• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability measure approach considering mixture uncertainties under insufficient input data

    2023-03-02 02:34:38ZhenyuLIUYufengLYUGuodongSAJianrongTAN

    Zhenyu LIU, Yufeng LYU, Guodong SA, Jianrong TAN

    Research Article

    Reliability measure approach considering mixture uncertainties under insufficient input data

    1State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310058, China2Ningbo Research Institute, Zhejiang University, Ningbo 315100, China3Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, Ningbo 315336, China4School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China

    Reliability analysis and reliability-based optimization design require accurate measurement of failure probability under input uncertainties. A unified probabilistic reliability measure approach is proposed to calculate the probability of failure and sensitivity indices considering a mixture of uncertainties under insufficient input data. The input uncertainty variables are classified into statistical variables, sparse variables, and interval variables. The conservativeness level of the failure probability is calculated through uncertainty propagation analysis of distribution parameters of sparse variables and auxiliary parameters of interval variables. The design sensitivity of the conservativeness level of the failure probability at design points is derived using a semi-analysis and sampling-based method. The proposed unified reliability measure method is extended to consider-box variables, multi-domain variables, and evidence theory variables. Numerical and engineering examples demonstrate the effectiveness of the proposed method, which can obtain an accurate confidence level of reliability index and sensitivity indices with lower function evaluation number.

    Insufficient data; Reliability index; Sensitivity analysis; Sparse variable; Uncertainty propagation

    1 Introduction

    Uncertainties are ubiquitous in engineering pro ducts due to manufacturing error (Liu et al., 2022), lack of information, intrinsic random properties, etc. These uncertainties are quantified and propagated to uncertainties of product performance, which may lead to unexpected failure or performance fluctuation. Reliability analysis and reliability-based design optimization (RBDO) methodologies have been developed to obtain a reliable optimum design considering input uncertainties and have been applied in many engineering fields (Tostado-Véliz et al., 2021, 2022; Solazzi, 2022; Wakjira et al., 2022).

    In traditional RBDO methodologies, the uncertainty variables are assumed to be determinate probabilistic variables (Sankararaman and Mahadevan, 2015). However, in many actual engineering applications, it is difficult to acquire the complete uncertainty information for calculating the accurate probability density functions of uncertainty variables under insufficient input data (Wang et al., 2016). According to the available amount of input sampling data, the uncertainty variables can be classified into statistical variables with sufficient input data (Type I), sparse variables with insufficient input data (Type II), and interval variables with little input data (Type III) (Oberkampf et al., 2004). With an increase of input sampling data, the interval variables can be converted to sparse variables or even to statistical variables; the sparse variables can be also converted to statistical variables when there are enough input sampling data.

    The statistical variables (Type I) can be represented using determinate distribution type and accurate distribution parameters, such as normal distribution, gamma distribution,distribution, and Weibull distribution (Chen et al., 2003). A series of probabilistic uncertainty representation, propagation, and optimization design methodologies have been proposed to deal with statistical variables (Gan et al., 2018; El Haj and Soubra, 2021). The interval variables (Type III) can be represented using non-probabilistic methodologies, such as the convex model, evidence theory, fuzzy number, and-box (Ni et al., 2018). Many hybrid uncertainty analysis methodologies have also been proposed to deal with statistical variables and interval variables simultaneously (Hong et al., 2021).

    The distribution parameters of sparse variables (Type II) cannot be fitted accurately due to the insufficiency of input sampling data, and the probabilistic uncertainty analysis methodologies for statistical variables cannot be used directly for the representation of sparse variables. If the sparse variable is represented using non-probabilistic methodologies for interval variables, much uncertainty information in the insufficient input data is missing. Therefore, how to represent the uncertainties of sparse variables accurately is one issue in reliability-based design optimization.

