• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording

    2023-03-13 09:19:42ZhiLi李智KunZhang張昆AoDu杜奧HongchaoZhang張洪超WeibinChen陳偉斌NingXu徐寧RunrunHao郝潤潤ShishenYan顏世申WeishengZhao趙巍勝andQunwenLeng冷群文
    Chinese Physics B 2023年2期
    關(guān)鍵詞:李智群文

    Zhi Li(李智) Kun Zhang(張昆) Ao Du(杜奧) Hongchao Zhang(張洪超)Weibin Chen(陳偉斌) Ning Xu(徐寧) Runrun Hao(郝潤潤)Shishen Yan(顏世申) Weisheng Zhao(趙巍勝) and Qunwen Leng(冷群文)

    1Fert Beijing Research Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    2Beihang-Goertek Joint Microelectronics Institute,Qingdao Research Institute,Beihang University,Qingdao 266101,China

    3School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    Keywords: granular Co/Pt multilayers,perpendicular magnetic anisotropy,remanent moment-thickness product,magnetic recording

    1.Introduction

    Co/Pt multilayers have been attracting large amounts of attentions because of its great interest in fundamental physics,such as spin-orbit torque effect,magnetic skyrmions and synthetic antiferromagnetic structure, as well as its great application potential in magnetic recording and magnetic randomaccess memories (MRAM).[1-11]The strong perpendicular magnetic anisotropy(PMA)and excellent processing compatibility of Co/Pt multilayers are urgently desired by the application of high-density magnetic recording medium.However,the out of plane (OOP) magnetic hysteresis (M-H) loop of Co/Pt multilayers transforms from a rectangular shape to a bowknot shape with the increasing repetition number, leading to the remarkable reduction of remanent magnetization(Mr).Note that, the product ofMrand thickness (i.e., the remanent moment-thickness product,Mrt) is a key parameter in magnetic recording for high signal-to-noise data reading and high-density information storage, which also decreases dramatically with the increasing repetition number.[12]This is because that the magneto-static energy increases linearly with the increasing repetition number of Co/Pt multilayers,reversed magnetic domains come into being, and theMrtvalue is normally restricted to lower than 0.5 memu/cm2.Therefore,there is always a contradiction point between theMrtvalue and the repetition number of Co/Pt multilayers, which hinders its further practical applications in high-density magnetic recording.[13-16]

    Recently, many researches focus on improving the magnetic performance of Co/Pt multilayers for magnetic recording.For example, patterned microstructures and nanoporous substrates are utilized for fabricating Co/Pt multilayers,whose coercivity is enhanced by optimizing the size of dot or nanopore.[17,18]Meanwhile, interface-degradation-induced irreversible PMA loss of Co/Pt multilayers during hightemperature annealing are investigated.[19]Moreover, the optimization of PMA in Co/Pt multilayers is studied to improve their thermal stability.For instance, Co/Pt multilayers with strong PMA can be achieved by the strategy of exchange biased structure, or by optimizing interface quality.[20,21]However,the magnetic performance of Co/Pt multilayers with high total thickness is seldom studied.

    In this work, high repetition [Co/Pt]80multilayers with total thickness of 68 nm are deposited on granular SiNxbuffer layer by magnetron sputtering technology.As a result, the magnetic parameters, such asMrt, OOP coercivity (Hcoop),andMrto saturation magnetization (Ms) ratio, are significantly improved compared with that of a continuous multilayer on smooth substrate.The magnetic domain characterization and micromagnetic simulation indicate that granular microstructure brings large amounts of grain boundaries,which can efficiently impede the expansion and propagation of reversed magnetic domains to improve the magnetic performance.Moreover, the magnetic performance of granular[Co/Pt]80multilayers can be further improved through tuning the granular microstructure of SiNxbuffer layer, which can be realized by controlling the deposition parameters.This work implements excellent magnetic performance in high repetition Co/Pt multilayers,which can promote the development of high-density magnetic recording mediums.

    2.Methods

    2.1.Film preparation

    The 100-nm SiNxbuffer layer is deposited on silicon wafer at 350°C by ULVAC CC-200Cz PECVD system.The flow ratio of SiH4and NH3is set as 4:5, and the deposition pressure of the SiNxlayer is 1 Torr(1 Torr=1.33322×102Pa),which introduces a granular surface structure.[22]Ta(2.0 nm)/Pt(1.5 nm)/[Co(0.5 nm)/Pt(0.35 nm)]Nmultilayers are then deposited on granular Si/SiNxsubstrates at room temperature by Singulus ROTARIS sputtering system with a base pressure of 5×10-8Torr.Comparison samples with coordinating film structure are deposited on smooth Si/SiO2substrates.The deposition rate is 0.87 °A/s for Co and 1.21 °A/s for Pt,respectively.

