field diagram of coaxial dual waveguide after side-polishing when the light is injected into the ring core.

    Figure 3 depicts the fabrication of a D-type sensing probe.We mechanically remove the coating layer of the coaxial dualwaveguide middle part and place it on the bare-fiber sidepolishing equipment.We secure the two ends of the fiber with brackets and keep the fiber horizontally straight with a counterweight.We use the control box to change the horizontal reciprocal length of the scroll wheel, rotation speed,and relative placement of the scroll wheel and fiber.Abrasive paper with coarse to fine fibers is put onto the rollers in succession.The scroll wheel’s speed and the polishing time can control the fiber side-polishing,and it can be observed online using a cartridge microscope and CCD, as illustrated in Fig.3(a).The D-type fiber is put in the magnetron sputtering instrument (ETD-650MS, Vision Precision Instruments),and the nanoscale metal film is coated on the side-throwing surface,as depicted in Fig.3(b).The right end of the coaxial dual-waveguide and the step refractive index multimode fiber with a core diameter of 105 μm (SI105/125-22/250, YOFC)are soldered by fiber optic fusion splicer to form a D-type sensing probe,the structure diagram as shown in Fig.2(a).In this research, the residual fiber thickness after side-throwing the coaxial dual waveguide in this research is 65 μm, and the length of the side-throwing region is 2 cm, as shown in Fig.2(c).

    Fig.2.The schematic diagram of D-type sensing probe: (a) structure diagram; (b) the end face light field diagram of coaxial dual waveguide before side-polishing when the light is injected into the ring core;(c)the end face light field diagram of coaxial dual waveguide after side-polishing when the light is injected into the ring core.

    Fig.3.The fabrication of a D-type sensing probe: (a)side-throwing;(b)gold film coating;(c)optical fiber splicing.

    2.3.Microsphere sensing probe structure and fabrication

    Figure 4(a) is the schematic diagram of the structure of the microsphere sensing probe.The coaxial dual-waveguide central part is electro-fused push extrusion into microspheres,to excite the cladding mode,then rotating coat nanoscale metal film on the 2 cm area behind the sphere and weld with the step refractive index multimode fiber.Light is injected into the central core of coaxial dual waveguide fiber using singlemode fiber.The radius of the coaxial dual waveguide core and cladding increases due to the microsphere structure,and when the light beam reaches the microsphere structure, the transmitted light beam in the core diffuses, the cladding mode is excited, and the evanescent wave of transmitted light in the cladding comes into contact with the gold film, resulting in the SPR effect.The transmitted light with SPR effect is collected and supplied to the spectrometer through the large core diameter step multimode fiber,and ultimately the spectral data processing is conducted by the computer.Figure 4(b) is the micrograph of the fiber microsphere,and figure 4(c)is the end face light field diagram of coaxial dual waveguide when the light is injected into the ring core.

    Figure 5 depicts the fabrication of a microsphere sensing probe.Before being placed in the fiber optic balling machine to execute discharge ball pushing, the coating layer of the coaxial dual-waveguide is mechanically removed.The fiber clamps with motor hold the two ends of the fiber,and the fiber coating stripped region is positioned in the center of the two electrodes, as indicated in Fig.5(a).Melting time and power are set to 15 s and 65 W, respectively.When the electrode is discharged, the fiber is heated and pushed towards the center by the left and right motors to form a fiber microsphere,as illustrated in Fig.5(b).Keep the melting time,power,and motor propulsion steady, and the microsphere diameter can be controlled by melting numbers of time.Following the completion of the ball pushing, the end-face through-light observation is done at the right 2 cm of the coaxial dual waveguide microsphere,as illustrated in Fig.4(c),with the optical coupling in the fiber core being a high-order cladding mode.The 2-cmlong cladding coupled stable transmission zone on the right side of the microsphere is used as the sensing zone, and the right end of the coaxial dual waveguide is welded to a coarsecore step multimode fiber with a core diameter of 105 μm for light collection.A 50-nm sensing gold film is plated on the cladding of the 2-cm sensing area on the right side of the microsphere to constitute the microsphere sensing probe, as shown in Fig.5(c).