    Initially, the sparse variables (Type II) are quantified using possibility-based approaches (Lee et al., 2013). For further parameterization of the sparse variables, likelihood-based approaches and Bayesian approaches are proposed to quantify their distribution types and distribution parameters. Uncertainty of distribution types can be estimated using many methodologies, such as the model identification method, Johnson distribution, and Kernel density estimation (Peng et al., 2017). Although the reliability index under sparse variables can be calculated, the algorithms are too computationally demanding due to the nesting estimation of uncertainty distribution types, distribution parameters, and uncertainty variables.

    The second issue is how to accurately quantify the reliability index considering the three types of uncertainty variables simultaneously. The uncertainty propagation methodologies for statistical variables (Type I) have been widely studied, such as probability density evaluation (McFarland and DeCarlo, 2020), surrogation model (Yun et al., 2020), and importance sampling method (Liu and Elishakoff, 2020). Many uncertainty quantification methodologies of reliability index considering interval variables (Type III) have also been proposed, such as interval arithmetic techniques, global optimization approach, and perturbation methods, and are summarized by Faes and Moens (2020). The uncertainty propagation analysis for sparse variables (Type II) is a multiple-loop process, the distribution types and distribution parameters are estimated in the outer loops, and the reliability index is estimated in the inner loops using similar methods to those for statistical variables (Type I). To reduce computational complexity and increase the accuracy of the reliability index, many non-probabilistic reliability analysis methodologies for hybrid uncertainties have been proposed (Zhao et al., 2018; Wei et al., 2019). Although there are many reliability measure approa ches for mixture uncertainties, there are multiple loops for the uncertainty quantification and propagation analysis of sparse variables, and the non-probabilistic reliability index is difficult to integrate with many probabilistic RBDO algorithms. Therefore, a probabilistic reliability measure approach is proposed and the reliability index and sensitivity indices are calculated considering the three types of uncertainties simultaneously.

    The rest of this paper is organized as follows. The reliability measure and sensitivity analysis problem considering mixture uncertainties is described in Section 2. In Section 3, a unified calculation algorithm of reliability index is proposed with less sampling loops and less sampling points. The sensitivity indices are calculated through a semi-analytical method based on auxiliary variables in Section 4. The proposed algorithm is extended for considering-box variables, multi-domain distribution variables, and evidence theory variables in Section 5. Three numerical and two engineering examples are demonstrated to verify the effectiveness of proposed methodology in Section 6. Conclusions are summarized in Section 7.

    2 Failure probability under insufficient input data

    Fig. 1 Multiple uncertainty types due to insufficient input data. BPA represents basic probability assignment

    3 Unified calculation of probability of failure probability

    3.1 Reliability measure based on auxiliary variable method

    3.2 Calculation procedure of probability of failure probability

    The step-to-step procedure is listed as follows, and the calculation flowchart is shown in Fig. 2.

    Fig. 2 Calculation flow chart for failure probability. AIC is the Akaike information criterion

    4 Sensitivity analysis of reliability index

    5 Extension of the proposed method to more uncertainty presentation types

    The proposed methodology can be extended to the reliability measure of multiple types of epistemic uncertainties, such as-box variables, multi-modal variables, and evidence theory variables.

    5.1 p-box uncertainty variables

    5.2 Multi-modal distribution variables

    5.3 Evidence theory variables

    6 Application examples

    6.1 Numerical example 1

    To demonstrate the effectiveness of the proposed reliability measure approach under insufficient input data, the 2D mathematical performance functions in Eqs. (32)–(34) (Cho et al., 2016a) are introduced.

    Fig. 3 Conservativeness level of failure probability considering sparse variables: (a) 10 input data; (b) 100 input data

    6.2 Numerical example 2

    To demonstrate the effectiveness of the proposed reliability measure approach under hybrid uncertainties, the 2D mathematical functions in Section 6.1 are extended to 3D functions in Eqs. (35) and (36).

    Fig. 4 Sensitivity results under different failure probabilities: (a) ; (b) ; (c) ; (d)

    Fig. 5 PDFs of distribution parameters for sparse variable : (a) ; (b) ; (c) ; (d) ; (e) ; (f)

    Fig. 6 Conservativeness level of failure probability of proposed method and MCS method

    Table 1 Design sensitivity of conservativeness level in example 2

    *

    6.3 Numerical example 3

    To demonstrate the effectiveness of the proposed method in the reliability measure for multiple types of epistemic uncertainties, the numerical example 2 is extended to analysis reliability indices and sensitivity indices considering-box variables, multi-modal variables, and evidence theory variables.

