• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吡啶鹽/咪唑鹽調(diào)控鈷萘基二膦酸配位聚合物的結(jié)構(gòu)和性質(zhì)

    2023-02-27 03:29:26劉照文王肖陽高文康
    關(guān)鍵詞:材料科學(xué)宿遷吡啶

    徐 艷 王 宣 劉照文 王肖陽 高文康 崔 磊

    (宿遷學(xué)院信息工程學(xué)院材料科學(xué)系,宿遷 223800)

    0 Introduction

    Coordination polymers(CPs)have received tre?mendous attention recently due to their versatile struc?tures and multiple functions that can be designed and tailored.As an important class of inorganic?organic hybrid materials or CPs,metal phosphonates can show versatile architectures with interesting physical and chemical properties[1?8].Many metal phosphonates have been constructed by decorating the phosphonate ligand with other coordinating functional groups[9?13]or intro?ducing a second auxiliary ligand[14?17].In principle,a near?limitless number of metal phosphonates can be obtained through different combinations of metal ions and organic ligands.Therefore,it is crucial to under?stand the mechanism of structure assembly and the structure?property relationships of this class of material for the final purpose of designing and synthesizing materials according to on?demand.Many factors,such as the coordination geometry of the central metal ions,connective modes of the organic ligands,deprotonation of the phosphonic acid group,and synthesis conditions,can affect the final structures.Compared with the car?boxylate group,the phosphonate group has an addition?al oxygen atom,featuring one more coordinating site and consequently more coordination modes,which makes it a great challenge to design and synthesize materials with specific structures and functions.Many efforts have been made to understand these by investi?gating different metal centers,functionalized phospho?nate ligands,and synthesis conditions.An effective strategy to fabricate metal phosphonates with fascinat?ing structures is using different templates or mineraliz?ers in the reaction mixture.A few metal phosphonates are reported based on amine?templated.Wang Guo?Ming and co?workers have taken 1?hydroxyethane?1,1?diphosphonic acid (hedpH4)as the diphosphonate ligand to build a family of open?framework structures with templated aliphatic amines[16,18?21].To the best of our knowledge,the syntheses of metal phosphonates using different di?pyridinium templates in the reaction mixture have not been adopted so far.Here,the naph?thalene?diphosphonate ligand(Scheme 1)has been utilized for the generation of more coordination sites,along with di?pyridinium/imidazolium as template ions for the first time.

    Scheme 1 Molecular structure and coordination modes of 1,4?ndpaH4ligand

    In this work,three cobalt naphthalene?diphospho?nates with entirely different structures are obtained under hydrothermal conditions simply by changing the auxiliary ligands and the pH of the reaction mixture.Complexes(1,3?dppH2)2[Co4(1,4?ndpa)(1,4?ndpaH)2(1,4?ndpaH2)]·6H2O(1)and(1,4?bixH2)0.5[Co(1,4?ndpaH)](2)(1,3?dppH22+=protonated 1,3?di(4?pyridyl)propane,1,4?bixH2+2=protonated bis(imidazol?1?ylmethyl)ben?zene,1,4?ndpaH4=1,4?naphthalenediphosphonic acid)show 3D open?framework structures,respectively.While complex(1,4?bixH2)0.5[Co2(1,4?ndpaH)(1,4?ndpaH2)(H2O)2](3)displays 2D layer structure.Magnet?ic studies reveal that complexes 1 and 2 show domi?nant antiferromagnetic interactions.

    1 Experimental

    1.1 Materials and measurements

    1,4?ndpaH4was synthesized according to the liter?ature[22].All starting materials were of analytical reagent grade and used as received without further pu?rification.Elemental analysis for C,H,and N was per?formed on a Perkin?Elmer 240C elemental analyzer.Infrared spectra were measured as KBr pellets on a Bruker Tensor 27 spectrometer in 400 ?4 000 cm?1.Thermogravimetric analysis(TGA)was performed on a METTLER TOLEDO TGA/DSC?1 over 25?800 ℃under a nitrogen flow at a heating rate of 10 ℃·min?1.Powder X?ray diffraction(PXRD)data were collected on a Bruker D8 ADVANCE X?ray powder diffractome?ter(Cu Kα,λ=0.154 06 nm)operating at 45 kV and 40 mA over a 2θ range of 5°to 50°at room temperature.The magnetization data were recorded on a vibrating sample magnetometer(VSM)of Quantum Design.The diamagnetic contribution of the sample itself was esti?mated from Pascal′s constants[23].