    2.2.Structural and magnetic characterizations

    The magnetic hysteresis (M-H) loops are measured by a vibration sample magnetometer (VSM) from Lake Shore company.The Bruker Dimension Icon atomic force microscope (AFM) and Zeiss Sigma 300 scanning electron microscope(SEM)are used to analyze the surface morphology.The magnetic force microscope(MFM)measurement for magnetic structure characterization is accomplished by Bruker Dimension Icon.All the characterizations are operated at room temperature.

    3.Results and discussion

    3.1.Improved magnetic properties in granular [Co/Pt]N multilayers

    Figures 1(a) and 1(b) exhibits the OOPM-Hloops of[Co/Pt]Nmultilayers.Obviously,the OOPM-Hloops of granular and continuous[Co/Pt]Nmultilayers respectively exhibit rectangular and bowknot shape.As a result,the values ofHcoopandMr/Msratio for granular[Co/Pt]Nmultilayers are remarkably improved compared with that of continuous [Co/Pt]Nmultilayers.For example,the value ofHcoopandMr/Msratio are improved from 204 Oe and 17.0%to 1780 Oe and 69.4%forN=60.Similarly,the value ofHcoopandMr/Msratio are improved from 216 Oe and 14.6%to 1940 Oe and 67.0%forN=80.

    Figures 1(c)and 1(d)show the MFM images of granular and continuous[Co/Pt]80multilayers,respectively.The specimens are OOP saturated by electromagnet and investigated at remanent magnetization state.The bright and dark pixels represent the positive and negative magnetized regions.The corresponding AFM results,i.e.,the surface structure of the measured area,can be found in inserts.The MFM results are independent of the surface morphology, so the disturbance of the surface structure in the MFM results can be excluded.Maze domains can be clearly observed in the continuous [Co/Pt]80multilayers,and a weak remanent magnetization state is determined by the unconstrained domain nucleation and propagation.For the granular [Co/Pt]80multilayers, the nonuniform deposition at the grain boundaries induces soft magnet phase,resulting in a reduced exchange stiffnessAex,saturation magnetizationMs, and perpendicular magnetic anisotropy constantKu.[17,23,24]Meanwhile,the critical domain wall propagation field is in negative relationship with the above-mentioned parameters.[25]Therefore, the critical domain wall propagation field is enlarged.That means the propagation and expansion of reversed magnetic domains are impeded by the grain boundaries and a higherMr/Msratio is achieved.Moreover,because of the pinning effect of grain boundaries,a higher external magnetic field will be essential to expand the reversed magnetic domains,and a strongerHcoopcan be expected.

    Furthermore,the tendency ofMr/Msratio,HcoopandMrtvarying with the repetition numberNfrom 10 to 80 are systematically investigated, as shown in Figs.2(a)-2(c).For continuous Co/Pt multilayers, theHcoopexperiences a linear augment with increasingN, which is attributed to the slower domain propagation under a higher total film thickness.[13]TheMr/Msratio can reach about 100% whenN= 10 and 30, and a maximumMrtis observed as 1.695 memu/cm2forN=30.However, a sharp decline occurs whenNexceeds 30, which can be clearly observed in the OOPM-Hloops shown in Fig.2(d).This phenomenon can be attributed to the increased magneto-static energy (Emag-sta) with uniform magnetization[26]

    whereHdemag,M, andtrefer to the demagnetization field,magnetization, and layer thickness, respectively.With the increasing thickness, the magneto-static energyEmag-staincreases dramatically if the multilayers sustain a saturation magnetization state.As a result, the strong demagnetization fieldHdemagforce the premature nucleation of reversed magnetic domain,i.e.,the irreversible magnetization switching,resulting in the reducedMr.For the granular multilayers, theMr/Msratio andMrtforN=10 and 30 are similar to those of continuous multilayers,while theirHcoopslightly increase due to the granule structure.Excitingly,forN=60 and 80,it can be extracted thatMr/Msratio,Hcoop, andMrtare remarkably enhanced.It is worth noting thatMrtvalue in this work is observed as high as 2.97 memu/cm2for granular multilayer withN=80,which is a new record in Co/Pt multilayer systems to our knowledge.

