• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fixed-Time Stabilization of a Class of Strict-Feedback Nonlinear Systems via Dynamic Gain Feedback Control

    2023-03-09 01:02:22ChenghuiZhangLeChangLantaoXingandXianfuZhang
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Chenghui Zhang,,Le Chang,,Lantao Xing,,and Xianfu Zhang,

    Abstract—This paper presents a novel fixed-time stabilization control (FSC) method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of back stepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixed time convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems.

    I.INTRODUCTION

    FIXED-TIME stabilization control (FSC),which can ensure system trajectories to converge to zero before a given time regardless of the initial conditions,has been extensively studied in the past decades [1].This kind of control method was firstly formulated by Polyakov [2] in which the stabilization problem for uncertain linear plants is considered.It is shown that FSC can provide fast response speed together with a high control precision.Meanwhile,FSC is also able to deal with uncertain disturbances and inherent nonlinear dynamics.Because of these properties,FSC has been widely used in many mechanical and electromechanical systems [3]–[7].

    The design of FSC can be divided into two categories: the time-dependent control and the state-dependent control.The time-dependent control is also called the pre-specified time control [8],[9],in which a time-varying function is used to regulate the converging rate.This function would converge to zero or infinity at the pre-specified time,causing the converging rate to be infinite.Although this kind of control can render system states to converge to zero at any time,the controller becomes invalid after the given settling time.To deal with this problem,a switching strategy has to be adopted which complicates the system control design [10],[11].

    For the state-dependent control design,various technologies have been introduced in the existing literature.A hybrid control algorithm was introduced by combining a finite-time stabilizing control and a fixed-time attracting control in [2].To avoid the chattering regimes from hybrid controls,a nonhybrid control strategy with an involution operation sign was developed for both linear and nonlinear systems in [12].Through proposing a condition on a state-dependent function,Huaet al.[13] proposed a continuous FSC method for nonlinear systems.The implicit Lyapunov functions were introduced in [14] to construct fixed-time observers.Recently,Sunet al.[15] studied the fixed-time fuzzy tracking control problem for a class of unknown nonlinear systems.The fixed-time stabilization problem for linear systems with input delay was also studied in [16].However,it should be noted that the control structures of the aforementioned results all possess complicated forms which are not easy to implement.

    The dynamic gain control approach has been widely used to solve the stabilization problems of nonlinear systems.This approach is able to cope with system uncertainties with the desired control performance guaranteed.With the help of dynamic gain control approach,the stabilization problems were solved in [17]–[21].It is shown in [17]–[21] that the control designed by the dynamic gains has a simple linear form which can greatly simplify the controller design.This motivates us to design FSC control method for uncertain nonlinear systems by using the dynamic gain control approach in this paper.In particular,the main contributions of this paper are summarized as below:

    1) The proposed controller consists of two dynamic parameters and has a simple quasi-linear form.The two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are fixed-time stable.Compared with existing results,the “explosion of complexity”problem of back stepping control [9] is successfully avoided.

    2) The designed controller can keep operating beyond the given fixed-time instant without any control strategy switching.This is different from the prescribed-time control methods in [9] and [11],where a time-varying function is employed to regulate the system performance.Our controller is particularly useful to cope with the case when the pre-specified time is not accurately determined.

    The rest of this paper is organized as follows: Section II formulates the fixed-time stabilization problem for the strict feed back nonlinear system,while Section III details the design of the control method and analyzes the system performance.After that,the proposed control method is verified in Section IV through two actual systems.Finally,Section V gives the conclusion remarks.

    II.PRELIMINARIES AND PROBLEM FORMULATION

    Consider the strict-feedback nonlinear system

    wherex=(x1,x2,...,xn)T∈Rnis the system state,andu∈R is the system input.The initial time instant is set as 0,and the initial system state is denoted asx(0) .f1(·) tofn(·) are unknown nonlinear functions satisfying the following assumption [22],[23].x=(x1,...,xn)T∈Rn

    Assumption 1:For any,it holds that

    fori=1,2,...,n,wherecis a positive constant.