    1.2 Synthesis

    1.2.1 Synthesis of complex 1

    A mixture of CoCl2·6H2O(0.476 g,0.1 mmol),1,4?ndpaH4(0.028 6 g,0.1 mmol),and 1,3?dpp(0.019 6 g,0.1 mmol)in 10 mL of water,which pH value was adjusted to 4.15 with 0.5 mol·L?1NaOH solution,was sealed in a Teflon?lined autoclave and heated at 140 ℃for 3 d.After cooling to room temperature,blue rod?like crystals were collected and washed with water by suction filtration.Yield:55.3 mg.Elemental analysis Calcd.for C66H72Co4N4O30P8(%):C,42.06;H,3.85;N,2.97.Found(%):C,42.11;H,3.81;N,2.83.FT?IR(KBr,cm?1):3 397(w),3 237(w),1 635(m),1 507(m),1 215(m),1 187(w),1 154(vs),1 123(vs),1 090(vs),1 040(m),1 017(s),963(s),941(s),856(m),812(m),757(m),624(s),570(m),519(s),478(s),439(w),407(w),403(w).

    1.2.2 Synthesis of complex 2

    A mixture of CoCl2·6H2O(0.047 4 g,0.2 mmol),1,4?ndpaH4(0.031 2 g,0.1 mmol),and 1,4?bix(0.025 6 g,0.1 mmol)in 10 mL of water,which pH value was adjusted to 5.6 with 0.5 mol·L?1NaOH solution,was sealed in a Teflon?lined autoclave and heated at 140 ℃for 3 d.After cooling to room temperature,blue rod?like crystals were collected and washed with water by suction filtration.Yield:23.8 mg.Elemental analysis Calcd.for C17H15CoN2O6P2(%):C,43.99;H,3.26;N,6.03.Found(%):C,43.83;H,3.29;N,6.12.FT?IR(KBr,cm?1):3 140(m),3 090(w),1 570(m),1 550(m),1 516(m),1 445(m),1 273(m),1 208(m),1 158(w),1 092(vs),1 016(s),944(vs),863(m),770(s),709(m),619(s),522(s),413(m).

    1.2.3 Synthesis of complex 3

    Complex 3 was obtained as purple rod?like crys?tals by following a similar procedure to that of 2,except that the pH value of the reaction mixture was adjusted to 4.3.Yield:15.9 mg.Elemental analysis Calcd.for C27H27Co2N2O14P4(%):C,38.37;H,3.22;N,3.31.Found(%):C,38.56;H,3.18;N,3.29.FT ?IR(KBr,cm?1):3 356(s),1 578(m),1 511(m),1 213(s),1 186(vs),1 157(vs),1 086(vs),1 072(vs),1 034(w),1 010(w),970(m),940(vs),756(m),631(s),571(m),524(m),509(m),493(w),436(w).

    1.3 Crystallographic data collection and refinement

    Single crystals with sizes of 0.15 mm×0.13 mm×0.12 mm for 1,0.12 mm×0.11 mm×0.10 mm for 2,and 0.16 mm×0.15 mm×0.13 mm for 3 were used for struc?tural determination on a Bruker D8 Venture diffractom?eter using graphite?monochromated(Mo Kα,λ =0.071 073 nm)at 100 K.A hemisphere of data was col?lected in a 2θ range of 3.03°?58.818°for 1,4.124°?58.884°for 2,and 2.996°?58.666°for 3.The numbers of observed and unique reflections are 56 305 and 16 056(Rint=0.031 8)for 1,16 837 and 4 117(Rint=0.029 3)for 2,33 130 and 6 926(Rint=0.036 4)for 3.Using Olex2,the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimization All H atoms were refined isotro?pically,with the isotropic vibration parameters related to the non?H atom to which they are bonded.Details of the crystal data and refinements of 1?3 are summarized in Table 1,and selected bond lengths and angles of 1?3 are listed in Table S1?S3(Supporting information).

    Table 1 Crystallographic data and structure refinement details for complexes 1?3

    CCDC:2202596,1;2202597,2;2202598,3.