    Fig.1.(a) and (b) OOP M-H loops of the granular and continuous [Co/Pt]N multilayers with N =60 and 80.The data of the granular and continuous multilayers are marked as red and black, respectively.(c) and (d) MFM image of granular and continuous [Co/Pt]80 multilayers under zero external field after a saturate magnetization,i.e.,the remanent magnetization state.The corresponding AFM graphs are inserted at the upper-right corner of the images.

    Fig.2.The relationship of repetition number N versus (a) Mr/Ms, (b) Hcoop, and (c) Mrt of the granular and continuous Co/Pt multilayers.(d) OOP M-H loops of continuous Co/Pt multilayers with different repetition numbers.The inserted picture exhibits the zoomed graph of continuous Co/Pt multilayers with N=10 and 30.

    3.2.Surface morphology of granular SiNx layer and[Co/Pt]N multilayers

    To well understand the origin of granular structure,we investigate the surface morphology of granular SiNxbuffer layer and [Co/Pt]Nmultilayers.As exhibited in Fig.3(a), granular morphology is formed on the SiNxlayer by PECVD process.The [Co/Pt]80multilayers are then deposited on the granules.In this case, the granular morphology is transferred from the SiNxbuffer layer to the [Co/Pt]Nmultilayers as shown in Fig.3(b).The surface roughness (i.e.,Ra)of granular SiNxlayer and Co/Pt multilayers are 5.59 nm and 5.88 nm,respectively.As a contrast,the surface roughness of smooth SiO2buffer layer and continuous [Co/Pt]80multilayers are only about 0.11 nm and 0.50 nm,as shown in Fig.3(c).Here,the consistent roughness of SiNxbuffer layer and granular [Co/Pt]80multilayers indicate the layer-by-layer deposition mode and high depositing quality of the magnetic layers.Therefore, PMA in our granular Co/Pt multilayers can be attributed to the Co/Pt interfacial orbital hybridization.[27]Meanwhile, the bulk PMA originating from magnetocrystalline anisotropy can be excluded in this work because that the multilayers do not go through any hightemperature treatment,which is essential for the formation of PMA CoPt alloys with specific crystalline structure.[28,29]

    The granule size distributions of granular substrate and[Co/Pt]80multilayers are illustrated in Figs.3(d)and 3(e),that is measured as average dimensiond=105.7 nm and 103.9 nm with a standard deviation of 14.7% and 22.2%, respectively.The granule size here is defined by the average of Feret’s diameter,and is retained after the deposition of the Co/Pt multilayer while a remarkable increase of the standard deviation is confirmed.The reason of this phenomenon can be attributed to the flattening effect of Co/Pt multilayers.During the deposition process,the magnetic film is formed on both the surface and the gap of granules.The irregular film formation on the granular surface changes the uniformity of the magnetic layers, and meanwhile builds a barrier for impeding the domain propagation and expansion during the reversal of magnetic moment.Moreover, the surface structure of granular[Co/Pt]80multilayer is also studied by SEM with 45°incident electron beam to the film normal.The granular[Co/Pt]80multilayer with SiNxbuffer layer are clearly observed on the smooth Si substrate.The height of the granules can be estimated as 160 nm,which is accordance with the total thickness of SiNxand[Co/Pt]80layers.Something should be noted that,the surface structure of the SiNxbuffer layer including surface roughness, granule size, and distribution can be further manipulated by adjusting the process parameters.As can be easily understood, high deposition rate of the SiNxfilm leads to a limited film condition and high granule size,which can be achieved by high RF power,depositing chamber pressure,and SiH4proportion.On the contrary, lower granule size can be achieved by decreasing the aforesaid parameters.[30,31]Therefore,the magnetic performance of granular[Co/Pt]Nmultilayers can be further optimized technically.

    Fig.3.(a)and(b)Surface structure of granular SiNx buffer layer and granular[Co/Pt]80 multilayer.(c)AFM image of smooth SiO2 buffer layer and continuous[Co/Pt]80 multilayer,respectively.(d)and(e)The granule size distribution of granular SiNx buffer layer and granular[Co/Pt]80 multilayer.(f)The SEM image of granular[Co/Pt]80 multilayer measured with 45° incident electron beam to the film normal.