    System(1) under Assumption 1 is a typical strict-feedback nonlinear system which has been widely studied.For example,its asymptotic stabilization problems have been solved via the dynamic gain feedback control method [21],[23],[24] or the back stepping design method [25],[26].The fixed-time stabilizing problem was also studied in [27]–[29] through back stepping design method.This paper will develop a dynamic gain control method to achieve fixed-time stabilization whose definition is given below:

    Definition 1 (Globally Fixed-Time Stable [2],[30]):Consider

    wherex(t)∈Rnis the system state,andg(·):Rn→Rnis a continuous function satisfyingg(0)=0.The initial time instant is assumed as 0 and the initial state is denoted asx0∈Rn.System(3) is globally finite-time stable at the equilibriumx=0 if it is Lyapunov stable and finite-time attractive,i.e.,there exists a local bounded functionT(x0):Rn→R+∪{0}such thatx(t;x0)=0 for allt≥T(x0),wherex(t;x0)is the solution of (3) with the initial statex0∈Rn.The functionT(x0) is called the settling ti me function.It is s aid that system(3) is globally fixed-time stable at the equilibriumx=0 if it is globally finite-time stable and the settling time functionT(x0)is globally bounded by some positive constantTmax>0,i.e.,T(x0)≤Tmax,?x0∈Rn.The constantTmaxis called the setting time.

    With the above definition in mind,the control objective of this paperis to design the control signalusuch that system(1)is globally fixed-time stable at the equilibriumx=0.To this end,the following two Lemmas are given for the controller design later.

    Lemma 1 ([31]):Let 0 <τ<1,anda,b≥0.It holds that

    Lemma 2 ([20]):Leta,b, γ be positive real numbers,and τ ∈(0,1).Then,the following inequality holds:

    III.MAIN RESULTS

    A.Control Design

    System(1) can be expressed in the matrix form

    Then,we compute the parameters through the following algorithm.

    It is noted that from Algorithm1 that the following inequality holds:

    To make system(1) fixed-time stable,the control inputuis designed as

    wherer1,r2are the dynamic parameters to be designed.It is worth pointing out that controller (10) is in a quasi-linear form which has a simple structure and is easy to implement,compared with existing control strategies using the back stepping design method.

    B.Design of The Dynamic Parameters

    Before designing the dynamic parameters,a set of new variables is introduced as below

    It can be seen that the equilibrium isr1=1.Thus,we can deduce intor1(t)∈(0,1] fromr1(0)∈(0,1].When ∥z∥≤1,we have

    which meansr1converges towards ∥z∥.Therefore,r1∈[0,1]always holds.

    C.Stability Analysis

    With the above controller and parameter dynamics given,we are ready to present the following theorem.

    Theorem1:Consider system (1) under Assumption 1.If the controlleruis designed as (10) with the dynamic parametersr1,r2given by (12),in which the vectorK,matrixP,and constants α1, α2,β,τare determined by Algorithm1,then system 1) is globally fixed-time stable with a settling timeTfor any initial statex(0).Moreover,the settling timeTsatisfies

    z=(z1,z2,...,zn)T z1zn

    Proof:Consider the variable with to defined in (11).Then,we have

    From(9),it can be obtained thatPmeets the following conditions:

    V=zT Pz

    Let .Then its derivative along with (17) can be computed as

    The following proof is divided into four parts.Part I shows the fixed-time attractivity ofz,while the fixed-time convergence ofzis guaranteed in Part II.The fixed-time convergence ofxis derived from the dynamic ofzin Part III,and the upper bound of the settling timeTis estimated in Part IV.

    Part I: Fixed-Time Attractivity of System(17)

    In this part,we show that for any initial conditionz(0)∈Rn,z(t)will converge to a neighbourhood ?={z|∥z∥2≤1} before a given timeT0.