    2 Results and discussion

    2.1 Synthesis

    Complexes 1?3 were synthesized under similar experimental conditions except for the auxiliary ligands and the pH value of the reaction mixture(Scheme 2).Pure phases of blue rod crystals of 1 and blue shuttle crystals of 2 were obtained at pH=5.6.When the pH was descended to 4.3,purple rob crystals of 3 were obtained,contaminated with a small amount of 2.We tried to isolate a pure phase of 3 by changing the reaction temperature and solvents but failed.Purple rob crystals of 3 were manually selected under the microscope for subsequent characterization.Its purity was confirmed by the PXRD pattern in compari?son with that simulated from the single crystal data(Fig.S1?S3).

    Scheme 2 Synthetic routes of complexes 1?3

    2.2 Structure description

    Complex 1 crystallizes in the monoclinic system space group P21/c.The asymmetric unit contains four Co(Ⅱ) ions,one 1,4?ndpa4?ion,two 1,4?ndpaH3?ions,one 1,4?ndpaH22?ion,two 1,3 ?dppH22+ions,and six lattice water molecules(Fig.1a).All Co(Ⅱ)ions have distorted tetrahedral geometry,surrounded by four phosphonate oxygen atoms(O1,O6A,O10B,O21C for Co1,O4,O7,O12D,O13 for Co2;O2E,O16,O18F,O19 for Co3;O8B,O14B,O22,O23G for Co4)(Symme?try codes:A:?x+1,y?1/2,?z+3/2;B:x?1,y,z;C:x,y?1,z;D:?x+2,y+1/2,?z+3/2;E:x,y+1,z,F:?x+1,?y+2,?z+1;G:?x,?y+1,?z+1).The Co—O bond lengths and O—Co—O angles fall in a range of 0.193 37(15)?0.19850(15)nmand95.74(7)°?117.86(6)°,respectively,in agreement with those for the other cobalt phospho?nates with tetrahedral geometry[24?25].

    The eight phosphonate groups(P1?P8)connect four Co(Ⅱ) ions using two of its three phosphonate oxy?gen atoms in a cis?cis coordination mode(Scheme 1),forming an infinite chain.Notably,P2,P3,P4,and P6 are singly protonated,while the remaining phosphonate groups are all fully deprotonated.The{CoO4}polyhe?dra are each involved in the corner sharing with four{PO3C}tetrahedrons,forming a 1D inorganic chain in the ac plane(Fig.1b).The Co…Co distances over the double O—P—O bridges are in a range of 0.417 71(7)?0.454 40(8)nm.The inorganic chains are further cross?linked by naphthalene groups,leading to a 3D open?framework structure(Fig.1c).Notably,in the 3D struc?ture,channels extend indefinitely along the a?axis.The protonated 1,3?dppH22+occupies these channels along with free water molecules(Fig.1d),interacting with each other and the framework through hydrogen bonds(N1…O1W:0.270 3(2)nm;N2…O5W:0.270 4(3)nm,N3…O4W:0.272 9(3)nm;N4…O6W:0.278 64(3)nm)(Table S2).

    Fig.1 (a)Building unit of 1 with atomic labeling scheme;(b)1D inorganic chain;(c)Inorganic chains cross?linked by naphthalene groups,where 1,3?dppH2 2+ions are omitted for clarity;(d)View of the supramolecular structure of 1 along the[011]direction showing the template,1,3?dppH2 2+,placed in the channel

    Complex 2 crystallizes in the monoclinic system space group P21/n.The asymmetric unit contains one Co(Ⅱ) ion,one 1,4?ndpaH3?ion,and half a 1,4?bixH2+2ion(Fig.2a).Like 1,Co(Ⅱ) ion in complex 2 also dis?plays a distorted tetrahedral geometry,in which all of the four coordination sites are occupied by phospho?nate oxygens(O1,O2A,O4,and O6B)(Symmetry codes:A:1?x,?y,1?z;B:0.5+x,0.5?y,0.5+z)from four equivalent 1,4 ?ndpaH3?ions.The Co—O bond lengths are 0.193 06(16)?0.195 63(15)nm,and O—Co—O angles are 105.52(7)°?116.99(6)°.Like those in complex 1,the phosphonate ligands in 2 adopt a cis?cis coordination mode (Scheme 1),behaving as a quadrdentate ligand,and coordinating with four Co(Ⅱ)ions.Thus each{CoO4}tetrahedron is corner?shared with four{PO3C},forming an infinite chain along the a?axis(Fig.2b).The Co…Co distances over the double O—P—O bridges are 0.460 97(4)and 0.456 61(4)nm.Like those found in complex 1,the chains are also linked by naphthalene groups,forming a 3D supramo?lecular structure.Furthermore,the protonated template of 1,4?bixH22+is suspended in the skeletal voids of the crystal structure.Hydrogen bonds exist between the phosphonate oxygen atoms and 1,4?bixH22+counterions(N1…O5:0.273 4(3)nm)along the b?axis(Fig.2c).