    3.3.Micromagnetic simulation and theoretical analyses

    To further clarify the relationship between the granule size and the magnetic properties of granular [Co/Pt]Nmultilayers,a micromagnetic model is established and simulated by Object Oriented MicroMagnetic Framework (OOMMF).[32]The simulation region is set as 500 nm×500 nm×68 nm with a cell size of 2 nm, and the parameters of exchange coefficientAex, saturation magnetizationMs, damping coefficientα, and simulation temperatureTare set to be 1×10-11J/m,6.5×105A/m,1,and 300 K,respectively.The granular structure is imitated by gridded hexagonal units with their boundary of a lowerMs,i.e.,one-tenth of the normal value.It should be mentioned that the granule size here is defined as the average of the long axis and short axis of hexagonal units.The exchange coupling at the boundary is thus restricted and the domain propagation and expansion is hindered by this granular boundary.

    The simulatedM-Hloops of continuous and granular[Co/Pt]Nmultilayers are exhibited in Fig.4(a),which are consistent with the experimental observations.The continuous film experience lowestMr/MsandHcoop, that are typical in Co/Pt multilayers with high repetitionN.[14,33]The aforesaid parameters are enhanced from 6.7% and 413 Oe to 60% and 667 Oe,respectively in simulated granular films with granular size of 80 nm.In this case, the value ofMrtis improved simultaneously withMr/Msratio because that the value oftandMsstays constant.For further investigation of the relationship between granule size and magnetic performances, magnetic reversals with different granular sizes,i.e., the hexagon size,are studied.A rectangularM-Hloops with 100%Mr/Msratio and 5500-OeHcoopis achieved for the granular[Co/Pt]Nmultilayers with granule size 20 nm.As illustrated in Figs.4(b)and 4(c), the value ofHcoopandMr/Msdecline with the increase of the granule size.These simulation results indicate that the magnetic property of granular [Co/Pt]Nmultilayers can be further improved through reducing the granule size.

    To study the dynamic process of the magnetic reversal in granular[Co/Pt]Nmultilayers,the reversed domain nucleation and propagation processes are schematically studied,as shown in Figs.4(d)-4(i).For the state of points 1 andain Fig.4(a),the reversed magnetic domains nucleate and expand, and a multi-domain state is established under zero external field,i.e.,the remanent magnetization state.The reversed domain propagation is restrained by the grain boundary in granular film and an improved remanent magnetization is observed.Subsequently, a negative OOP field is applied at points 2 andb,and the total magnetization alongzaxis becomes zero,i.e.,the coercivity field state.A stronger external field is essential to achieve a zero perpendicular magnetization due to the inhibition of reversed domain propagation and expansion, and the coercivity is enhanced.For a stronger negative OOP field at points 3 andc, the positive domain starts to shrink and annihilate, and the magnetization state approaches reversed saturation state.A smoother shrinking process can be observed in the granular multilayer,which is due to the reduced exchange coupling at the grain boundaries.

    Fig.4.(a)The simulated OOP M-H loops of Co/Pt multilayers with different surface structures.(b)and(c)The tendency of Hcoop and Mr/Ms with increasing granule size.The blue dotted line represents the data extracted from continuous Co/Pt multilayers.(d)-(f) The magnetic domain reversal dynamics in Co/Pt multilayers with a granule size of 80 nm.(g)-(i) The magnetic domain reversal dynamics in continuous Co/Pt multilayers.The corresponding states are illustrated in panel(a)as points 1-3 for granular film and points a-c for continuous film.The red and blue areas refer to the spin-up and spin-down states,respectively.

    4.Conclusion and perspectives

    High repetition [Co/Pt]Nmultilayers with PMA are experimentally fabricated, in which the key magnetic performance such asMrt,Mr/Msratio, andHcoopare remarkably improved benefiting from the granular structure.The corresponding simulation results indicate that the magnetic parameters can be optimized by modifying the granule size.This research gives a new method to optimize the magnetic performance of Co/Pt multilayers with high total thickness, which exhibits strong potential in the application of high-density magnetic recording.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.51901008) and the National Key Research and Development Program of China (Grant No.2021YFB3201800).

