• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolution of microstructure,stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy

    2023-03-13 09:19:42ChuangWang王闖XiaoDongGao高曉冬DiDiLi李迪迪JingJingChen陳晶晶JiaFanChen陳家凡XiaoMingDong董曉鳴XiaodanWang王曉丹JunHuang黃俊XiongHuiZeng曾雄輝andKeXu徐科
    Chinese Physics B 2023年2期
    關(guān)鍵詞:陳家晶晶

    Chuang Wang(王闖) Xiao-Dong Gao(高曉冬) Di-Di Li(李迪迪) Jing-Jing Chen(陳晶晶)Jia-Fan Chen(陳家凡) Xiao-Ming Dong(董曉鳴) Xiaodan Wang(王曉丹)Jun Huang(黃俊) Xiong-Hui Zeng(曾雄輝) and Ke Xu(徐科)

    1School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China

    2Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences,Suzhou 215123,China

    3Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,School of Physical Science and Technology,Suzhou University of Science and Technology,Suzhou 215009,China

    4Shenyang National Laboratory for Materials Science,Jiangsu Institute of Advanced Semiconductors,Suzhou 215000,China

    5Suzhou Nanowin Science and Technology Co.,Ltd.,Suzhou 215123,China

    Keywords: hydride vapor phase epitaxy (HVPE), AlN, threading dislocations, nano-patterned sapphire substrate

    1.Introduction

    AlGaN-based deep-ultraviolet (DUV) optoelectronic devices have attracted much attention in the field of air and water purification,sterilization,and medical applications.[1-4]At present, AlGaN based DUV devices are fabricated on AlN templates due to the lack of native substrates.[5]Hydride vapor phase epitaxy(HVPE)is currently one of the most promising methods to produce industrial grade AlN templates due to the high growth rate and low impurity concentration.[6-8]However,the large lattice and thermal mismatch between sapphire and AlN always result in very high threading dislocation density (TDD) as well as large strain in AlN films.The performance of the AlGaN-based devices is seriously limited by the quality of the template.[9-11]A high-quality AlN thick film will be beneficial to reducing the stress and dislocation density of the following AlGaN epitaxial layer.Therefore, it is crucial to grow high-quality AlN thick films for improving the performance of the AlGaN-based devices.

    Many growth techniques/methods have been developed to improve the quality of AlN thick films on sapphire substrates,such as multilayers via growth mode alternation technique,[12]migration-enhanced metal-organic chemical vapor deposition(MEMOCVD),[13]sapphire nitridation pretreatment,[14]lateral overgrowth on patterned sapphire substrates,[15]hightemperature annealing[16]andin situetching method.[17]Among these methods, the lateral overgrowth method on NPSSs has attracted much attention for its effectivity in reducing dislocation density and stress.[18,19]It is reported that the AlN epilayer grown on hole-type NPSS by metal-organic chemical vapor deposition (MOCVD) can achieve higher quality attributed to the center-closed growth mode.[20]Although the growth of parasitic grains on the additional surface introduced by NPSS can affect coalescence and possibly seriously affect the crystallinity of the epitaxial layer,[21-23]the voids caused by the lateral growth process of the AlN columns on the mesa provide a channel for the gradual release of the stress.[24]However, there are few reports about HVPE-AlN layers grown on hole-type NPSSs and the stress and dislocation evolution process remain unclear.

    In this report,AlN thick films were grown on hexagonally arranged concave truncated cones shaped hole-type NPSSs in a home-built horizontal HVPE system.The surface morphology, crystal quality, and the evolution behavior of stress and threading dislocations are investigated in detail,which would be beneficial for the growth of high-quality AlN films.