    Complex 3 crystallizes in the monoclinic system space group P21/n and shows a 2D layer structure.The asymmetric unit contains two Co(Ⅱ) ions,one 1,4?ndpaH3?ion,one 1,4 ?ndpaH22?ion,two coordination water molecules,and half a 1,4?bixH22+ion.Compared with complex 2,Co1 is five?coordinate with a distorted trigonal?bipyramidal geometry in complex 3,in which four of the five coordination sites are occupied by phos?phonate oxygens(O1,O7,O5A,O12B,Symmetry codes:A:3/2?x,?1/2+y,1/2?z;B:1/2?x,?1/2+y,1/2?z)from four equivalent 1,4?ndpaH3?ions and the remain?ing one is filled with the oxygen atom(O13)of the coor?dination water molecule(Fig.2d).Co2 has a distorted octahedral environment with the five sites occupied by five phosphonate oxygen(O1C,O2C,O4,O9D,O10,Symmetry codes:C:3/2?x,1/2+y,1/2?z;D:1/2?x,1/2+y,1/2?z),and one coordination water atom(O14).The Co—O bond lengths are between 0.199 02(13)and 0.226 70(14)nm and the O—Co—O bond angles lie in a range of 84.68(5)°?164.51(5)°(Table S4).Two tetra?dentate naphthalene phosphonate ligands differ slightly in their protonation,monoprotonated(1,4?ndpaH3?)and bi?protonated(1,4?ndpaH22?).Unlike those in complexes 1 and 2,the phosphonate ligands in 3 adopt a cis?trans coordination mode(Scheme 1).They chelate and bridge four cobalt ions.Each{Co1O5}polyhedron is corner?shared with four{PO3C}tetrahedrons,while the{Co2O6}polyhedron is involved in corner?sharing with three{PO3C}tetrahedrons and edge?sharing with one{PO3C}tetrahedron.Therefore,the Co1 and Co2 are bridged by one μ2?O(P)and one O—P—O linker,form?ing a dimeric unit of Co2.The Co1…Co2 distance with?in the dimer is 0.388 94(4)nm.The equivalent dimers are connected by two{PO3C}tetrahedrons to form an infinite chain running along the a?axis(Fig.2e).The distance between the dimers is 0.415 04(4)nm.The chains are cross?linked by naphthalene groups,forming a 2D wave layer in the ab plane(Fig.2e).The protonat?ed 1,4?bixH22+are filled between layers(Fig.2f).

    Fig.2 (a)Building unit of 2 with the atomic labeling scheme;(b)Inorganic chains cross?linked by naphthalene groups;(c)3D polyhedral view of complex 2;(d)Building unit of 3 with the atomic labeling scheme;(e)Wave single layer structure of 3 where the inorganic chains are cross?linked by naphthalene;(f)Packing diagram of 2 in ABAB mode viewed along the a?axis

    All the complexes exhibit di?pyridinium/imidazoli?um templated 3D or 2D extended structures on the connectivity between the Co2+ions and naphthalene?diphosphonate units.The reaction conditions in all the cases are similar,but the observed structural differenc?es are mainly due to the presence of variable dipyri?dine molecules and pH.Both complexes 1 and 2 have analogous 3D open?framework structures connecting through metal and diphosphonates (naphthalene diphosphonic acid),while the di?pyridinium/imidazoli?um template is different in the framework.In the struc?ture of 1,the template 1,3?dppH22+is placed in the channel formed from{CoO4}tetrahedron and{CPO3}tetrahedron connected by naphthalene groups(Fig.1d)with a channel size of 0.64 nm×0.64 nm(shortest atom?atom contact distances,not including the van der Waals radii).The protonated 1,3?dppH22+molecules occupy these channels along with free water molecules and interact with each other and with the framework through hydrogen bonds.The above channel is growing along the a?axis,which is different from the direction of the inorganic chain.In the structure of 2,templated 1,4?bixH22+cations are situated inside the bigger chan?nel of size(1.34 nm×0.66 nm),constructed from four inorganic chains made up of{CoO4}tetrahedron and{PO3C}tetrahedron along the a?axis(Fig.2c).The pro?tonated 1,4?bixH22+are stabilized through extensive N—H…O hydrogen bonding interactions with the framework.Complexes 2 and 3,despite slight distinc?tion of pH in the reactions,the same template effect leads to different topological structures.Comparing with complex 2,complex 3 exhibits an anionic layer with protonated di?pyridinium/imidazolium template located in interlayer space.Since at a lower pH value(4.3),there are diprotonated diphosphonates(1,4?ndpaH22?),which are absent in 1 and 2.It is worth men?tioning that although cobalt phosphonates with open?framework structures composed of inorganic chains and organoamine ?directed were previously reported[21,26?27],none of them contain a di?pyridinium/imidazolium template.