    Fig.4.The schematic diagram of microsphere sensing probe: (a)structure diagram,(b)the micrograph of the fiber microsphere,(c)the end face light field diagram of coaxial dual waveguide when the light is injected into the ring core.

    Fig.5.The fabrication of a microsphere sensing probe: (a)fiber into the fiber optic balling machine,(b)discharge into balls,(c)gold film coating.

    2.4.Experimental set-up

    According to the D-type SPR sensing probe and the microsphere SPR sensing probe,constructing the refractive index sensing testing setup, as shown in Fig.6.The fiber probe receives the light emitted by the broad-spectrum light sources(HL-2000,Ocean Optics),and the solution to be tested in the reaction cell supplies the refractive index environment.The SPR effect occurs when light transmits to the probe SPR sensing zone and the spectrum of transmitted light becomes the SPR resonance valley.The coarse-core step multimode fiber collects the light and sends the light that occurred SPR effects into the spectrometer (USB2000+, Ocean Optics), the spectrum is sent into the computer for real-time data processing.The micro-injection pumper is used to replace the different refractive index solutions in the reaction cell.As the spectral information received by the spectrometer changes,so does the position of the SPR resonance valley, allowing the refractive index of the solution to be measured in the reaction cell to be sensed by monitoring the position of the SPR resonance valley.

    3.Experimental results and analysis

    3.1.D-type and microsphere probes refractive index sensing testing

    We build the equipment (see Fig.6) to perform the refractive index sensing testing on the D-type and microsphere probes, respectively, and determine whether the proposed Dtype and microsphere SPR sensing probes can accomplish satisfactory refractive index sensing.The microsphere diameter of the microsphere SPR sensing probe is 233μm;the residual fiber thickness after side-throwing the coaxial dual waveguide in this research is 65μm,and the length of the side-throwing region is 2 cm.The sensing gold film of the two probes is 50 nm, the refractive index range of the solution to be measured is 1.333-1.405, figure 7 describes the experimental results.The SPR resonance valley shifts to a long-wavelength direction with the solution’s refractive index to be measured increases.The findings displayed in Fig.7(c)were obtained by executing a linear fit using the solution refractive index as the horizontal scales and the sensing probe’s resonant wavelength as the vertical coordinate.The dynamic range of the SPR resonance valley of the D-type sensing probe is 607.05 nm-811.55 nm, the refractive index average detection sensitivity is 1563.31 nm/RIU.The dynamic range of the SPR resonance valley of the microsphere sensing probe is 593.34 nm-714.48 nm,the refractive index average detection sensitivity is 2790.31 nm/RIU.Dual-channel detection is theoretically feasible since the two sensing probes may completely separate the two resonance valleys in the spectrum without crossing over in the dynamic range when detected in high refractive index solutions.

    Fig.6.The refractive index sensing testing setup.

    Fig.7.The results of the D-type and microsphere probes refractive index sensing testing: (a)D-type sensing probe,(b)microsphere sensing probe,(c)the relationship curves of refractive index and resonance wavelength.

    3.2.Microsphere probe microsphere diameter optimization

    The dual-channel SPR sensor comprises the coaxial dual waveguide fiber D-type sensing probe and the microsphere sensing probe, as shown by the validation mentioned experiments.However,for the dual-channel SPR sensor to function,two resonance valleys must be sufficiently separated,necessitating the control of the SPR resonance bands in the two sensing regions.Because the side polishing process used in D-type sensing probe reduces the mechanical strength of the fiber and takes a long time,whereas microsphere sensing probe increase the mechanical strength of the fiber by making microspheres and are simple to fabricate, different microsphere diameters excite different cladding modes and have different sensing performance.As a result, this article creates probes with varying microsphere dimensions to examine the impacts of resonance band and sensitivity.The diameters of the microspheres were controlled by controlling the number of discharges to be 165μm, 233μm, and 306μm, respectively, to make sensing probes and conduct refractive index sensing experiments,and the refractive indices of the solutions to be measured ranged from 1.333 to 1.385,as shown in Fig.8.