    2.Experiments

    Commercially available 2-inch c-plane-oriented NPSSs were used in this work.Figure 1(a) shows a typical AFM image of NPSSs with hexagonally-arranged hole-type pattern.The pattern period is~1 μm.The cross-sectional profile is shown in Fig.1(b).The inside structure of the hole is an inverted truncated cone.The depth and diameter of holes are approximately 500 nm and 815 nm, respectively.The AlN thick films with about 4.5μm thickness were grown on NPSSs in a home-built HVPE setup.In the experiments, the substrates were heated at 1500°C in a mixed carrier gas flow(N2:H2=1:1).As a reactive gas, AlCl3was generated in the reactor (source zone) by the reaction between Al metal and HCl gas at 550°C, and was then reacted with NH3in the growth zone.The HCl and NH3flow rates are 60 sccm and 800 sccm,respectively.And the carrier gas flow rate of mixed N2and H2is fixed at 2000 sccm.

    The surface morphology and structure of the AlN films were characterized by atomic force microscopy(AFM)in tapping mode.The cross-sectional morphologies of samples were examined by scanning electron microscopy (SEM) by using Hitachi S4800.The crystallinity and stress of the AlN films were determined by high-resolution x-ray diffraction(HRXRD) and Raman scattering (Raman line scan was performed every 0.1μm for a test point),respectively.Transmission electron microscopy(TEM)and scanning TEM(STEM)measurements were performed through a TALOS F200X operating at 200 kV.The cross-sectional specimens were prepared along the[11ˉ20]AlN direction by mechanical polishing, and then by Ar+ions milling.

    Fig.1.(a)AFM image of hole type NPSSs.(b)Cross-section profile of the patterns at the white solid line in(a).

    3.Results and discussion

    Figure 2 exhibits that the full width at half-maximum(FWHM) values of symmetric (0002)- and asymmetric(10ˉ12)-planes x-ray rocking curves (XRCs) of the AlN thick films are 405 arcsec and 647 arcsec, respectively.An estimation of the dislocation densityρshould be calculated by the equationρ=β2/4.35b2,[25]whereβtilt andβtwist are the FWHMs of the(0002)and(10ˉ12)XRC,respectively,and the Burgers vectorbis equal toc-axial anda-axial lattice constants, respectively.The screw- and edge-type dislocation densities were calculated to be about 6.62×108cm-2and 3.08×109cm-2,respectively.

    Fig.2.XRCs for(0002)and(10ˉ12)planes.

    Figures 3(a) and 3(b) show the surface morphology of AlN layers grown on NPSSs.As shown in Fig.3(a), the surface of the AlN layer has complete coalesced and shows multiple growth spirals.This may be due to the periodically distributed TD source below the coalesced surface.[26]The root mean square (RMS) value of surface roughness for a 10×10 μm2area is 1.35 nm.In addition, the smooth and uniform step-flow morphology is observed in Fig.3(b).The RMS value for a 2×2μm2area is 0.24 nm.Figure 3(c)shows the cross-sectional morphology of epilayer.It is found that the epilayer prefers to merge on the patterned regions and voids are formed over the hole of NPSSs.The average coalescence thickness is about 2μm,which is similar to previous reports.In addition, the void deviates from the center of the pattern,which may correspond to the coalescence process of the surface.On the other hand,misaligned crystallites were observed on the sidewall of sapphire,which is confirmed by TEM measurement later.It is reported that the HVPE-AlN layers nucleate and grow simultaneously both on the mesa and sidewall of NPSSs.[27]The parasitic AlN crystallites which orientation is different from the orientation of the AlN layer on the c-plane mesa decelerated the coalescence process of layers, and resulted in the void deviates from the center of the pattern.

    In order to study the surface coalescence behaviors, the sample was obliquely dissociated.Figure 4(a) shows the oblique cross-sectional morphology image of the AlN layer,which can demonstrate the evolution of void outlines at different thickness.It is found that a large number of the triangular hollow profiles are periodically distributed on the plane.The cycle of the voids is consistent with the period of the NPSSs pattern exactly.The extended outlines are at an angle of 120 degrees to each other, and one of them is parallel to [11ˉ20]direction.And the area of voids decreased gradually with increasing of epilayer thickness during the growth process.Figure 4(b) presents a magnified image at the AlN/NPSSs interface.The three-fold distributed inclined grains grown on the slopes of the NPSSs were observed on the interface,and have the same spatial distribution as the void.It is speculated that the undesired AlN crystal grown on the sidewalls of the holes may hinder the growth of c-oriented AlN on the mesa area,and thus, the coalescence of the holes presents a triangular void morphology.