    6.3.1Reliability measure considering-box variable

    Fig. 7 Reliability result considering p-box variable

    6.3.2Reliability measures considering multi-modal variables

    Table 2 Design sensitivity of conservativeness level considering the p-box variable

    Compared with sparse variable , the weight ratios and distribution types of multi-modal variable are determinate. The failure probability can be calculated using a two-level sampling method for uncertain distribution parameters and design variables, as shown in Fig. 8, which demonstrates that the proposed method can be effectively extended to calculate reliability index considering multi-modal variables.

    Table 3 Design sensitivity of conservativeness level considering the multi-modal variable

    6.3.3Reliability measure considering evidence theory variable

    Fig. 9 Reliability measure result considering the evidence theory variable

    6.4 Engineering example: forging hydraulic press

    The forging hydraulic press is a large piece of equipment, which uses liquid as its working medium, and transfers energy to the forging process, as shown in Fig. 10.

    Fig. 11 FEA of the forging hydraulic press: (a) mesh; (b) deformation of the tie rods

    Table 4 Design sensitivity of conservativeness level considering the evidence theory variable

    The conservativeness level of failure probability considering hybrid uncertainties is calculated using the proposed method and the MCS method, as shown in Fig. 13. The sensitivity results computed using the proposed method and the FDM are listed in Table 5. These results indicate the proposed method can obtain accurate reliability index and sensitivity results.

    7 Conclusions

    In this study, a reliability measure approach considering mixture uncertainties under insufficient input data is proposed. First, the sparse variable is represented using weight summation of multiple distribution types based on AIC method under insufficient input data. Second, the failure probability under mixture uncertainties is calculated using the proposed two-level sampling method. Then, a semi-analytical method is proposed to calculate the sensitivity indices of mixture uncertainty variables. Finally, the proposed reliability measure method is extended to deal with-box variables, multi-modal variables, and evidence theory variables.

    Fig. 12 PDFs of distribution parameters for sparse variable : (a) ; (b) ; (c) ; (d)

    From the results of three numerical examples and two engineering examples, the proposed method can obtain accuracy reliability measure results with higher computational efficiency compared with the MCS and FDM methods. Some conclusions are obtained: (i) The proposed method can obtain accuracy reliability measure results with less computational times. The traditional three-level sampling loop for sparse variables is decreased to a two-level sampling loop, which decreases the computation complexity for the reliability measure. (ii) The semi-analytical sensitivity calculation method based on an auxiliary variable method decreases the computational burden, and can be integrated into the uncertainty optimization method with little extra calculation. (iii) The proposed method has been extended to analyze-box variables, multi-modal variables, and evidence theory variables, which can be extended to measure reliability index and sensitivity indices considering more uncertainty types, which is useful for mixture uncertainty optimization design.

    Fig. 13 Reliability result of forging hydraulic press

    Table 5 Design sensitivity of conservativeness level for forging hydraulic press

    This work is supported by the Key Research and Development Program of Zhejiang Province (No. 2021C01008), the National Natural Science Foundation of China (No. 52105279), and the Ningbo Natural Science Foundation of China (No. 2021J163). The authors appreciate the help from Xiang PENG (Zhejiang University of Technology, China) in programming and numerical calculation of distribution types and parameter estimation for sparse variables.

    Zhenyu LIU designed the research. Yufeng LYU and Guodong SA derived the mathematical formulas and analyzed the experimental and simulation cases. Yufeng LYU wrote the first draft of the manuscript. Guodong SA was in charge of the whole project. Jianrong TAN gave the theoretical guidance on the whole work.

    Zhenyu LIU, Yufeng LYU, Guodong SA, and Jianrong TAN declare that they have no conflict of interest.