    猜你喜歡
    李智群文
    學(xué)界翹楚李智
    群文閱讀教學(xué)模式探討
    Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
    五家渠市交通信號控制系統(tǒng)可行性改造研究
    Running the Hillsby James M. Janik
    例談群文閱讀中議題的確定
    甘肅教育(2020年18期)2020-10-28 09:07:02
    群文閱讀教學(xué)策略談
    甘肅教育(2020年14期)2020-09-11 07:58:36
    談以生為本的群文閱讀教學(xué)策略
    甘肅教育(2020年14期)2020-09-11 07:58:08
    老頭和小偷
    初中群文閱讀的文本選擇及組織
    甘肅教育(2020年8期)2020-06-11 06:10:02
    亚洲av日韩在线播放| 高清av免费在线| 精品久久久久久久久亚洲| 成人国产麻豆网| 亚洲av.av天堂| 免费av中文字幕在线| 我要看日韩黄色一级片| 国产男女内射视频| 99久久中文字幕三级久久日本| 交换朋友夫妻互换小说| 久久久国产精品麻豆| 日韩一区二区视频免费看| 国产在线一区二区三区精| 色婷婷久久久亚洲欧美| 天美传媒精品一区二区| 国产亚洲91精品色在线| 少妇丰满av| av网站免费在线观看视频| 成人免费观看视频高清| 久久精品国产亚洲av涩爱| h日本视频在线播放| 一区二区三区精品91| 精品午夜福利在线看| videossex国产| 日韩一区二区三区影片| 一级毛片aaaaaa免费看小| 欧美高清成人免费视频www| 欧美精品高潮呻吟av久久| 亚洲国产精品国产精品| 欧美 亚洲 国产 日韩一| 日韩不卡一区二区三区视频在线| 精品国产露脸久久av麻豆| 国产91av在线免费观看| 久久97久久精品| av.在线天堂| 国产欧美日韩一区二区三区在线 | 婷婷色av中文字幕| 啦啦啦视频在线资源免费观看| 日韩强制内射视频| 高清不卡的av网站| 国产中年淑女户外野战色| 久久人人爽人人片av| 成年女人在线观看亚洲视频| 女人久久www免费人成看片| 国产免费一级a男人的天堂| 婷婷色麻豆天堂久久| 亚洲精品中文字幕在线视频 | 又爽又黄a免费视频| 亚洲国产毛片av蜜桃av| 国产日韩一区二区三区精品不卡 | 国产中年淑女户外野战色| 99九九线精品视频在线观看视频| freevideosex欧美| 国产一区二区三区综合在线观看 | 美女脱内裤让男人舔精品视频| 观看免费一级毛片| 特大巨黑吊av在线直播| 欧美丝袜亚洲另类| 嘟嘟电影网在线观看| 丝袜喷水一区| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久| 欧美另类一区| 性色avwww在线观看| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| videos熟女内射| 亚洲欧美成人精品一区二区| 三级经典国产精品| 18禁裸乳无遮挡动漫免费视频| 少妇裸体淫交视频免费看高清| 春色校园在线视频观看| 超碰97精品在线观看| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 观看av在线不卡| 91久久精品国产一区二区成人| 乱系列少妇在线播放| 乱人伦中国视频| 99久久精品一区二区三区| 在线观看av片永久免费下载| 国产成人91sexporn| 成人影院久久| 九九爱精品视频在线观看| 人妻 亚洲 视频| 亚洲经典国产精华液单| 街头女战士在线观看网站| 成人漫画全彩无遮挡| 97精品久久久久久久久久精品| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 一级av片app| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 91成人精品电影| 国产成人精品久久久久久| 国产男人的电影天堂91| 日韩一区二区三区影片| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 丰满少妇做爰视频| 99久久精品一区二区三区| 午夜日本视频在线| 久久97久久精品| 99久久人妻综合| 女性生殖器流出的白浆| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 欧美bdsm另类| 老司机亚洲免费影院| 大又大粗又爽又黄少妇毛片口| 五月开心婷婷网| 国产伦精品一区二区三区视频9| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| av福利片在线观看| 亚洲av在线观看美女高潮| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费高清在线观看| 精品少妇久久久久久888优播| 99九九线精品视频在线观看视频| 激情五月婷婷亚洲| 亚洲av.av天堂| 国产熟女欧美一区二区| 在线观看免费视频网站a站| 亚洲欧美清纯卡通| 