    Thus,at the time instantT,∥z(t)∥ andr1(t) converge to zero.

    Part III: Fixed-Time Stability of System(1)

    From the definition ofzin (11),it holds

    Meanwhile,from (22),we have

    The parameterr2can be estimated as

    Therefore,following (33) and (37) yields:

    z=(z1,z2,...,zn)T

    Moreover,under the new variable,the control signalucan be expressed as

    Asr1,r2andzare all bounded,thusuis bounded all the time.Moreover,from (34) we have l imt→T∥z(t)∥=0.

    It can also be seen that

    AsV(0) is determined by the initial state ∥x(0)∥ andr2(0) is chosen by the designer,we can conclude that the upper bounded of ∥x(t)∥ is governed by the initial system statex(0).

    Part IV: Estimation of the Settling Time

    which is not dependent on the system initial conditions.Therefore,the designed controller (10) and (12) can render system(1) globally fixed-time stable.

    Remark 1:Our control strategy does not suffer from the singularity problem.It can be seen from (13) that ||z||,i.e.,||x||,converges to zero beforer1does.Therefore,even thoughr1tends to zero,the singularity problem for the control signaludoes not happen.Indeed,it is proved in Theorem1 that the control signal is always bounded and converges to zero in the end.

    Remark 2:Our proposed control method is essentially different from the prescribed-time control methods in [9] and[11] in the following aspects: 1) Our considered system model is more general than the counterparts in [9] and [11].Specifically,the system model in [9] contains nonlinear dynamics that exist only in the last differential equation,while the system model in [11] has no nonlinear dynamics;2) The control action of our method does not have to terminate at the prespecified time instantTwhile the methods in [9] and [11]must.This is because [9] and [11] adopt a monotonically increasing function to achieve prescribed-time control.This function is only valid in the time interval [t0,t0+T),thus the control method becomes invalid whent≥t0+T.By contrast,our method does not need the above function and thus it keeps valid all the time.This property is particularly useful to cope with the case when the time instantTis not accurately determined.

    IV.SIMULATION RESULTS

    In this paper,we present two simulation examples to verify the effectiveness of our proposed method.

    Example 1:Consider the one-link manipulator system given in [33]

    Denotingx1=MDq,x2=andx3=Mτr,(40) can be transformed into

    For simulation,the system parameters are set asD=5 kg·m2,N=0.2 ,M=0.5 H ,Km=0.05 N·m/A ,B=0.2 N·m·s/rad,andH=0.02 ?.It can be verified that Assumption 1 is satisfied withc=0.04.Then,the control parameters are set ask1=2,k2=6,k3=3,τ=1/2,β=20.7, α1=0.2, α2=5,μ=3.In particular,according to Theorem1,the controller for this one-link manipulator system is designed as

    wherer1,r2are the dynamic parameters designed as

    The simulation results are presented in Fig.1.It is observed that the system statesx1,x2andx3converge to zero before the instantT=4 s.Meanwhile,the dynamic parameterr1remains in the interval [0,1] and converges to zero,whiler2increases to about 3 .4 and then remains the same.The control signaluis also bounded and converges to zero.Moreover,it can be seen that the closed-loop system can still operate beyond the time interval [0,4],which cannot be achieved through the pre-specified finite-time control method in [9] and [11].

    Fig.1.Simulation results for closed-loop system(41)?(43) with initial state x(0)=(?6,3,25)T.