    2.3 Thermal stability of the complexes

    The TGA curves for complexes 1?3 are shown in Fig.3.The TGA curve of complex 1 revealed a multi?step weight loss process.The first step below 175℃corresponds to a weight loss of 5.47%,attributed to the release of six lattice water molecules(Calcd.5.73%).The dehydrated samples were stable up to 330℃,above which a second weight?loss step was observed with the removal of two 1,3?dppH22+ions(19.18%)(Calcd.19.76%).The third step was observed above 525℃,corresponding to the decomposition of the organic ligands and the collapse of the structure.Ther?mal analysis revealed that complex 2 was stable up to 400℃,above which the curve drops rapidly,due to the burn of the organic components and the collapse of the 3D structure.For complex 3,the first step occurred at about 240℃with a weight loss of 4.46%,in agreement with the removal of two lattice water molecules(Calcd.4.26%).This was followed by a short plateau until 355℃,above which a quick weight loss was observed corresponding to the release of the uncoordinated 1,4?bixH22+ions and the decomposition of the organic components.

    Fig.3 TGA curves for complexes 1,2,and 3

    2.4 Magnetic properties of complexes 1 and 2

    We attempted to synthesize sufficient amounts of complex 3 to characterize its magnetic properties but unfortunately failed.The temperature?dependent magnetic susceptibilities of 1 and 2 were measured in a temperature range of 2?300 K under an applied field of 1 kOe(Fig.4).The χMT values for each Co(Ⅱ) at 300 K were 2.36 cm3·mol?1·K for 1 and 2.41 cm3·mol?1·K for 2,and both are larger than the spin?only value of 1.875 cm3·mol?1·K for one spin ?only Co (Ⅱ) (S=3/2,g=2).Since the ground state of a tetrahedral Co(Ⅱ)is4A2,the higher value of χMT could be attributed to the orbital contribution from the lowing excited states[25].Upon cooling,the χMT products of 1 and 2 gradually decreased to 0.35 and 0.29 cm3·K·mol?1at 2 K,respectively.Above 100 K,the susceptibility data follow the Curie?Weiss law with the Curie constants(C)and Weiss constants(θ)of 2.77 cm3·K·mol?1and?20.98 K for 1 and 2.45 cm3·K·mol?1and ?4.59 K for 2,respectively.The negative Weiss constant is attribut?ed to the antiferromagnetic exchange couplings between the Co(Ⅱ) centers and/or the spin?orbital coupling of the single Co(Ⅱ)ion.For 2,the χMvs T plot shows a peak at 6 K confirming the presence of antiferromagnetic interactions between the Co(Ⅱ)centers.

    Fig.4 χMand χMT vs T plots under at 1 kOe dc field for 1(a)and 2(b)