    Fig.3.(a)AFM image of the surface morphology.(b)Magnified morphology in(a).(c)Cross-sectional SEM image.

    Fig.4.(a)Oblique cross-sectional SEM images of AlN layers.(b)SEM images of three-fold distributed misaligned crystal on AlN/Sapphire interface.

    Figure 5(a) shows the cross-sectional bright-field STEM image underg= [0002] condition.It can be seen that the profile of nanohole is different from the original morphology due to the decomposition of sapphire at high temperature.[28]The crystal orientation on three positions (marked by yellow circles) is confirmed by the selected area electron diffraction(SAED).Positions 1 and 2 are located at the region of crystal grown on the left and right sidewall of the hole, respectively,and position 3 is at the mesa region.The SAED results reveal that the orientation of grains grown on these positions is completely different.As shown in Figs.5(b)and 5(c),[11ˉ20]and [0002] orientation AlN were grown on the right and left sidewall, respectively.This phenomenon is similar to other group III nitrides growing on different orientation sapphire substrate.[29,30]As shown in Fig.5(d),a c-plane AlN layer was grown with a 30°rotation around the[0001]axis with respect to the sapphire,and the epitaxial relationships are AlN(0002)||sapphire(0006)and AlN(10ˉ10)||sapphire(11ˉ20).[31]

    Fig.5.(a) Cross-sectional bright-field STEM image under g=[0002] condition.(b)-(d) The SAEDs of three positions as marked in (a).(e)Illustration of crystal orientation parasitic grains.

    The angle between the inclined non-c-plane sidewall of NPSSs and the c-plane is close to that between r- or n-plane sapphire and c-plane sapphire, indicating that the r- and nplane sapphire facets may be contained in the NPSSs.The AlN nucleation on NPSSs takes place not only on the c-plane mesa areas but also on the inclined sidewalls of the hole containing r-and n-facets(misaligned crystallites).[22]In the initial stage of growth, the parasitic crystallites formed on the sidewall of nano-hole are competing with AlN crystals grown on the mesa and are eliminated during the subsequent lateral growth of the epitaxial layer.Figure 5(e)shows a schematic of the crystal orientation of parasitic AlN crystals grown on the upper inclined plane of NPSSs.Based on the SAED measurements, the AlN crystallites which hinder surface coalescence are assigned to the misaligned grains formed on the three-fold n-plane of sapphire substrates.[32]So,it can be concluded that the appearance of unique triangular voids is caused by the presence of parasitic crystallites existed in this specific area.

    Fig.6.(a) Evolution of the E2 (high) phonon mode frequency shift along growth direction.The inset image is a schematic diagram of the Raman line scan measurement.(b) Raman spectra of epilayer at five typical positions.The dashed line corresponds the E2 (high) peak of bulk AlN at 657.4 cm-1.

    The stress evolution of HVPE-AlN films grown on the mesa of NPSSs was characterized through Raman spectroscopy.Figure 6 shows the evolution of E2(high) phonon mode frequency with the growth direction and the Raman spectra of epilayer on five typical positions,which reveals the stress evolution of samples with thickness.It is found that the phonon frequency of E2(high)fluctuates greatly along the growth direction.And the fluctuation can be roughly divided into four stages S1-S4 were given in Fig.6(a).The inset image is a schematic diagram of the Raman line scan measurement.Since the peak of the E2(high)phonon mode of stressfree AlN locates at 657.4 cm-1,there is residual compressive stress in the AlN layer.[33]Just above the heterointerface, the compressive stress of AlN increases continuously and reaches its peak position (1 μm), which is resulted from the combination of thermal expansion coefficient (TEC) mismatch between AlN and sapphire and the competitive growth process in the early stages of growth.It is found that the E2(high)phonon frequency decreases gradually from 659.4 cm-1to 658.6 cm-1in the S2 stage,which corresponds to the coalescence evolution process of the AlN layer as discussed above.The presence of nanovoids act as a stress releasing channel in the growth direction.[24]The E2(high) phonon mode frequency in the S3 stage with a certain rebound may be caused by the misorientations of the adjacent regions at the coalescence region.And it enters a stable state after fully completing the coalescence.