    Example 2:In this example,we consider a more complex robotic manipulator coupled to a DC motor to further confirm the effectiveness of our proposed method.The system model[34] is given as below

    where the physical meanings of the relevant parameters are displayed in Table I.To facilitate the controller design,the following coordinate transformation is introduced:

    TABLE I EXPLANATION OF PARAMETERS

    Consequently,we have

    For the sake of simulation,the system parameters are chosen asF1=F2=1 N·m·s/rad ,J1=J2=1 kg·m2,K=1 kgf/mm ,N=1,R=1 ? ,L=1 H,Kb=1 V/rad/s ,Kt=1 N·m ,g=10 m/s2,m=0.5 kg,andd=0.2.The system’s initial condition is set asx(0)=[x1(0),x2(0),x3(0),x4(0),x5(0)]=[1,1,1,1,1,1],and [r1(0),r2(0)]=[1,1].

    The control objective is to stabilize system(46).It can be verified that (46) satisfies Assumption 1,thus our control method can be applied.To show the effectiveness of our proposed method,we also compare our method with the one in[34].The control parameters of our method are set ask1=6,k2=k5=5,k3=8.5,k4=10,β=20.7,τ=0.5, α1=0.2, α2=5,and μ=3,while the parameters of [34] remain the same as those given in the simulation examples of [34].

    The simulation results are presented in Fig.2.As can be observed,the system’s angular with our method converges to zero with a faster speed than the one in [34].Moreover,the amplitude of our control signal is also significantly smaller.This clearly demonstrates the advantage of our proposed method compared with the one in [34].

    Fig.2.Simulation results.

    V.CONCLUSION

    This paper has proposed a dynamic gain control method to solve the fixed-time control problem for a class of strict-feedback nonlinear systems.The considered systems can describe a large class of practical systems with unmodelled dynamics satisfying a linear-grow th condition.To handle the unmodelled system dynamics,two auxiliary parameters are delicately designed.Our design method yields a quasi-linear controller which ensures that the closed-loop system is fixed-time stable.Compared with existing results,our proposed method avoids the “explosion of complexity”problem caused by conventional back stepping control.Moreover,the designed controller can keep operating beyond the given fixed-time instant without any control strategy switching,which is superior to the conventional prescribed-time control.Two simulation examples have verified the effectiveness of our proposed method.