    Chen JB, Yang JS, Jensen H, 2020. Structural optimization considering dynamic reliability constraints via probability density evolution method and change of probability measure., 62(5):2499-2516. https://doi.org/10.1007/s00158-020-02621-4

    Chen WH, Cui J, Fan XY, et al., 2003. Reliability analysis of DOOF for Weibull distribution., 4(4):448-453. https://doi.org/10.1631/jzus.2003.0448

    Cho H, Choi KK, Gaul NJ, et al., 2016a. Conservative reliability-based design optimization method with insufficient input data., 54(6):1609-1630. https://doi.org/10.1007/s00158-016-1492-4

    Cho H, Choi KK, Lee I, et al., 2016b. Design sensitivity method for sampling-based RBDO with varying standard deviation., 138(1):011405. https://doi.org/10.1115/1.4031829

    El Haj AK, Soubra AH, 2021. Improved active learning probabilistic approach for the computation of failure probability., 88:102011. https://doi.org/10.1016/j.strusafe.2020.102011

    Faes M, Moens D, 2020. Recent trends in the modeling and quantification of non-probabilistic uncertainty., 27(3):633-671. https://doi.org/10.1007/s11831-019-09327-x

    Gan CB, Wang YH, Yang SX, 2018. Nonparametric modeling on random uncertainty and reliability analysis of a dual-span rotor., 19(3):189-202. https://doi.org/10.1631/jzus.A1600340

    Hong LX, Li HC, Gao N, et al., 2021. Random and multi-super-ellipsoidal variables hybrid reliability analysis based on a novel active learning Kriging model., 373:113555. https://doi.org/10.1016/j.cma.2020.113555

    Kang YJ, Lim OK, Noh Y, 2016. Sequential statistical modeling method for distribution type identification., 54(6):?1587-1607. https://doi.org/10.1007/s00158-016-1567-2

    Keshtegar B, Hao P, 2018. Enhanced single-loop method for efficient reliability-based design optimization with complex constraints., 57(4):1731-1747. https://doi.org/10.1007/s00158-017-1842-x

    Lee I, Choi KK, Noh Y, et al., 2011. Sampling-based stochastic sensitivity analysis using score functions for RBDO problems with correlated random variables., 133(2):021003. https://doi.org/10.1115/1.4003186

    Lee I, Choi KK, Noh Y, et al., 2013. Comparison study between probabilistic and possibilistic methods for problems under a lack of correlated input statistical information., 47(2):175-189. https://doi.org/10.1007/s00158-012-0833-1

    Liu XX, Elishakoff I, 2020. A combined importance sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables., 82:101875. https://doi.org/10.1016/j.strusafe.2019.101875

    Liu Y, Jeong HK, Collette M, 2016. Efficient optimization of reliability-constrained structural design problems including interval uncertainty., 177:1-11. https://doi.org/10.1016/j.compstruc.2016.08.004

    Liu ZY, Xu HC, Sa GD, et al., 2022. A comparison of sensitivity indices for tolerance design of a transmission mechanism., 23(7):527-542. https://doi.org/10.1631/jzus.A2100461

    McFarland J, DeCarlo E, 2020. A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty., 197:106807. https://doi.org/10.1016/j.ress.2020.106807

    Ni BY, Jiang C, Huang ZL, 2018. Discussions on non-probabilistic convex modelling for uncertain problems., 59:54-85. https://doi.org/10.1016/j.apm.2018.01.026

    Oberkampf WL, Helton JC, Joslyn CA, et al., 2004. Challenge problems: uncertainty in system response given uncertain parameters., 85(1-3): 11-19. https://doi.org/10.1016/j.ress.2004.03.002

    Peng X, Li JQ, Jiang SF, 2017. Unified uncertainty representation and quantification based on insufficient input data., 56(6):???1305-1317. https://doi.org/10.1007/s00158-017-1722-4

    Sankararaman S, Mahadevan S, 2013. Distribution type uncertainty due to sparse and imprecise data., 37(1-2):182-198. https://doi.org/10.1016/j.ymssp.2012.07.008