    In order to examine the dislocation annihilation mechanism of AlN layers, the cross-sectional dark-field TEM images were taken as shown in Fig.7.Figures 7(a)and7(b)show the same area of the AlN epilayer on NPSSs under two-beam condition withg=[0002]and[11ˉ20],respectively.According to the invisibility criterion rule,g·b=0, the edge, mix, and screw dislocations were identified by comparing the two TEM images of the same area under different diffraction conditions.The screw-type and edge-type TDs are visible withg=[0002]and [11ˉ20], respectively.[34]The mix-type TDs generated on the coalescence position is countable and is caused by the misorientation of the adjacent regions.In contrast, the number of edge-type dislocations is relatively higher and many of them can propagate into the upper AlN epilayer, as shown in Fig.7(b).It is noted that there is a significant strain contrast above the mesa,which is associated with large compress stress caused by the competitive growth between the parasitic crystallites and AlN grown on the mesa area.

    To illustrating the evolution process of the TDs more clearly, the magnified images of the heterointerface enclosed in the red rectangle were presented in Figs.7(c) and 7(d).It is clear that there is a lot of inversion domains(IDs)as shown in Fig.7(c).The Burgers vector of these IDs is similar to the Burns vector of the spiral dislocations, making it difficult to determine the origin of the spiral dislocations generated on the mesa.[35]As shown in Fig.7(d),the edge TDs(type-D)generated at the AlN/sapphire interface interacted with each other,resulting in a decrease in the threading dislocations density(TDD)above the mesa regions.A part of dislocations with different signs spontaneously form dislocation loops.Due to the image force effects,the rest of the TDs near the nanohole bend toward and terminate the boundary.In addition,the connection of TDs with the same signs generated at the crystal boundary(type-C) results in the appearance of horizontal dislocation.These mechanisms all lead to the effectively reduction of dislocations.However,the TDD increases apparently during the subsequent epitaxy process.It is because the probability of dislocation reaction is inversely proportional to the spacing between them.A large number of edge-type TDs generated on the boundary of misaligned crystallites (type-B) hardly interact with each other,extend directly to the upper AlN epilayer.

    Fig.7.Cross-sectional dark-field TEM images under two-beam conditions(a)g=[0002],(b)g=[11ˉ20].(c)and(d)The magnified images of selected typical zones in(a)and(b),respectively.

    Fig.8.Illustrations of TDs distribution in AlN epilayers grown on NPSSs.

    Figure 8 is the schematic diagram of the distribution of dislocation.There are two type of TD that propagated into the surface of epilayers.The mixed-types TDs(type-A)is caused by the misorientation of the adjacent regions during the coalescence of voids.And the pure edge-type TDs(type-B)are originated from the boundary between the misaligned grains and the AlN on mesa.It is reported that the effects of image force and misorientation should be taken into account for decreasing the TDD in AlN epilayers grown on NPSSs.[36]However,for the NPSSs with inverted truncated cone-shaped pattern,the misaligned crystallites should also be considered.The type-B TDs formed at the boundary becomes a crucial factor leading to the deterioration of the crystalline quality of AlN films.It is supposed that the crystal quality of AlN thick films will be improved by decreasing the dimension of misaligned grains.

    4.Conclusion and perspectives

    In summary,the formation mechanism of triangular voids in the HVPE-AlN epilayer grown on concave truncated coneshaped NPSSs and its effect on crystal quality are investigated.It is found that c-orientation AlN grown on the mesa are hindered by the undesired parasitic nucleation on the three-fold n-plane facet sapphire,which results in the presentence of the holes with a triangular outlines morphology.The Raman measurements indicate that the appearance of voids can effectively relieve compressive stress produced by the undesired grain growth and the coalescence of misaligned AlN.In addition,reduction of parasitic growth on the sidewall of pattern is also essential for decreasing TDD in the upper AlN epilayer.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61974158)and the Natural Science Fund of Jiangsu Province,China(Grant No.BK20191456).