    av天堂中文字幕网| 我要搜黄色片| 日本 av在线| 午夜福利在线观看免费完整高清在 | 夜夜躁狠狠躁天天躁| 国产亚洲精品综合一区在线观看| 麻豆久久精品国产亚洲av| 亚洲 国产 在线| 少妇丰满av| 99在线人妻在线中文字幕| 日本免费a在线| 99在线视频只有这里精品首页| 欧美一级毛片孕妇| 国产午夜精品论理片| 麻豆成人av在线观看| 999久久久国产精品视频| 午夜福利欧美成人| 在线观看美女被高潮喷水网站 | 久久中文看片网| 欧美性猛交╳xxx乱大交人| 欧美激情在线99| 国产麻豆成人av免费视频| 99久久成人亚洲精品观看| 欧美日本视频| 午夜福利在线在线| 90打野战视频偷拍视频| bbb黄色大片| 亚洲天堂国产精品一区在线| h日本视频在线播放| 色在线成人网| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 免费在线观看视频国产中文字幕亚洲| 久久人人精品亚洲av| 久久精品影院6| 免费看十八禁软件| 99久久成人亚洲精品观看| 日韩国内少妇激情av| 久久精品人妻少妇| 淫秽高清视频在线观看| 免费在线观看亚洲国产| netflix在线观看网站| 国产午夜福利久久久久久| 一区福利在线观看| 国产精品久久视频播放| 天堂影院成人在线观看| 在线观看免费视频日本深夜| 国产91精品成人一区二区三区| 亚洲精品中文字幕一二三四区| 国内精品久久久久久久电影| 91在线观看av| 亚洲av成人不卡在线观看播放网| 90打野战视频偷拍视频| 美女高潮的动态| 国产1区2区3区精品| 亚洲一区二区三区色噜噜| 一进一出好大好爽视频| 俺也久久电影网| 美女高潮的动态| 给我免费播放毛片高清在线观看| 高清在线国产一区| 国产精品国产高清国产av| ponron亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品国产精品久久久不卡| 一个人观看的视频www高清免费观看 | 午夜福利在线观看吧| 免费在线观看亚洲国产| 99热精品在线国产| 国产午夜福利久久久久久| 一a级毛片在线观看| 日本 av在线| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 亚洲国产中文字幕在线视频| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| 他把我摸到了高潮在线观看| 天堂√8在线中文| 国产精品 国内视频| 欧美一级毛片孕妇| 亚洲国产精品合色在线| 欧美av亚洲av综合av国产av| 听说在线观看完整版免费高清| 一进一出抽搐动态| 丁香六月欧美| 国产一级毛片七仙女欲春2| 最新中文字幕久久久久 | 国产av一区在线观看免费| 国产亚洲精品av在线| 亚洲 欧美 日韩 在线 免费| 香蕉av资源在线| 性色av乱码一区二区三区2| 国产真实乱freesex| svipshipincom国产片| 成人永久免费在线观看视频| 免费看a级黄色片| 久久精品影院6| 一边摸一边抽搐一进一小说| av黄色大香蕉| 亚洲欧美日韩高清在线视频| 一级黄色大片毛片| 深夜精品福利| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| 国产熟女xx| 国产精品综合久久久久久久免费| 日韩三级视频一区二区三区| 在线观看美女被高潮喷水网站 | 97人妻精品一区二区三区麻豆| 国产欧美日韩精品亚洲av| 一边摸一边抽搐一进一小说| 天堂影院成人在线观看| 免费av不卡在线播放| 精华霜和精华液先用哪个| 久久久久久大精品| 国产成人一区二区三区免费视频网站| 国产激情偷乱视频一区二区| 亚洲最大成人中文| 亚洲 国产 在线| 国产精品,欧美在线| 亚洲欧美日韩卡通动漫| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 全区人妻精品视频| 免费电影在线观看免费观看| 亚洲精华国产精华精| 99久久成人亚洲精品观看| 亚洲av五月六月丁香网| 国产主播在线观看一区二区| 国产精品久久久久久人妻精品电影| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品久久男人天堂| 狂野欧美白嫩少妇大欣赏| 性色av乱码一区二区三区2| 国产精品日韩av在线免费观看| 国产精品久久久人人做人人爽| 成人三级黄色视频| 国产精品香港三级国产av潘金莲| 宅男免费午夜| 国产成人福利小说| 国产精品自产拍在线观看55亚洲| 亚洲七黄色美女视频| 欧美zozozo另类| 一边摸一边抽搐一进一小说| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| 精品一区二区三区四区五区乱码| 亚洲欧美激情综合另类| 欧美另类亚洲清纯唯美| 亚洲欧洲精品一区二区精品久久久| 国产精品 欧美亚洲| 久久久久久久久免费视频了| 欧美最黄视频在线播放免费| 人妻丰满熟妇av一区二区三区| 国产高清三级在线| 亚洲天堂国产精品一区在线| 