国产精品女同一区二区软件| freevideosex欧美| 中国美白少妇内射xxxbb| 一级av片app| 亚洲精品国产色婷婷电影| 天天躁夜夜躁狠狠久久av| 国产精品偷伦视频观看了| 日本与韩国留学比较| 国产欧美另类精品又又久久亚洲欧美| 中文字幕精品免费在线观看视频 | 日韩精品免费视频一区二区三区 | 国产精品一区二区在线不卡| 日本vs欧美在线观看视频 | 少妇猛男粗大的猛烈进出视频| √禁漫天堂资源中文www| 国产精品国产三级国产av玫瑰| 国产永久视频网站| 亚洲电影在线观看av| 一级爰片在线观看| 如何舔出高潮| 日韩视频在线欧美| 青春草视频在线免费观看| 久久精品国产亚洲av涩爱| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久| 2021少妇久久久久久久久久久| 十八禁高潮呻吟视频 | 久久国产亚洲av麻豆专区| 精品人妻熟女av久视频| 亚洲欧美成人精品一区二区| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 99久国产av精品国产电影| 丝瓜视频免费看黄片| 内射极品少妇av片p| 国产免费一级a男人的天堂| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 亚洲人成网站在线播| 国产精品99久久久久久久久| 成人黄色视频免费在线看| 国产高清国产精品国产三级| av黄色大香蕉| 三级经典国产精品| 最近最新中文字幕免费大全7| 中国国产av一级| 水蜜桃什么品种好| 青春草视频在线免费观看| www.av在线官网国产| 丰满人妻一区二区三区视频av| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 亚洲欧洲国产日韩| 亚洲精品第二区| 赤兔流量卡办理| 美女脱内裤让男人舔精品视频| 一级毛片电影观看| 婷婷色av中文字幕| 国产免费福利视频在线观看| 欧美精品国产亚洲| 免费黄网站久久成人精品| 国产毛片在线视频| 日韩大片免费观看网站| 国产精品嫩草影院av在线观看| 尾随美女入室| 国产黄色免费在线视频| 国产精品熟女久久久久浪| 秋霞在线观看毛片| 尾随美女入室| 国产一区二区在线观看日韩| 亚洲av电影在线观看一区二区三区| 国产淫片久久久久久久久| 国产淫语在线视频| 久久热精品热| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| freevideosex欧美| 亚洲情色 制服丝袜| 在线观看人妻少妇| 亚洲精品aⅴ在线观看| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 涩涩av久久男人的天堂| 日日摸夜夜添夜夜添av毛片| 日本午夜av视频| 亚洲欧美日韩卡通动漫| 伊人久久国产一区二区| 街头女战士在线观看网站| 午夜免费鲁丝| 涩涩av久久男人的天堂| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 熟妇人妻不卡中文字幕| 亚洲成色77777| 国产熟女午夜一区二区三区 | 啦啦啦视频在线资源免费观看| 晚上一个人看的免费电影| 亚洲精品一二三| 亚洲伊人久久精品综合| 五月天丁香电影| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 久久99热这里只频精品6学生| 在线观看www视频免费| 夜夜看夜夜爽夜夜摸| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 99国产精品免费福利视频| 69精品国产乱码久久久| 国产精品一区二区在线不卡| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 97超视频在线观看视频| 亚洲av不卡在线观看| 性高湖久久久久久久久免费观看| 亚洲精品国产成人久久av| 99热6这里只有精品| 国产伦在线观看视频一区| 你懂的网址亚洲精品在线观看| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 国产成人a∨麻豆精品| 丁香六月天网| 色5月婷婷丁香| 99视频精品全部免费 在线| av有码第一页| 色94色欧美一区二区| 国产探花极品一区二区| .国产精品久久| 亚洲第一区二区三区不卡| 成人国产av品久久久| 国产精品伦人一区二区| 精品一区二区三卡| 国产成人精品福利久久| 久久女婷五月综合色啪小说| 国产毛片在线视频| 插逼视频在线观看| 亚洲电影在线观看av| 亚洲欧美一区二区三区黑人 | 久久人人爽av亚洲精品天堂| 9色porny在线观看| 大片电影免费在线观看免费| 国产黄频视频在线观看| 久久久亚洲精品成人影院| 日本与韩国留学比较| 各种免费的搞黄视频| 男女国产视频网站| 男男h啪啪无遮挡| 天堂俺去俺来也www色官网| 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 