    猜你喜歡
    陳家晶晶
    SOME PROPERTIES OF THE INTEGRATION OPERATORS ON THE SPACES F(p,q,s)*
    昆蟲才藝表演
    巧算最小表面積
    PbI2/Pb5S2I6 van der Waals Heterojunction Photodetector
    Digging for the past
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    銀億股份:于無聲處聽驚雷
    我的家鄉(xiāng)最美之賀州
    陳家泵站新舊混凝土銜接處理
    午夜免费成人在线视频| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 日本精品一区二区三区蜜桃| 国产精品日韩av在线免费观看| 99在线人妻在线中文字幕| 久久久久久国产a免费观看| 露出奶头的视频| 亚洲欧美日韩卡通动漫| 亚洲五月婷婷丁香| 精品无人区乱码1区二区| 老司机午夜福利在线观看视频| 51午夜福利影视在线观看| 精品久久久久久久末码| 欧美日韩国产亚洲二区| 日本熟妇午夜| 成年版毛片免费区| 国产午夜福利久久久久久| 久久久久久人人人人人| 99国产精品一区二区三区| 黄色日韩在线| 亚洲电影在线观看av| 亚洲电影在线观看av| 久久精品人妻少妇| 男人舔奶头视频| 一级a爱片免费观看的视频| 97人妻精品一区二区三区麻豆| 悠悠久久av| 亚洲真实伦在线观看| 日韩欧美精品v在线| 中文字幕av成人在线电影| 精品人妻偷拍中文字幕| 国产三级在线视频| 国产主播在线观看一区二区| 综合色av麻豆| 久9热在线精品视频| 国产av一区在线观看免费| 免费人成在线观看视频色| 亚洲欧美日韩东京热| 全区人妻精品视频| 欧美区成人在线视频| 国产亚洲精品久久久久久毛片| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 久久人人精品亚洲av| 日本与韩国留学比较| 国产私拍福利视频在线观看| 亚洲精品一区av在线观看| 国产成人系列免费观看| 国产伦精品一区二区三区视频9 | 久久精品国产自在天天线| 日本免费一区二区三区高清不卡| 亚洲欧美日韩无卡精品| 精品乱码久久久久久99久播| 十八禁网站免费在线| 天堂√8在线中文| 午夜亚洲福利在线播放| 中国美女看黄片| 国内精品久久久久久久电影| 国产成人a区在线观看| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 亚洲国产欧美人成| 国产精华一区二区三区| 精品欧美国产一区二区三| 欧美成狂野欧美在线观看| 国内精品久久久久久久电影| 国产综合懂色| 网址你懂的国产日韩在线| 小说图片视频综合网站| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 免费搜索国产男女视频| 99久久精品国产亚洲精品| 日本一本二区三区精品| 一个人看视频在线观看www免费 | 91在线精品国自产拍蜜月 | 波多野结衣高清无吗| 亚洲av美国av| 观看美女的网站| 久久性视频一级片| 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 中出人妻视频一区二区| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 神马国产精品三级电影在线观看| 高清日韩中文字幕在线| 国产伦精品一区二区三区视频9 | 亚洲人成伊人成综合网2020| 欧美一级a爱片免费观看看| 国内久久婷婷六月综合欲色啪| 亚洲午夜理论影院| 欧美日本视频| 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 美女大奶头视频| 在线免费观看的www视频| 精品久久久久久久毛片微露脸| 在线观看午夜福利视频| 麻豆国产av国片精品| 特大巨黑吊av在线直播| 国产精品久久电影中文字幕| 久久久久久久亚洲中文字幕 | 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线观看免费| 久久欧美精品欧美久久欧美| 婷婷六月久久综合丁香| 长腿黑丝高跟| 亚洲欧美日韩卡通动漫| 老汉色av国产亚洲站长工具| 国产高清有码在线观看视频| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 免费一级毛片在线播放高清视频| 国产精品亚洲一级av第二区| 亚洲精品成人久久久久久| 成人三级黄色视频| 在线观看一区二区三区| 在线观看66精品国产| 韩国av一区二区三区四区| 网址你懂的国产日韩在线| 欧美bdsm另类| 麻豆成人av在线观看| www.