    Sankararaman S, Mahadevan S, 2015. Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems., 138:194-209. https://doi.org/10.1016/j.ress.2015.01.023

    Solazzi L, 2022. Reliability evaluation of critical local buckling load on the thin walled cylindrical shell made of composite material., 284:115163. https://doi.org/10.1016/j.compstruct.2021.115163

    Tostado-Véliz M, Icaza-Alvarez D, Jurado F, 2021. A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response., 170:884-896. https://doi.org/10.1016/j.renene.2021.02.006

    Tostado-Véliz M, Kamel S, Aymen F, et al., 2022. A stochastic-IGDT model for energy management in isolated micro grids considering failures and demand response., 317:119162. https://doi.org/10.1016/j.apenergy.2022.119162

    Wakjira TG, Ibrahim M, Ebead U, et al., 2022. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM., 255:113903. https://doi.org/10.1016/j.engstruct.2022.113903

    Wang C, Li QW, Pang L, et al., 2016. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information., 17(9):677-688. https://doi.org/10.1631/jzus.A1500342

    Wei PF, Song JW, Bi SF, et al., 2019. Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis., 126:227-247. https://doi.org/10.1016/j.ymssp.2019.02.015

    Yun WY, Lu ZZ, Jiang X, et al., 2020. AK-ARBIS: an improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability., 82:101891. https://doi.org/10.1016/j.strusafe.2019.101891

    Zhang Z, Wang J, Jiang C, et al., 2019. A new uncertainty propagation method considering multimodal probability density functions., 60(5):1983-1999. https://doi.org/10.1007/s00158-019-02301-y

    Zhao YG, Zhang XY, Lu ZH, 2018. Complete monotonic expression of the fourth-moment normal transformation for structural reliability., 196:186-199.https://doi.org/10.1016/j.compstruc.2017.11.006

    Sections S1?–S4

    June 6, 2022;

    Revision accepted Sept. 20, 2022;