亚洲精品国产成人久久av| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 十分钟在线观看高清视频www | 久久久欧美国产精品| 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 十八禁网站网址无遮挡 | 成人综合一区亚洲| 黄片无遮挡物在线观看| 精品少妇内射三级| 国产在线一区二区三区精| 熟女电影av网| 在线观看国产h片| 美女视频免费永久观看网站| 插逼视频在线观看| 偷拍熟女少妇极品色| 成人午夜精彩视频在线观看| 久久精品久久久久久噜噜老黄| 大香蕉97超碰在线| 人人妻人人爽人人添夜夜欢视频 | 国产男人的电影天堂91| 三级国产精品片| www.av在线官网国产| 免费大片18禁| 久久久国产欧美日韩av| 久久99精品国语久久久| 日韩欧美精品免费久久| a级一级毛片免费在线观看| 久久免费观看电影| 中文字幕精品免费在线观看视频 | 日韩成人av中文字幕在线观看| 免费看日本二区| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 91成人精品电影| 婷婷色麻豆天堂久久| 国产av国产精品国产| 欧美日韩亚洲高清精品| 国产真实伦视频高清在线观看| 国产免费视频播放在线视频| 精品视频人人做人人爽| 只有这里有精品99| 热99国产精品久久久久久7| 九九在线视频观看精品| 亚洲国产精品一区三区| 中文字幕免费在线视频6| 国产有黄有色有爽视频| 人人澡人人妻人| 高清在线视频一区二区三区| 肉色欧美久久久久久久蜜桃| 一本一本综合久久| 日韩,欧美,国产一区二区三区| 日韩制服骚丝袜av| 日本黄色片子视频| 精品国产一区二区三区久久久樱花| 中文精品一卡2卡3卡4更新| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 成人无遮挡网站| 久久久久久久亚洲中文字幕| 日韩中字成人| 国产 精品1| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| 国产中年淑女户外野战色| 大香蕉久久网| 丰满乱子伦码专区| 中文字幕制服av| 国产av精品麻豆| 国产高清国产精品国产三级| 99热这里只有是精品50| 亚州av有码| 久久久久网色| 国产精品99久久久久久久久| 日韩av免费高清视频| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| 好男人视频免费观看在线| 黄色配什么色好看| 成人影院久久| 亚洲av在线观看美女高潮| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| 啦啦啦视频在线资源免费观看| 丝袜在线中文字幕| 精品一品国产午夜福利视频| 日韩,欧美,国产一区二区三区| av在线观看视频网站免费| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 在线播放无遮挡| 成人亚洲精品一区在线观看| 亚洲美女视频黄频| a级毛片免费高清观看在线播放| 久久精品久久精品一区二区三区| 久久久久久久大尺度免费视频| 一级爰片在线观看| 日本黄色日本黄色录像| 日韩熟女老妇一区二区性免费视频| 亚洲真实伦在线观看| 国产亚洲最大av| 色视频www国产| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 成人亚洲精品一区在线观看| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区| 高清av免费在线| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 国产成人精品久久久久久| 中文字幕av电影在线播放| 精品一区二区三卡| 一区二区av电影网| 51国产日韩欧美| 麻豆成人av视频| 高清午夜精品一区二区三区| 午夜福利网站1000一区二区三区| 少妇被粗大猛烈的视频| 美女xxoo啪啪120秒动态图| 六月丁香七月| 亚洲国产精品国产精品| 三级经典国产精品| 精品久久久久久久久亚洲| 久久国产亚洲av麻豆专区| av线在线观看网站| 国产成人freesex在线| 男女边摸边吃奶| 国产伦精品一区二区三区视频9| 亚洲,一卡二卡三卡| 卡戴珊不雅视频在线播放| 天堂俺去俺来也www色官网| 精品99又大又爽又粗少妇毛片| 亚洲国产成人一精品久久久| 人妻 亚洲 视频| 黄色配什么色好看| 日本av免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边吃奶边做爰视频| 一本久久精品| 一级毛片aaaaaa免费看小| 国产精品成人在线| 我要看黄色一级片免费的| 久久久久久久久久久丰满| 亚洲,欧美,日韩| 九色成人免费人妻av| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 日日撸夜夜添| 亚洲人成网站在线播| 国产有黄有色有爽视频| 观看美女的网站| av视频免费观看在线观看| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 