色视频.com| 国产精品自产拍在线观看55亚洲| av女优亚洲男人天堂| 两个人看的免费小视频| 麻豆成人av在线观看| 日韩欧美一区二区三区在线观看| 亚洲av电影在线进入| 国产美女午夜福利| 久久久久久久午夜电影| 亚洲av熟女| 成人鲁丝片一二三区免费| 国产成人啪精品午夜网站| 一本精品99久久精品77| 国产伦在线观看视频一区| 日本黄大片高清| 国产精品香港三级国产av潘金莲| 久久精品综合一区二区三区| 男插女下体视频免费在线播放| 国产97色在线日韩免费| 中文字幕久久专区| 国产黄片美女视频| 99国产极品粉嫩在线观看| 97超视频在线观看视频| 日本免费a在线| 亚洲欧美日韩高清专用| 亚洲avbb在线观看| 美女被艹到高潮喷水动态| 最新美女视频免费是黄的| 免费看光身美女| 日韩欧美国产一区二区入口| 国产高清视频在线观看网站| 嫩草影院入口| 成年女人毛片免费观看观看9| 国产精品电影一区二区三区| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 免费看a级黄色片| 亚洲av熟女| 亚洲人成网站高清观看| www日本黄色视频网| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 成人av在线播放网站| 中文资源天堂在线| 亚洲,欧美精品.| 非洲黑人性xxxx精品又粗又长| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 亚洲成人久久爱视频| 国产亚洲精品av在线| 国产三级在线视频| 成人鲁丝片一二三区免费| av片东京热男人的天堂| 亚洲一区二区三区不卡视频| 国产精品影院久久| 日本五十路高清| a级毛片a级免费在线| 禁无遮挡网站| 国产色婷婷99| 国产极品精品免费视频能看的| 草草在线视频免费看| 天天添夜夜摸| 免费人成视频x8x8入口观看| 香蕉丝袜av| 国产亚洲av嫩草精品影院| 精品久久久久久成人av| 成人精品一区二区免费| 亚洲中文字幕日韩| 日韩免费av在线播放| 天堂√8在线中文| 少妇裸体淫交视频免费看高清| 天堂√8在线中文| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 午夜免费男女啪啪视频观看 | 日韩人妻高清精品专区| 美女大奶头视频| 在线观看美女被高潮喷水网站 | 久久精品91无色码中文字幕| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱 | 色综合欧美亚洲国产小说| 国产久久久一区二区三区| 成人欧美大片| 黄色日韩在线| 国产高清激情床上av| 国产高清有码在线观看视频| 色av中文字幕| 欧美激情久久久久久爽电影| 亚洲美女黄片视频| 极品教师在线免费播放| 午夜精品久久久久久毛片777| 国产色婷婷99| 中文字幕av成人在线电影| 国产黄片美女视频| 国产精品久久久久久亚洲av鲁大| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 级片在线观看| 欧美日韩综合久久久久久 | 亚洲av成人av| 欧美成人一区二区免费高清观看| 国产精品永久免费网站| 免费av不卡在线播放| 人人妻人人澡欧美一区二区| 18禁在线播放成人免费| 最新在线观看一区二区三区| 好看av亚洲va欧美ⅴa在| 丁香欧美五月| 久久6这里有精品| 亚洲人成网站在线播| 欧美日韩综合久久久久久 | 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 少妇的逼好多水| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 男女做爰动态图高潮gif福利片| 国产成人福利小说| 亚洲成人久久爱视频| 久久精品国产综合久久久| 久久人人精品亚洲av| 岛国在线免费视频观看| 精品久久久久久成人av| 在线观看免费视频日本深夜| 亚洲av美国av| 国产美女午夜福利| 久久久久免费精品人妻一区二区| 精品久久久久久,| 亚洲欧美日韩卡通动漫| 国产精品永久免费网站| 国产午夜福利久久久久久| 国产三级黄色录像| 国内精品久久久久久久电影| 国产探花极品一区二区| av欧美777| www.www免费av| 午夜视频国产福利| 搡老岳熟女国产| 欧美乱妇无乱码| 国产亚洲精品av在线| 亚洲 国产 在线| 免费观看人在逋| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 国产免费av片在线观看野外av| 国产精华一区二区三区| 少妇的逼水好多| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 国产高清视频在线播放一区| 国产精品久久久人人做人人爽| 午夜精品久久久久久毛片777| 国产av麻豆久久久久久久| 波多野结衣高清无吗| 香蕉丝袜av| 在线播放国产精品三级| 欧美三级亚洲精品| 欧美一区二区国产精品久久精品| 国产精品久久久久久久久免 | 国产精品免费一区二区三区在线| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 在线观看66精品国产| 亚洲av成人不卡在线观看播放网| 亚洲av成人av| 一区二区三区免费毛片| 日日摸夜夜添夜夜添小说| av国产免费在线观看| 日本免费a在线| 校园春色视频在线观看| 精品不卡国产一区二区三区| 在线免费观看的www视频| 欧美色视频一区免费| 久久精品国产综合久久久| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| 国产视频一区二区在线看| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 