    Crosschecked Jan. 1, 2023

    ? Zhejiang University Press 2023

    99热6这里只有精品| 七月丁香在线播放| 免费观看性生交大片5| 五月天丁香电影| 国产深夜福利视频在线观看| 国产在线免费精品| 五月伊人婷婷丁香| 啦啦啦视频在线资源免费观看| 九色亚洲精品在线播放| 国产免费又黄又爽又色| 日本-黄色视频高清免费观看| 亚洲美女黄色视频免费看| av又黄又爽大尺度在线免费看| 日本爱情动作片www.在线观看| 亚洲五月色婷婷综合| 亚洲av成人精品一区久久| 亚洲成色77777| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 日本91视频免费播放| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 综合色丁香网| 狠狠精品人妻久久久久久综合| 亚洲无线观看免费| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 99热这里只有精品一区| 亚洲成色77777| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 特大巨黑吊av在线直播| 亚洲精品美女久久av网站| 日本与韩国留学比较| 中文字幕最新亚洲高清| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 免费观看的影片在线观看| 亚洲少妇的诱惑av| 精品国产一区二区三区久久久樱花| 日韩精品有码人妻一区| 精品国产国语对白av| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 日本色播在线视频| 啦啦啦视频在线资源免费观看| 亚洲av不卡在线观看| 亚洲在久久综合| 国产精品成人在线| 啦啦啦中文免费视频观看日本| 在线观看www视频免费| 在线播放无遮挡| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 国产日韩欧美视频二区| 尾随美女入室| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 新久久久久国产一级毛片| 久久国产精品大桥未久av| 国产伦精品一区二区三区视频9| 国产av国产精品国产| 亚洲精品国产av蜜桃| www.av在线官网国产| 日韩伦理黄色片| 久久 成人 亚洲| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| 极品人妻少妇av视频| 美女内射精品一级片tv| 一级爰片在线观看| 边亲边吃奶的免费视频| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 国产成人freesex在线| 国产熟女午夜一区二区三区 | tube8黄色片| 美女脱内裤让男人舔精品视频| 亚洲国产精品专区欧美| 亚洲精品日本国产第一区| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 大香蕉久久网| 国产一区亚洲一区在线观看| av女优亚洲男人天堂| 免费人成在线观看视频色| 男的添女的下面高潮视频| 多毛熟女@视频| 最近的中文字幕免费完整| 欧美老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 精品少妇内射三级| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 欧美精品一区二区免费开放| 毛片一级片免费看久久久久| 久久国产精品男人的天堂亚洲 | 国产成人精品婷婷| 国产精品一二三区在线看| 国产成人一区二区在线| 精品久久久久久久久亚洲| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 我的老师免费观看完整版| 色哟哟·www| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 成人国产麻豆网| 亚洲婷婷狠狠爱综合网| 日日啪夜夜爽| 亚洲精品视频女| 国产精品女同一区二区软件| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 色网站视频免费| 精品久久蜜臀av无| 久久99热6这里只有精品| 十八禁网站网址无遮挡| 一本—道久久a久久精品蜜桃钙片| a 毛片基地| 赤兔流量卡办理| 91国产中文字幕| 91久久精品国产一区二区成人| 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人看| 日韩免费高清中文字幕av| 秋霞伦理黄片| 亚洲欧洲国产日韩| 黄色视频在线播放观看不卡| 成人免费观看视频高清| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频| 看十八女毛片水多多多| 国产欧美日韩综合在线一区二区| 综合色丁香网| 亚洲精品中文字幕在线视频| 赤兔流量卡办理| 最新的欧美精品一区二区| 久久精品久久精品一区二区三区| 日韩电影二区| 如日韩欧美国产精品一区二区三区 | 精品久久蜜臀av无| 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 久久影院123| 三上悠亚av全集在线观看| 全区人妻精品视频| 成人漫画全彩无遮挡| 99热这里只有精品一区| 汤姆久久久久久久影院中文字幕| av电影中文网址| 考比视频在线观看| 色吧在线观看| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 国产欧美另类精品又又久久亚洲欧美| 飞空精品影院首页| 欧美精品一区二区大全| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| www.av在线官网国产| 在线观看三级黄色| 亚洲av综合色区一区| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| av在线播放精品| 国产色爽女视频免费观看| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 在线精品无人区一区二区三| 2018国产大陆天天弄谢| 美女国产高潮福利片在线看| 精品视频人人做人人爽| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 狂野欧美激情性bbbbbb| 91精品一卡2卡3卡4卡| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 我的女老师完整版在线观看| 国产欧美日韩一区二区三区在线 | 天堂俺去俺来也www色官网| 亚洲人成77777在线视频| 男女国产视频网站| av线在线观看网站| 国产午夜精品久久久久久一区二区三区| 插阴视频在线观看视频| 精品酒店卫生间| 亚洲综合色网址| 免费看av在线观看网站| 一级,二级,三级黄色视频| 男男h啪啪无遮挡| 国产av一区二区精品久久| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 免费av不卡在线播放| 一级毛片电影观看| 国产色婷婷99| www.