    From the experimental spectrogram in Fig.8, it can be seen that the SPR resonance valley shifts to long-wavelength direction with the refractive index of the solution to be measured increases,as shown in Figs.8(a)-8(c).The findings displayed in Fig.8(d)were obtained by executing a linear fit using the solution refractive index as the horizontal scales and the sensing probe’s resonant wavelength as the vertical coordinate.The average sensitivity of the three sizes of microsphere sensing probes was 2288.89 nm/RIU, 2538.01 nm/RIU, and 3182.76 nm/RIU, respectively, with little variation in the dynamic range of their SPR operating wavelengths.We choose the microsphere probe with a diameter of 306μm to cascade with the D-type probe in this research to create a dual-channel SPR because its SPR resonance valley band varies most from the D-type probes and has the maximum sensitivity.

    Fig.8.Refractive index test results of SPR probes with different diameter microspheres: (a)165μm,(b)233μm,(c)306μm.

    4.D-type and microsphere probes cascade testing

    Based on the above analysis,the microsphere probe with a diameter of 306μm is chosen to be cascaded with the D-type probe in this paper, schematic diagram of the dual-channel fiber optic SPR sensing probe is shown in Fig.9.We positioned the D-type sensing area in the front to form sensing zone A because it requires the ring core mode, and the microsphere sensing area in the back to form the sensing zone B because it needs little requirement for transmission mode.When only the middle core of the coaxial dual waveguide is injected, the transmitted light goes to the middle core, and there is no light in the ring core and side throw area, so the SPR effect does not occur in the sensing zone A.At this time,the transmitted light reaches the microsphere structure to excite the cladding mode, which generates the SPR effect and allows single-channel sensing;when only the ring core of the coaxial dual waveguide is injected,the transmitted light passes through the side throw area and the microsphere structure,and the SPR effect occurs in the sensing zone A and sensing zone B at the same time,which can play a significant role in the field of multi-specimen detection and realize dual-channel SPR detection on one fiber.

    Fig.9.The schematic diagram of the dual-channel fiber optic SPR sensing probe.

    Figure 10 depicts a dual-channel refractive index sensing test experimental setup.To clearly separate the resonance valleys of the sensing probe’s two sensing zones, we make the thickness of the sensing gold film of sensing zone A 30 nm and the thickness of the sensing gold film of sensing zone B 50 nm;sensing zone A detects low refractive index solutions,and sensing zone B detects high refractive index solutions.

    Figure 11 depicts the testing results.Among them, because the spherical sensing stage B is located on the side away from the light source,its resonant light intensity is smaller than that of the D-type sensing region A,as shown in the vignette in Fig.11.To carry out the comparison of the SPR resonance valley of the two sensing regions,the alignment process of the resonance valley of the two sensing regions is carried out,and the results are obtained as shown in the large figure in Fig.11.In Fig.11(a), the refractive index of the solution to be measured in sensing zone A is 1.333, and the refractive index of the solution to be measured in sensing zone B ranges from 1.375 to 1.405.In Fig.11(b), the refractive index of the solution to be measured in sensing zone A ranges from 1.333 to 1.365,and the refractive index of the solution to be measured in sensing zone B is fixed at 1.395.In Fig.11(c),the refractive index of the solution to be measured in sensing zone A ranges from 1.333 to 1.365,and the refractive index of the solution to be measured in sensing zone B ranges from 1.375-1.405.

    As shown in Fig.11, this dual-channel SPR sensor can detect in a single stage,as shown in Figs.11(a)and 11(b),and it can also sense in two channels simultaneously,as shown in Fig.11(c).The two-stage SPR resonance valleys in Fig.11(c)both move toward the long wavelength direction as the external solution’s refractive index increases, and the dynamic range of the D-type sensing area A is in the short wavelength range and the dynamic range of the microsphere sensing area B is in the long wavelength range.The dynamic range and detection sensitivity for refractive index were calculated to be 607.4 nm-638.81 nm, 701.96 nm-805.41 nm,and 981.56 nm/RIU,4138 nm/RIU,respectively.