亚洲欧美日韩高清在线视频| 精品久久久久久久久久免费视频| 精品99又大又爽又粗少妇毛片 | 亚洲欧美一区二区三区黑人| 99国产综合亚洲精品| 一个人免费在线观看电影 | 青草久久国产| 欧美zozozo另类| 69av精品久久久久久| 色播亚洲综合网| 一个人免费在线观看的高清视频| 久久中文字幕一级| 桃红色精品国产亚洲av| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区黑人| 国产黄a三级三级三级人| 听说在线观看完整版免费高清| 午夜福利在线观看吧| 人妻久久中文字幕网| 成人一区二区视频在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲专区中文字幕在线| 18禁黄网站禁片免费观看直播| 热99在线观看视频| 亚洲熟妇中文字幕五十中出| 露出奶头的视频| 啪啪无遮挡十八禁网站| 国产淫片久久久久久久久 | 国产激情欧美一区二区| 欧美最黄视频在线播放免费| 亚洲色图av天堂| 国产av在哪里看| www.999成人在线观看| 免费高清视频大片| 日韩欧美免费精品| 欧美激情在线99| 久久久久九九精品影院| 高清毛片免费观看视频网站| 欧美成狂野欧美在线观看| 午夜福利在线观看吧| 亚洲欧美日韩高清专用| 国产v大片淫在线免费观看| 窝窝影院91人妻| 啦啦啦韩国在线观看视频| 香蕉久久夜色| 亚洲成av人片在线播放无| 国产伦在线观看视频一区| 日韩免费av在线播放| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产精品麻豆| 麻豆av在线久日| 在线免费观看不下载黄p国产 | 变态另类丝袜制服| 国产精品久久久人人做人人爽| 精品人妻1区二区| 久久香蕉精品热| 亚洲电影在线观看av| 成人国产综合亚洲| 亚洲av五月六月丁香网| 天堂网av新在线| 日日夜夜操网爽| 一级毛片精品| 国产麻豆成人av免费视频| 欧美激情在线99| 日本撒尿小便嘘嘘汇集6| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人| 久久久久免费精品人妻一区二区| 亚洲一区二区三区不卡视频| 夜夜看夜夜爽夜夜摸| 国产一级毛片七仙女欲春2| av中文乱码字幕在线| 老汉色av国产亚洲站长工具| 国产av不卡久久| 日本免费a在线| 亚洲av熟女| 午夜免费激情av| 国产精华一区二区三区| 美女 人体艺术 gogo| 亚洲人成伊人成综合网2020| 51午夜福利影视在线观看| 色播亚洲综合网| 男插女下体视频免费在线播放| 老鸭窝网址在线观看| 一个人免费在线观看的高清视频| or卡值多少钱| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 99国产精品99久久久久| 成人永久免费在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲av五月六月丁香网| 精品不卡国产一区二区三区| 国语自产精品视频在线第100页| 国产视频一区二区在线看| 夜夜看夜夜爽夜夜摸| 亚洲 国产 在线| 国产精品香港三级国产av潘金莲| 黄片小视频在线播放| 一个人免费在线观看电影 | 国产一区二区在线av高清观看| 一夜夜www| 亚洲成人久久爱视频| 一级毛片高清免费大全| 老汉色∧v一级毛片| 一区福利在线观看| 日本免费a在线| av片东京热男人的天堂| 看免费av毛片| 国产精品99久久99久久久不卡| 999精品在线视频| 他把我摸到了高潮在线观看| 色播亚洲综合网| 色视频www国产| 国产 一区 欧美 日韩| 一区二区三区国产精品乱码| 亚洲成人免费电影在线观看| 国产成人系列免费观看| 床上黄色一级片| av在线天堂中文字幕| 男女视频在线观看网站免费| 舔av片在线| 桃红色精品国产亚洲av| 真人一进一出gif抽搐免费| www.熟女人妻精品国产| 日日摸夜夜添夜夜添小说| www日本在线高清视频| 村上凉子中文字幕在线| 久久久久九九精品影院| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 老司机午夜十八禁免费视频| 女同久久另类99精品国产91| 国产亚洲欧美在线一区二区| 少妇的丰满在线观看| 亚洲中文字幕日韩| 国产三级黄色录像| 欧美中文综合在线视频| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区免费欧美| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 久久天堂一区二区三区四区| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 91av网站免费观看| 午夜精品一区二区三区免费看| 国产精品久久久av美女十八| 一个人观看的视频www高清免费观看 | 国内精品久久久久久久电影| 国产视频一区二区在线看| 亚洲狠狠婷婷综合久久图片| 一本精品99久久精品77| 