色视频.com| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 黄色怎么调成土黄色| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| 亚洲精品成人av观看孕妇| 波野结衣二区三区在线| 午夜免费鲁丝| 国产精品国产av在线观看| 少妇人妻 视频| 狂野欧美激情性bbbbbb| 成人亚洲欧美一区二区av| 国产片内射在线| 日本91视频免费播放| 男人操女人黄网站| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 亚洲成人手机| 蜜桃在线观看..| 99久久中文字幕三级久久日本| 丰满饥渴人妻一区二区三| 免费观看在线日韩| 毛片一级片免费看久久久久| 欧美人与善性xxx| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 最新中文字幕久久久久| 另类精品久久| av在线观看视频网站免费| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 高清不卡的av网站| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 国产一区有黄有色的免费视频| 午夜av观看不卡| 午夜激情av网站| 人体艺术视频欧美日本| 91久久精品国产一区二区成人| 热99久久久久精品小说推荐| 久久人人爽人人爽人人片va| 国产爽快片一区二区三区| 男女免费视频国产| 人妻人人澡人人爽人人| 国产男女超爽视频在线观看| 美女福利国产在线| 免费看不卡的av| 97超视频在线观看视频| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 美女大奶头黄色视频| 国产在视频线精品| 久久久久国产网址| 黄片播放在线免费| 国产又色又爽无遮挡免| 国产精品免费大片| 国产日韩欧美亚洲二区| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 成人毛片60女人毛片免费| 国模一区二区三区四区视频| 日韩熟女老妇一区二区性免费视频| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 一级片'在线观看视频| 亚洲少妇的诱惑av| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 国产精品成人在线| 欧美xxxx性猛交bbbb| 亚洲欧美一区二区三区黑人 | 青青草视频在线视频观看| av专区在线播放| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 亚洲伊人久久精品综合| 自线自在国产av| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 日本黄大片高清| 男男h啪啪无遮挡| 十八禁网站网址无遮挡| 黄色怎么调成土黄色| 国产精品人妻久久久久久| 亚洲av福利一区| 亚洲国产精品国产精品| www.色视频.com| 纯流量卡能插随身wifi吗| 成人手机av| 国产成人aa在线观看| 欧美三级亚洲精品| 日本欧美国产在线视频| 满18在线观看网站| 国内精品宾馆在线| 狠狠婷婷综合久久久久久88av| 亚洲高清免费不卡视频| videosex国产| 热re99久久国产66热| 99re6热这里在线精品视频| 久久午夜综合久久蜜桃| 亚洲国产精品999| 久久久精品94久久精品| 少妇的逼水好多| 亚洲综合色网址| 一个人免费看片子| 我的女老师完整版在线观看| 又黄又爽又刺激的免费视频.| 国产成人91sexporn| 久久久久久久大尺度免费视频| 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| a级毛片黄视频| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 插逼视频在线观看| 欧美 亚洲 国产 日韩一| 免费av不卡在线播放| 国产成人a∨麻豆精品| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区成人| 国产探花极品一区二区| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 日日爽夜夜爽网站| 亚洲中文av在线| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 国产综合精华液| 国产精品人妻久久久久久| 丰满乱子伦码专区| 亚洲精品一二三| 中文字幕最新亚洲高清| 国产成人一区二区在线| 免费观看性生交大片5| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 十八禁网站网址无遮挡| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看 | 久久久久久久国产电影| 精品久久久久久电影网| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 久久狼人影院| 日韩强制内射视频| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 欧美日韩国产mv在线观看视频| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 九九在线视频观看精品| 能在线免费看毛片的网站| 老司机影院毛片| 嫩草影院入口| 九九在线视频观看精品| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 亚洲精品第二区| 婷婷色麻豆天堂久久| 亚洲欧美日韩另类电影网站| 如日韩欧美国产精品一区二区三区 | 人妻一区二区av| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 