    Fig.10.Dual-channel SPR sensor refractive index sensing test experimental setup.

    Fig.11.Cascaded dual-channel SPR sensing results and resonance valley alignment data: (a) D-type sensing area A external solution refractive index 1.333,microsphere sensing area B external solution refractive index range 1.375-1.405;(b)D-type sensing area A external solution refractive range 1.333-1.365,microsphere sensing area B external solution refractive index 1.395;(c)D-type sensing area A external solution refractive range 1.333-1.365,microsphere sensing area B external solution refractive index range 1.375-1.405.

    Table 1.Performances comparison of dual-channel optical-fiber SPR sensors.

    In addition, compared with other dual-channel opticalfiber SPR sensors, although our sensor with channel I has a lower sensitivity, channel II has a higher sensitivity.What is more,a wide detection range is got(as shown in Table 1).We fabricated dual-channel fiber SPR sensor composed of D-type structure and microspheres, and combined wavelength division multiplexing and space division multiplexing technologies, which provide a novel research idea for multi-channel fiber SPR sensors.

    5.Conclusion

    We propose an optical fiber SPR sensor based on the cascade application of coaxial dual waveguide D-type and spherical structures in this research.The fiber core mode of the ring core of the coaxial dual waveguide provides the evanescent field for the D-type sensing region, and the spherical sensing region provides the evanescent field for the spherical sensing region cladding mode created after the spherical expansion.The refractive index of the spherical sensing zone is optimized for high sensitivity detection by adjusting the radius of the microsphere.Through the cascade test of the two-stage sensing area, its dual-channel sensing capability is proved, and its two-stage refractive index detection sensitivity can reach 981.56 nm/RIU and 4138 nm/RIU, respectively.The dualchannel SPR sensor integrates wavelength division multiplexing and space division multiplexing technology,which solves the problem of difficult separation of multi-level resonance valleys.,and is simple to fabricate,stable in structure,and can be widely used in micro-space biochemical sensing after surface modification.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.61705025), the Natural Science Foundation of Chongqing (Grant Nos.cstc2019jcyjmsxmX043 and cstc2018jcyjAX0817), the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos.KJQN201801217, KJQN202001214, KJQN201901226,and KJ1710247), the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos.ZD2020A0103 and ZD2020A0102),and the Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).