国产在视频线在精品| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 国产乱人视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 嫩草影视91久久| 欧美日韩乱码在线| 久久人妻av系列| 精品人妻偷拍中文字幕| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9| 国产精品国产高清国产av| 欧美午夜高清在线| 国产成人影院久久av| 日本三级黄在线观看| 精品不卡国产一区二区三区| 国产主播在线观看一区二区| 99riav亚洲国产免费| 亚洲avbb在线观看| 又紧又爽又黄一区二区| 亚洲av免费在线观看| 国产欧美日韩一区二区精品| 成人欧美大片| 国产三级中文精品| 日韩欧美一区二区三区在线观看| 国产精品嫩草影院av在线观看 | 一级毛片女人18水好多| 国产极品精品免费视频能看的| 美女高潮喷水抽搐中文字幕| 嫁个100分男人电影在线观看| 国产精品久久久久久久久免 | 黄色日韩在线| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 亚洲国产欧美网| 国产蜜桃级精品一区二区三区| tocl精华| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 亚洲欧美激情综合另类| 免费av不卡在线播放| 欧美一区二区国产精品久久精品| 国产精品永久免费网站| 亚洲精品在线观看二区| 久久性视频一级片| 又黄又粗又硬又大视频| 精华霜和精华液先用哪个| 亚洲av免费高清在线观看| 啦啦啦韩国在线观看视频| 国产一区在线观看成人免费| 国产亚洲av嫩草精品影院| 国产精品电影一区二区三区| 国产不卡一卡二| 日本一二三区视频观看| 国产亚洲精品综合一区在线观看| 波多野结衣高清无吗| 亚洲五月天丁香| 日日摸夜夜添夜夜添小说| 午夜a级毛片| 亚洲狠狠婷婷综合久久图片| 蜜桃久久精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 亚洲av电影在线进入| 亚洲人成网站在线播| 最近最新中文字幕大全免费视频| 一卡2卡三卡四卡精品乱码亚洲| netflix在线观看网站| 18禁国产床啪视频网站| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 深爱激情五月婷婷| 免费看日本二区| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区| 毛片女人毛片| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 1000部很黄的大片| 女人十人毛片免费观看3o分钟| 国产aⅴ精品一区二区三区波| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 亚洲无线在线观看| 香蕉久久夜色| 亚洲国产精品成人综合色| 成人国产综合亚洲| 日韩高清综合在线| 精品一区二区三区人妻视频| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 国产一区二区在线观看日韩 | 婷婷精品国产亚洲av| 午夜老司机福利剧场| 亚洲中文字幕日韩| 欧美日韩一级在线毛片| 男女午夜视频在线观看| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区视频9 | 亚洲片人在线观看| 男女那种视频在线观看| 久久久久久久午夜电影| 国产精品99久久久久久久久| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 久久久久国内视频| 91久久精品电影网| 1024手机看黄色片| 久久国产精品影院| 长腿黑丝高跟| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 激情在线观看视频在线高清| 色综合站精品国产| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区 | 岛国在线免费视频观看| 99精品在免费线老司机午夜| 91字幕亚洲| 国产成人影院久久av| 我的老师免费观看完整版| 亚洲人与动物交配视频| 18禁黄网站禁片免费观看直播| 国产精品 欧美亚洲| 美女高潮喷水抽搐中文字幕| 色综合婷婷激情| 男女之事视频高清在线观看| 精品不卡国产一区二区三区| 欧美日韩福利视频一区二区| 亚洲欧美日韩无卡精品| www.