中文字幕精品免费在线观看视频 | 亚洲综合色网址| 秋霞伦理黄片| 免费大片18禁| 亚洲国产日韩一区二区| 国模一区二区三区四区视频| 亚洲国产精品一区二区三区在线| 午夜激情福利司机影院| 91国产中文字幕| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 中文字幕亚洲精品专区| 久久久午夜欧美精品| 精品一区二区三区视频在线| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 99国产综合亚洲精品| 日本欧美国产在线视频| 岛国毛片在线播放| 日本av手机在线免费观看| xxxhd国产人妻xxx| 欧美xxxx性猛交bbbb| 欧美xxⅹ黑人| 国产国拍精品亚洲av在线观看| 亚洲av在线观看美女高潮| 哪个播放器可以免费观看大片| a 毛片基地| 色94色欧美一区二区| 成人影院久久| av专区在线播放| 国产一区亚洲一区在线观看| 十八禁高潮呻吟视频| 搡女人真爽免费视频火全软件| 如何舔出高潮| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 精品人妻偷拍中文字幕| 欧美日韩视频高清一区二区三区二| 国产淫语在线视频| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 精品少妇内射三级| 岛国毛片在线播放| 视频中文字幕在线观看| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 久久精品人人爽人人爽视色| 中文字幕最新亚洲高清| 男人添女人高潮全过程视频| 一级毛片 在线播放| 中文字幕制服av| 国产精品国产三级专区第一集| 久久久久网色| 一级毛片黄色毛片免费观看视频| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频| av一本久久久久| 99久久精品一区二区三区| 亚州av有码| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 国产成人精品久久久久久| 精品少妇内射三级| 久久久久久久久久成人| 91久久精品国产一区二区三区| 黄色欧美视频在线观看| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 最黄视频免费看| 99热6这里只有精品| 日韩一本色道免费dvd| a级毛片黄视频| 大话2 男鬼变身卡| 99久国产av精品国产电影| 永久网站在线| 午夜老司机福利剧场| 欧美最新免费一区二区三区| av卡一久久| 欧美最新免费一区二区三区| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 国产成人av激情在线播放 | 日本av免费视频播放| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| a 毛片基地| 亚洲精品视频女| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 久久久久国产精品人妻一区二区| 国产黄色免费在线视频| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 成人无遮挡网站| 99视频精品全部免费 在线| 久久青草综合色| 午夜福利,免费看| 亚洲情色 制服丝袜| 尾随美女入室| 人人澡人人妻人| 亚洲精品美女久久av网站| 在线观看国产h片| 国产午夜精品一二区理论片| 伦理电影免费视频| 亚洲欧美成人精品一区二区| 男女高潮啪啪啪动态图| 国产精品人妻久久久久久| 国产高清国产精品国产三级| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 久久 成人 亚洲| 久久国产精品大桥未久av| 日韩欧美精品免费久久| .国产精品久久| 王馨瑶露胸无遮挡在线观看| 99视频精品全部免费 在线| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 曰老女人黄片| 伊人亚洲综合成人网| 一级黄片播放器| 男女边摸边吃奶| 妹子高潮喷水视频| av福利片在线| 精品人妻一区二区三区麻豆| 亚洲一级一片aⅴ在线观看| 18禁观看日本| 免费观看a级毛片全部| 国产爽快片一区二区三区| 最新中文字幕久久久久| 丝瓜视频免费看黄片| 极品人妻少妇av视频| 国产高清三级在线| 国产成人精品婷婷| 在线观看免费视频网站a站| 伦理电影免费视频| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲成色77777| 最近手机中文字幕大全| 国产成人精品无人区| 九色亚洲精品在线播放| 18在线观看网站| 另类精品久久| 国产伦精品一区二区三区视频9| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 日韩视频在线欧美| 亚洲欧洲精品一区二区精品久久久 | 日韩 亚洲 欧美在线| 超色免费av| 婷婷成人精品国产| 婷婷色综合大香蕉| 亚洲av在线观看美女高潮| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 午夜免费鲁丝| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 99久久精品国产国产毛片| 久久热精品热| 久久久精品区二区三区| 少妇丰满av| videos熟女内射| 国产精品免费大片| 熟女av电影| 久久久久久久精品精品| 波野结衣二区三区在线| 热99国产精品久久久久久7| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 国产高清三级在线| av一本久久久久| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| 大话2 男鬼变身卡| 一边摸一边做爽爽视频免费| 只有这里有精品99| 99热这里只有精品一区| 亚洲精品乱久久久久久| 少妇的逼水好多| 啦啦啦中文免费视频观看日本| 人人妻人人澡人人爽人人夜夜| 日韩免费高清中文字幕av| 日韩人妻高清精品专区| 国产亚洲一区二区精品| 视频区图区小说| 午夜影院在线不卡| 国产高清国产精品国产三级| 国产成人精品福利久久| 国产精品久久久久成人av| 两个人的视频大全免费| 欧美3d第一页| 亚洲av男天堂| 亚洲三级黄色毛片| 国产精品一区二区在线不卡| av有码第一页| 老司机影院成人| 久久久午夜欧美精品| 国产精品蜜桃在线观看| 日韩中文字幕视频在线看片| 国产午夜精品一二区理论片|