日本与韩国留学比较| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 欧美亚洲 丝袜 人妻 在线| 国产老妇伦熟女老妇高清| 成人美女网站在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 欧美另类一区| 国产欧美日韩精品一区二区| 99热国产这里只有精品6| av在线老鸭窝| 亚洲欧洲国产日韩| 乱系列少妇在线播放| 国产免费一级a男人的天堂| 一本久久精品| 欧美高清成人免费视频www| 日韩精品有码人妻一区| 免费看日本二区| 99久久精品热视频| 日日啪夜夜爽| 免费久久久久久久精品成人欧美视频 | 亚洲成人一二三区av| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 老女人水多毛片| 少妇人妻 视频| 精品一区二区三卡| 欧美精品国产亚洲| 人妻一区二区av| 18禁在线播放成人免费| 国产色婷婷99| 精品少妇久久久久久888优播| 尾随美女入室| 一区二区三区免费毛片| av天堂中文字幕网| 一级毛片久久久久久久久女| 亚洲国产精品999| 黑人猛操日本美女一级片| 国产亚洲av片在线观看秒播厂| 激情五月婷婷亚洲| 国产在线免费精品| 日日摸夜夜添夜夜爱| 寂寞人妻少妇视频99o| 丰满少妇做爰视频| 2022亚洲国产成人精品| 日韩免费高清中文字幕av| 亚洲av中文av极速乱| 国产 精品1| 美女主播在线视频| 国产69精品久久久久777片| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 777米奇影视久久| 一级爰片在线观看| 色视频在线一区二区三区| 高清视频免费观看一区二区| 国产免费一区二区三区四区乱码| 免费av不卡在线播放| 久久99热这里只频精品6学生| 亚洲电影在线观看av| 一本大道久久a久久精品| av在线观看视频网站免费| 青春草国产在线视频| 亚洲精品亚洲一区二区| 免费观看的影片在线观看| 精品国产一区二区三区久久久樱花| 国模一区二区三区四区视频| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| freevideosex欧美| 国产日韩欧美亚洲二区| 中国三级夫妇交换| 欧美激情国产日韩精品一区| 日本av手机在线免费观看| 午夜福利在线观看免费完整高清在| 插阴视频在线观看视频| 国产亚洲5aaaaa淫片| 99热全是精品| 日韩制服骚丝袜av| 中文字幕人妻熟人妻熟丝袜美| 成人特级av手机在线观看| 久久亚洲国产成人精品v| 插阴视频在线观看视频| 亚洲电影在线观看av| 国产69精品久久久久777片| 一区二区三区精品91| 在现免费观看毛片| 久久久久久久久久久久大奶| 毛片一级片免费看久久久久| 天堂8中文在线网| 国产亚洲一区二区精品| 黄色一级大片看看| 亚洲自偷自拍三级| 国产高清有码在线观看视频| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 大片免费播放器 马上看| 中国美白少妇内射xxxbb| 黑人高潮一二区| 国产爽快片一区二区三区| 亚洲精品自拍成人| 91精品国产国语对白视频| 亚洲人成网站在线观看播放| 亚洲综合色惰| 婷婷色av中文字幕| 男人舔奶头视频| 最后的刺客免费高清国语| 99国产精品免费福利视频| 日韩av免费高清视频| 亚洲图色成人| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 亚洲性久久影院| 日本黄色日本黄色录像| 亚洲四区av| 国产熟女午夜一区二区三区 | 熟妇人妻不卡中文字幕| 搡老乐熟女国产| 亚洲无线观看免费| 欧美日韩视频高清一区二区三区二| 久久99一区二区三区| 丝袜脚勾引网站| 日日啪夜夜撸| 国产亚洲精品久久久com| av福利片在线| 亚洲美女搞黄在线观看| av免费在线看不卡| 亚洲国产毛片av蜜桃av| 中文字幕av电影在线播放| 三级经典国产精品| 婷婷色综合www| 熟女电影av网| 成人二区视频| 日韩伦理黄色片| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 高清毛片免费看| 亚洲av男天堂| 丝袜喷水一区| 日韩精品有码人妻一区| 久久毛片免费看一区二区三区| 在线观看国产h片| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 黄色日韩在线| 亚洲精品国产色婷婷电影| 久久av网站| 99久久综合免费| 国产精品不卡视频一区二区| 中文字幕av电影在线播放| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 国产一区二区在线观看日韩| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕人妻熟人妻熟丝袜美| 国产综合精华液| av有码第一页| 中文字幕精品免费在线观看视频 | 精品亚洲乱码少妇综合久久| 草草在线视频免费看|