    猜你喜歡
    張羽志海春蘭
    油田歲月
    工友(2023年10期)2023-10-27 02:12:04
    我的媽媽
    “特戰(zhàn)隊”工作法:當(dāng)好疫情救治急先鋒
    精細(xì)化健康體檢管理模式在體檢中心的應(yīng)用探析
    我想考試
    分手了,我們還能做朋友嗎
    幸福家庭(2017年1期)2017-04-11 17:31:01
    服務(wù)為民獻(xiàn)真情——記邯鄲市市政工程管理處處長王志海
    公民與法治(2016年4期)2016-05-17 04:09:42
    你有什么了不起
    對推進(jìn)武鳴縣文化大發(fā)展大繁榮的幾點思考
    張羽:我執(zhí)著我成功
    一二三四中文在线观看免费高清| 一级黄片播放器| 亚洲精品自拍成人| 欧美激情国产日韩精品一区| 亚洲av成人精品一区久久| 成年人午夜在线观看视频| 听说在线观看完整版免费高清| 日日撸夜夜添| 亚洲国产欧美人成| 97超视频在线观看视频| 欧美日本视频| 成人欧美大片| 久久精品国产a三级三级三级| 在线 av 中文字幕| 国产精品一区www在线观看| 日日摸夜夜添夜夜爱| 男女国产视频网站| 亚洲精品色激情综合| av播播在线观看一区| 大话2 男鬼变身卡| 伦理电影大哥的女人| 不卡视频在线观看欧美| 国产欧美日韩精品一区二区| av线在线观看网站| 亚洲成人一二三区av| 黄色视频在线播放观看不卡| 最后的刺客免费高清国语| 天美传媒精品一区二区| 噜噜噜噜噜久久久久久91| 99热网站在线观看| 日韩伦理黄色片| 亚洲av中文av极速乱| 免费观看在线日韩| 大陆偷拍与自拍| 亚洲,欧美,日韩| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| 精品视频人人做人人爽| 蜜桃久久精品国产亚洲av| 色视频www国产| 男男h啪啪无遮挡| 嫩草影院精品99| 久久久国产一区二区| 我的女老师完整版在线观看| 国产精品国产三级国产av玫瑰| 日韩三级伦理在线观看| 亚洲国产精品专区欧美| 国产真实伦视频高清在线观看| 国产乱人视频| 午夜福利高清视频| 日韩人妻高清精品专区| 免费观看a级毛片全部| 国产精品国产三级国产av玫瑰| 美女xxoo啪啪120秒动态图| 午夜激情久久久久久久| 亚洲av男天堂| 五月玫瑰六月丁香| 中国三级夫妇交换| 少妇人妻久久综合中文| 久久精品久久久久久噜噜老黄| 深夜a级毛片| 亚洲精品成人久久久久久| 亚洲四区av| 色视频在线一区二区三区| 青春草亚洲视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产精品成人久久小说| 国产片特级美女逼逼视频| 国产成人aa在线观看| 亚洲av.av天堂| 精品国产三级普通话版| 国产真实伦视频高清在线观看| 日韩av不卡免费在线播放| 成人黄色视频免费在线看| 丰满人妻一区二区三区视频av| 2018国产大陆天天弄谢| 少妇丰满av| 2022亚洲国产成人精品| 91久久精品电影网| av网站免费在线观看视频| h日本视频在线播放| 亚洲精华国产精华液的使用体验| 可以在线观看毛片的网站| 高清在线视频一区二区三区| 秋霞在线观看毛片| 美女cb高潮喷水在线观看| 99久久中文字幕三级久久日本| 日韩人妻高清精品专区| 大香蕉久久网| 欧美人与善性xxx| 18+在线观看网站| 精品一区二区三卡| 久久久a久久爽久久v久久| 欧美xxxx性猛交bbbb| 美女内射精品一级片tv| 欧美zozozo另类| 嫩草影院新地址| 黄色怎么调成土黄色| 国产精品精品国产色婷婷| av在线天堂中文字幕| 欧美日韩视频高清一区二区三区二| 在线看a的网站| 日韩成人伦理影院| 人人妻人人看人人澡| 国产欧美日韩精品一区二区| 国产成人精品一,二区| 老女人水多毛片| 51国产日韩欧美| 简卡轻食公司| 精品人妻熟女av久视频| 国产片特级美女逼逼视频| 狂野欧美白嫩少妇大欣赏| 欧美xxxx性猛交bbbb| 免费观看的影片在线观看| 国语对白做爰xxxⅹ性视频网站| 97热精品久久久久久| 69av精品久久久久久| 女人十人毛片免费观看3o分钟| 一区二区三区四区激情视频| 91精品伊人久久大香线蕉| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜爱| 久久韩国三级中文字幕| 丝袜美腿在线中文| 91久久精品国产一区二区成人| 久久久久久国产a免费观看| 欧美性感艳星| av国产精品久久久久影院| 国产av国产精品国产| 免费观看无遮挡的男女| 免费观看无遮挡的男女| 少妇 在线观看| 中国美白少妇内射xxxbb| 婷婷色麻豆天堂久久| 日韩制服骚丝袜av| 午夜免费鲁丝| 超碰97精品在线观看| 国产大屁股一区二区在线视频| 国产探花极品一区二区| 精华霜和精华液先用哪个| 国精品久久久久久国模美| 色视频www国产| 日韩欧美一区视频在线观看 | 插逼视频在线观看| 在线播放无遮挡| 