一级a爱片免费观看的视频| 免费观看的影片在线观看| 欧美日本视频| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 黄色日韩在线| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久| 日韩中文字幕欧美一区二区| 亚洲国产精品成人综合色| 色尼玛亚洲综合影院| 18禁观看日本| 两个人视频免费观看高清| 久久香蕉精品热| 噜噜噜噜噜久久久久久91| 久久这里只有精品19| 免费看光身美女| 天堂动漫精品| 欧美丝袜亚洲另类 | 久久久国产欧美日韩av| 久久久色成人| 亚洲午夜精品一区,二区,三区| 天堂√8在线中文| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 免费av不卡在线播放| 亚洲av日韩精品久久久久久密| 欧美色欧美亚洲另类二区| 一区二区三区国产精品乱码| 国产成年人精品一区二区| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 免费搜索国产男女视频| 国产熟女xx| 亚洲国产欧洲综合997久久,| 成人三级做爰电影| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 久久久久国产精品人妻aⅴ院| 19禁男女啪啪无遮挡网站| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 久久九九热精品免费| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 国产 一区 欧美 日韩| 在线视频色国产色| 操出白浆在线播放| 变态另类成人亚洲欧美熟女| 国产av不卡久久| www.精华液| 亚洲乱码一区二区免费版| 国内精品久久久久久久电影| 精品久久久久久,| 欧美丝袜亚洲另类 | 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 制服丝袜大香蕉在线| 亚洲 欧美一区二区三区| 黄色女人牲交| 少妇的丰满在线观看| 日韩人妻高清精品专区| 性色avwww在线观看| 一个人看视频在线观看www免费 | 深夜精品福利| 老司机午夜十八禁免费视频| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 欧美三级亚洲精品| 97碰自拍视频| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 欧美激情久久久久久爽电影| 欧美午夜高清在线| 99久久国产精品久久久| 看片在线看免费视频| 国产成人系列免费观看| 精品欧美国产一区二区三| 真人做人爱边吃奶动态| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影 | 手机成人av网站| 岛国视频午夜一区免费看| 在线观看日韩欧美| 丁香六月欧美| 三级国产精品欧美在线观看 | 亚洲人成电影免费在线| 夜夜躁狠狠躁天天躁| 午夜视频精品福利| 成人三级黄色视频| 嫩草影院入口| 中文字幕最新亚洲高清| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 国产69精品久久久久777片 | 一进一出好大好爽视频| 精品欧美国产一区二区三| 亚洲av片天天在线观看| 91av网一区二区| 久久久久久久精品吃奶| 久久午夜综合久久蜜桃| 免费看a级黄色片| 熟女人妻精品中文字幕| 日本黄色视频三级网站网址| 久久久久国内视频| 精品久久久久久久人妻蜜臀av| 国产精品久久久av美女十八| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| 亚洲精品中文字幕一二三四区| 国产精品野战在线观看| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 午夜福利在线在线| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观| 亚洲人成电影免费在线| 1000部很黄的大片| 久久这里只有精品19| 午夜福利高清视频| 久久久国产成人免费| 久久精品人妻少妇| 操出白浆在线播放| 午夜福利高清视频| 麻豆成人午夜福利视频| 午夜免费成人在线视频| 免费在线观看亚洲国产| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 嫩草影院入口| 精品福利观看| 亚洲黑人精品在线| 亚洲色图av天堂| 久久久久久久久久黄片| 中文在线观看免费www的网站| 日本 av在线| 欧美另类亚洲清纯唯美| 久久久久国产精品人妻aⅴ院| 听说在线观看完整版免费高清| 一级毛片精品| 国产高清视频在线观看网站| 淫妇啪啪啪对白视频| 18禁国产床啪视频网站| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 