熟女人妻精品国产| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 欧美成人性av电影在线观看| 亚洲电影在线观看av| 亚洲成人久久爱视频| 午夜福利18| 日本三级黄在线观看| 国产高清视频在线观看网站| 午夜免费男女啪啪视频观看 | 成人特级黄色片久久久久久久| 久久久色成人| 免费看a级黄色片| 亚洲男人的天堂狠狠| 高清日韩中文字幕在线| 在线免费观看的www视频| 精品熟女少妇八av免费久了| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 无人区码免费观看不卡| 日韩欧美 国产精品| 亚洲av一区综合| 免费一级毛片在线播放高清视频| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 国产伦精品一区二区三区视频9 | 99久久99久久久精品蜜桃| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 天堂动漫精品| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 国产真实伦视频高清在线观看 | 国产精品免费一区二区三区在线| 国产色爽女视频免费观看| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区视频9 | 国产午夜福利久久久久久| 99riav亚洲国产免费| 小说图片视频综合网站| 免费看十八禁软件| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 亚洲精品456在线播放app | 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 香蕉av资源在线| 精品一区二区三区av网在线观看| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 怎么达到女性高潮| 国产欧美日韩精品亚洲av| 成人一区二区视频在线观看| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 欧美一级a爱片免费观看看| 中文字幕人成人乱码亚洲影| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 亚洲av中文字字幕乱码综合| 国产精品一及| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 亚洲久久久久久中文字幕| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 搡老岳熟女国产| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 亚洲在线观看片| 亚洲真实伦在线观看| 中国美女看黄片| 看片在线看免费视频| 欧美在线黄色| 久久午夜亚洲精品久久| 亚洲国产欧美网| 精品国产三级普通话版| 国产欧美日韩一区二区精品| 欧美日韩国产亚洲二区| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 日韩精品中文字幕看吧| 97超视频在线观看视频| 国产日本99.免费观看| 波野结衣二区三区在线 | 欧美zozozo另类| 亚洲在线观看片| 丁香欧美五月| 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| 高清日韩中文字幕在线| 国产日本99.免费观看| 小说图片视频综合网站| 精品久久久久久久毛片微露脸| 欧美中文综合在线视频| 国产免费一级a男人的天堂| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 亚洲人成网站在线播| 欧美黄色片欧美黄色片| 看免费av毛片| a级毛片a级免费在线| 黄色丝袜av网址大全| 99久久九九国产精品国产免费| 综合色av麻豆| 无限看片的www在线观看| 深爱激情五月婷婷| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 国产伦一二天堂av在线观看| 欧美性感艳星| 亚洲最大成人中文| 国产精品一及| 欧美性猛交╳xxx乱大交人| 两个人看的免费小视频| 五月伊人婷婷丁香| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久毛片微露脸| 观看免费一级毛片| 国产一区在线观看成人免费| 午夜激情欧美在线| 在线天堂最新版资源| 国产伦人伦偷精品视频| 国产激情欧美一区二区| 香蕉av资源在线| 亚洲欧美精品综合久久99| 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 国产精品一区二区三区四区免费观看 | 久久久国产成人免费| av天堂中文字幕网| 在线观看美女被高潮喷水网站 | 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| 久久久久久久久大av| 欧美一级毛片孕妇| 日韩精品青青久久久久久| 嫁个100分男人电影在线观看| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久免费视频| 亚洲美女视频黄频| 国产成人欧美在线观看| 国产精品影院久久| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 日本 欧美在线| 岛国在线观看网站| 少妇裸体淫交视频免费看高清| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 在线免费观看的www视频| 欧美国产日韩亚洲一区| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 中文字幕av成人在线电影|