成年女人看的毛片在线观看| 亚洲精品成人久久久久久| 亚洲精品国产色婷婷电影| 国内精品宾馆在线| 美女视频免费永久观看网站| 免费人成在线观看视频色| 岛国毛片在线播放| 国产极品天堂在线| 国产成人免费观看mmmm| 嫩草影院新地址| 亚洲国产最新在线播放| 国产精品99久久99久久久不卡 | 午夜福利网站1000一区二区三区| 亚洲av日韩在线播放| 日韩欧美精品v在线| 亚洲伊人久久精品综合| 少妇的逼好多水| 一二三四中文在线观看免费高清| 亚洲欧美清纯卡通| 国产v大片淫在线免费观看| 亚洲av中文字字幕乱码综合| 免费大片黄手机在线观看| 亚洲精品久久久久久婷婷小说| 99久久中文字幕三级久久日本| 在线观看三级黄色| 久久97久久精品| 在线免费观看不下载黄p国产| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 日日啪夜夜撸| 爱豆传媒免费全集在线观看| 国产av国产精品国产| 99热这里只有是精品在线观看| 国产成人精品一,二区| 久久久久久久久久久免费av| 91久久精品电影网| 亚洲av.av天堂| 国产黄片视频在线免费观看| 亚洲欧美中文字幕日韩二区| 内地一区二区视频在线| 色综合色国产| 欧美日韩一区二区视频在线观看视频在线 | 各种免费的搞黄视频| 青春草亚洲视频在线观看| 日本一二三区视频观看| 国产69精品久久久久777片| 午夜精品一区二区三区免费看| 成人亚洲精品一区在线观看 | 18+在线观看网站| 欧美区成人在线视频| 97人妻精品一区二区三区麻豆| a级毛片免费高清观看在线播放| 91在线精品国自产拍蜜月| 在线 av 中文字幕| 高清在线视频一区二区三区| 亚洲精华国产精华液的使用体验| 成人午夜精彩视频在线观看| 国产探花在线观看一区二区| 国产免费又黄又爽又色| 亚洲av二区三区四区| 久久精品国产自在天天线| 欧美一区二区亚洲| 久久久久精品性色| 国产高清三级在线| 色网站视频免费| 国产精品无大码| 我要看日韩黄色一级片| 国产中年淑女户外野战色| 观看免费一级毛片| 成人亚洲欧美一区二区av| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 亚洲成人久久爱视频| 免费少妇av软件| 岛国毛片在线播放| 少妇人妻一区二区三区视频| 久久影院123| 国产亚洲av嫩草精品影院| 极品少妇高潮喷水抽搐| 人妻制服诱惑在线中文字幕| 亚洲av二区三区四区| 视频区图区小说| 久久人人爽人人爽人人片va| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 网址你懂的国产日韩在线| 日韩欧美精品v在线| 欧美少妇被猛烈插入视频| 高清欧美精品videossex| videos熟女内射| .国产精品久久| 国产精品一及| 久久97久久精品| 18禁动态无遮挡网站| 又黄又爽又刺激的免费视频.| 一个人看的www免费观看视频| 婷婷色麻豆天堂久久| 久久精品综合一区二区三区| 国产精品久久久久久av不卡| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 我的老师免费观看完整版| 国产精品人妻久久久影院| 国产亚洲av嫩草精品影院| 亚洲av在线观看美女高潮| 亚洲成色77777| av在线观看视频网站免费| 精品一区在线观看国产| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 欧美精品人与动牲交sv欧美| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三 | 网址你懂的国产日韩在线| 日本午夜av视频| 国产精品久久久久久av不卡| 国产v大片淫在线免费观看| a级一级毛片免费在线观看| 身体一侧抽搐| 在线观看三级黄色| 久久久久九九精品影院| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 午夜激情久久久久久久| 亚洲av免费高清在线观看| 色视频www国产| 少妇裸体淫交视频免费看高清| 国产黄色免费在线视频| 国产亚洲91精品色在线| 国产成人a∨麻豆精品| 91精品国产九色| 久久久久久久久久人人人人人人| 国产成人免费观看mmmm| 69av精品久久久久久| 国产色爽女视频免费观看| 午夜福利高清视频| 高清av免费在线| 日韩免费高清中文字幕av| 99热这里只有是精品50| 高清午夜精品一区二区三区| 欧美精品一区二区大全| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 噜噜噜噜噜久久久久久91| 人妻系列 视频| 熟女av电影| 午夜福利在线在线| 激情 狠狠 欧美| 国产在线一区二区三区精| 日本免费在线观看一区| 国产黄a三级三级三级人| 色视频www国产| 亚洲欧美成人精品一区二区| 深夜a级毛片| 能在线免费看毛片的网站| 亚洲人成网站高清观看| 日韩一本色道免费dvd| 国产高清国产精品国产三级 | 搡老乐熟女国产| 