久久伊人香网站| 婷婷六月久久综合丁香| 亚洲欧洲精品一区二区精品久久久| 色噜噜av男人的天堂激情| 久久久久国产一级毛片高清牌| 欧美日本亚洲视频在线播放| 欧美黄色淫秽网站| 亚洲av日韩精品久久久久久密| 日日摸夜夜添夜夜添小说| 欧美日韩乱码在线| 亚洲人成网站在线播放欧美日韩| 欧美日韩福利视频一区二区| 精华霜和精华液先用哪个| 久久久久精品国产欧美久久久| 哪里可以看免费的av片| 熟妇人妻久久中文字幕3abv| 十八禁人妻一区二区| 大型黄色视频在线免费观看| 国产真实乱freesex| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 三级毛片av免费| 国产午夜福利久久久久久| 91在线精品国自产拍蜜月 | 啪啪无遮挡十八禁网站| 亚洲午夜理论影院| 免费电影在线观看免费观看| 操出白浆在线播放| 中文资源天堂在线| 午夜免费观看网址| 成人av在线播放网站| 老司机在亚洲福利影院| 18禁美女被吸乳视频| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 欧美日本视频| 一区福利在线观看| 国产美女午夜福利| 亚洲最大成人中文| 亚洲av免费在线观看| 一进一出抽搐动态| 脱女人内裤的视频| 无遮挡黄片免费观看| tocl精华| 国语自产精品视频在线第100页| 亚洲av电影在线进入| 国产成人啪精品午夜网站| 午夜福利高清视频| 日本 欧美在线| 欧美高清成人免费视频www| 欧美午夜高清在线| 亚洲一区高清亚洲精品| 老汉色∧v一级毛片| 嫩草影院入口| 99久久成人亚洲精品观看| 亚洲 国产 在线| 美女cb高潮喷水在线观看 | 国产不卡一卡二| 日韩有码中文字幕| 国产爱豆传媒在线观看| 很黄的视频免费| 亚洲精品一区av在线观看| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产高清videossex| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 色综合站精品国产| 香蕉久久夜色| 欧美黑人巨大hd| 女同久久另类99精品国产91| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 一个人免费在线观看电影 | 亚洲国产精品成人综合色| 亚洲专区字幕在线| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 性色av乱码一区二区三区2| 草草在线视频免费看| 真人一进一出gif抽搐免费| 欧美一区二区精品小视频在线| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 国产综合懂色| 一级a爱片免费观看的视频| 99热6这里只有精品| 999久久久精品免费观看国产| 精品一区二区三区视频在线 | 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 午夜福利18| 美女扒开内裤让男人捅视频| av国产免费在线观看| 最新在线观看一区二区三区| 日本与韩国留学比较| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲人成网站高清观看| 色综合站精品国产| 亚洲欧美日韩东京热| 中国美女看黄片| 国产高潮美女av| 色视频www国产| 亚洲片人在线观看| 亚洲人成网站高清观看| 九九热线精品视视频播放| 一个人看视频在线观看www免费 | 99riav亚洲国产免费| 悠悠久久av| 久久这里只有精品19| 少妇丰满av| 亚洲人成网站高清观看| 视频区欧美日本亚洲| 天天一区二区日本电影三级| 又大又爽又粗| 大型黄色视频在线免费观看| 又爽又黄无遮挡网站| 久久婷婷人人爽人人干人人爱| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱色亚洲激情| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 精品99又大又爽又粗少妇毛片 | 欧美中文日本在线观看视频| АⅤ资源中文在线天堂| 丰满人妻熟妇乱又伦精品不卡| 国产精品自产拍在线观看55亚洲| 婷婷精品国产亚洲av| 国产真实乱freesex| 少妇人妻一区二区三区视频| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| 欧美不卡视频在线免费观看| 男人和女人高潮做爰伦理| 波多野结衣高清无吗| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 国产精品日韩av在线免费观看| 亚洲国产精品合色在线| 久久九九热精品免费| 人人妻人人澡欧美一区二区| www.熟女人妻精品国产| 亚洲中文av在线| 亚洲va日本ⅴa欧美va伊人久久| 成年人黄色毛片网站| 日本与韩国留学比较| 日韩欧美在线二视频| 波多野结衣高清作品| 国产亚洲精品综合一区在线观看|