99热这里只有是精品在线观看| 可以在线观看毛片的网站| 日韩一本色道免费dvd| 国产高清有码在线观看视频| 亚洲图色成人| 永久网站在线| 亚洲av男天堂| 国产精品一区www在线观看| 亚洲av中文字字幕乱码综合| 国产精品偷伦视频观看了| 中国国产av一级| 特大巨黑吊av在线直播| 国产精品人妻久久久久久| 久久99蜜桃精品久久| 在线观看免费高清a一片| 极品少妇高潮喷水抽搐| 国产熟女欧美一区二区| 日韩大片免费观看网站| 禁无遮挡网站| 亚洲av中文字字幕乱码综合| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 亚洲国产精品国产精品| 日韩欧美 国产精品| 丰满人妻一区二区三区视频av| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 亚洲av日韩在线播放| 夫妻午夜视频| 亚洲人与动物交配视频| 国产在线男女| 精品人妻视频免费看| 嫩草影院入口| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 亚洲av一区综合| 婷婷色av中文字幕| 国产精品不卡视频一区二区| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 免费少妇av软件| 国产精品成人在线| 亚洲,一卡二卡三卡| 日本三级黄在线观看| 波野结衣二区三区在线| 亚洲av.av天堂| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 午夜福利高清视频| 成人特级av手机在线观看| 欧美3d第一页| 春色校园在线视频观看| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| av一本久久久久| 国产在线一区二区三区精| 网址你懂的国产日韩在线| 777米奇影视久久| 在线免费观看不下载黄p国产| 欧美日韩亚洲高清精品| 亚洲性久久影院| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 亚洲久久久久久中文字幕| 久久久久久久久久人人人人人人| 3wmmmm亚洲av在线观看| 国产黄片视频在线免费观看| 如何舔出高潮| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产av成人精品| 91精品伊人久久大香线蕉| 国产精品蜜桃在线观看| 亚洲av不卡在线观看| 久久久久国产网址| 精品久久久久久久久亚洲| 一个人观看的视频www高清免费观看| 男人狂女人下面高潮的视频| 日韩成人伦理影院| 国产精品成人在线| 欧美激情在线99| 国产爽快片一区二区三区| 老司机影院毛片| 精品午夜福利在线看| 国产美女午夜福利| 午夜视频国产福利| 男女啪啪激烈高潮av片| 精品一区二区免费观看| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| 肉色欧美久久久久久久蜜桃 | 亚洲欧美清纯卡通| 亚洲不卡免费看| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 三级国产精品片| 国产伦在线观看视频一区| 日日啪夜夜撸| 欧美日韩视频高清一区二区三区二| 免费看日本二区| 免费观看av网站的网址| 日韩一本色道免费dvd| 五月伊人婷婷丁香| 中国三级夫妇交换| 1000部很黄的大片| 激情 狠狠 欧美| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 久热久热在线精品观看| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| 黄色日韩在线| 欧美性猛交╳xxx乱大交人| 直男gayav资源| 中文天堂在线官网| 亚洲精品久久午夜乱码| 免费少妇av软件| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 国产久久久一区二区三区| av网站免费在线观看视频| 国产免费视频播放在线视频| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 听说在线观看完整版免费高清| 伊人久久国产一区二区| 亚洲欧美精品专区久久| 美女cb高潮喷水在线观看| 久久女婷五月综合色啪小说 | 亚洲va在线va天堂va国产| 99re6热这里在线精品视频| 一级片'在线观看视频| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 男女那种视频在线观看| 少妇丰满av| 成年人午夜在线观看视频| 网址你懂的国产日韩在线| 国产视频首页在线观看| 中文在线观看免费www的网站| 欧美日韩视频精品一区| 中文天堂在线官网| 精品午夜福利在线看| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 人妻少妇偷人精品九色| 免费观看av网站的网址| 一个人观看的视频www高清免费观看| 男人添女人高潮全过程视频| 久久久成人免费电影| 韩国高清视频一区二区三区| 国产女主播在线喷水免费视频网站| 日韩免费高清中文字幕av| www.av在线官网国产| 嫩草影院精品99| 亚洲三级黄色毛片| 日本wwww免费看| 成人鲁丝片一二三区免费| 国产永久视频网站| 午夜福利视频1000在线观看| 搞女人的毛片| 日韩强制内射视频| 秋霞在线观看毛片| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 又爽又黄无遮挡网站| 在线观看av片永久免费下载| 色视频在线一区二区三区| av专区在线播放| 午夜日本视频在线| 亚洲国产最新在线播放| 国产探花极品一区二区| 国产精品一及| 亚洲国产成人一精品久久久| 国产黄色免费在线视频| 国产高清有码在线观看视频| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 亚洲色图av天堂| 午夜亚洲福利在线播放| 成人午夜精彩视频在线观看| 亚洲精品色激情综合| 欧美日韩亚洲高清精品| 午夜福利在线在线| 国产中年淑女户外野战色| 国产熟女欧美一区二区| 一本久久精品| 免费观看av网站的网址| 国精品久久久久久国模美| 伦精品一区二区三区| 国国产精品蜜臀av免费| 免费少妇av软件| 亚洲国产精品专区欧美| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 国产极品天堂在线| 简卡轻食公司| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频| 91精品一卡2卡3卡4卡| 亚洲内射少妇av| 涩涩av久久男人的天堂| 亚洲国产av新网站| 成人无遮挡网站| 在线精品无人区一区二区三 | 精品国产三级普通话版| 一级av片app| 日韩欧美精品v在线| 免费黄色在线免费观看| 在线观看av片永久免费下载| 精品一区二区三区视频在线| 永久网站在线| 99久国产av精品国产电影| 国产av码专区亚洲av| 久久精品久久精品一区二区三区| 欧美+日韩+精品| 免费大片18禁| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 久久久精品免费免费高清| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 啦啦啦在线观看免费高清www| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 国产日韩欧美亚洲二区| 国产精品久久久久久精品电影| 直男gayav资源| 精品一区二区免费观看| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 极品教师在线视频| 深夜a级毛片| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 久久久久国产精品人妻一区二区| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 国产人妻一区二区三区在| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 男的添女的下面高潮视频| 水蜜桃什么品种好| 亚洲精品日韩在线中文字幕| 亚洲精品第二区| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| freevideosex欧美| 久久久久性生活片| av在线观看视频网站免费| 国产亚洲一区二区精品| 中文欧美无线码| 欧美丝袜亚洲另类| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 亚洲欧美精品专区久久| 如何舔出高潮| 亚洲美女视频黄频| 亚洲精品一区蜜桃| 成人国产av品久久久| 三级国产精品欧美在线观看| 国产精品99久久99久久久不卡 | av免费在线看不卡| 免费人成在线观看视频色| 嫩草影院精品99| 91狼人影院| 在线观看免费高清a一片| 国产精品一区二区性色av| 青春草国产在线视频| 欧美bdsm另类| 在线观看人妻少妇| 舔av片在线| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 午夜日本视频在线| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 国产男女内射视频| 欧美人与善性xxx| 69av精品久久久久久| 国内精品美女久久久久久| 国产乱来视频区| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 欧美少妇被猛烈插入视频| 精品酒店卫生间| 亚洲欧美中文字幕日韩二区| av免费观看日本| 午夜精品一区二区三区免费看| 亚洲av一区综合| 国产高清三级在线| 少妇裸体淫交视频免费看高清| 久久女婷五月综合色啪小说 |