    3 Conclusions

    In summary,we report for the first time that di?pyridinium/imidazolium templated modulated struc?ture in metal phosphonates.Three new cobalt naphtha?lene?diphosphonates,namely(1,3?dppH2)2[Co4(1,4?ndpa)(1,4?ndpaH)2(1,4?ndpaH2)]·6H2O(1),(1,4?bixH2)0.5[Co(1,4?ndpaH)](2),and(1,4?bixH2)0.5[Co2(1,4?ndpaH)(1,4?ndpaH2)(H2O)2](3),were successfully prepared by the hydrothermal method in the reaction of CoCl2·6H2O with 1,4?ndpaH4and 1,3?dpp for 1 and 1,4?bix for 2,3 at different pH values.Complexes 1 and 2 have 3D open?framework structures,constructed by inorgan?ic chains cross?linked by naphthalene groups,while complex 3 exhibits a 2D layer structure,constructed by inorganic chains connected by naphthalene groups.The protonated di?pyridinium/imidazolium templates,1,3?dppH22+for 1,1,4?bixH22+for 2 and 3,fill and com?pensate the negative charge.Magnetic studies reveal that dominant antiferromagnetic interactions between the magnetic centers are propagated in complexes 1 and 2.The present examples are not only enriching the field of di?pyridinium/imidazolium ?templated open?framework materials but also open possibilities for investigations of new phosphonates using different templates and metal combinations.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    材料科學(xué)宿遷吡啶
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    東大街:宿遷人的清明上河圖
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    江蘇宿遷:為500余名農(nóng)民工解“薪”事
    勘 誤
    今日農(nóng)業(yè)(2019年11期)2019-08-13 00:49:02
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    宿遷,宿遷
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    91九色精品人成在线观看| 国产精品免费大片| 91成年电影在线观看| 秋霞在线观看毛片| 亚洲九九香蕉| 美女视频免费永久观看网站| 国产日韩一区二区三区精品不卡| 国产成人一区二区三区免费视频网站| 亚洲激情五月婷婷啪啪| 女人久久www免费人成看片| 久久亚洲国产成人精品v| 极品少妇高潮喷水抽搐| 久久女婷五月综合色啪小说| 真人做人爱边吃奶动态| 国产成人一区二区三区免费视频网站| 又大又爽又粗| 亚洲精品国产精品久久久不卡| 久久久久久免费高清国产稀缺| 一本综合久久免费| 脱女人内裤的视频| 亚洲欧洲日产国产| 国产精品免费大片| 日韩制服骚丝袜av| 如日韩欧美国产精品一区二区三区| 99国产精品一区二区蜜桃av | 久久国产精品影院| 麻豆av在线久日| 国产在线视频一区二区| 丝袜脚勾引网站| 中文字幕人妻熟女乱码| avwww免费| 日韩中文字幕欧美一区二区| 夫妻午夜视频| 亚洲性夜色夜夜综合| 老司机靠b影院| 精品一区二区三区av网在线观看 | 久久久国产精品麻豆| 亚洲久久久国产精品| 国产又色又爽无遮挡免| 久久狼人影院| 亚洲欧美色中文字幕在线| 国产高清视频在线播放一区 | 亚洲欧美激情在线| 亚洲国产精品一区三区| 亚洲国产看品久久| 日韩制服骚丝袜av| 黄片小视频在线播放| 亚洲国产欧美日韩在线播放| 一区二区三区四区激情视频| bbb黄色大片| 午夜福利免费观看在线| av欧美777| 每晚都被弄得嗷嗷叫到高潮| av电影中文网址| 色视频在线一区二区三区| 欧美日韩成人在线一区二区| 欧美老熟妇乱子伦牲交| 久久久精品区二区三区| 一级片'在线观看视频| 欧美+亚洲+日韩+国产| 99国产精品一区二区三区| 国产1区2区3区精品| 9色porny在线观看| 国产高清国产精品国产三级| 国产激情久久老熟女| 一级片'在线观看视频| www.精华液| 久久香蕉激情| 国产伦理片在线播放av一区| 每晚都被弄得嗷嗷叫到高潮| 国产精品1区2区在线观看. | 天天操日日干夜夜撸| 午夜福利在线免费观看网站| 黄色视频不卡| 国产三级黄色录像| 在线观看人妻少妇| 人妻人人澡人人爽人人| 天天躁日日躁夜夜躁夜夜| 午夜91福利影院| 国精品久久久久久国模美| 精品国内亚洲2022精品成人 | 在线观看免费日韩欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 日韩免费高清中文字幕av| 国产97色在线日韩免费| 日韩三级视频一区二区三区| 成人亚洲精品一区在线观看| 国产成人精品无人区| 久久精品亚洲av国产电影网| 免费观看a级毛片全部| 精品一品国产午夜福利视频| 欧美 亚洲 国产 日韩一| 黑人操中国人逼视频| av网站在线播放免费| 色综合欧美亚洲国产小说| 熟女少妇亚洲综合色aaa.| 国产成人啪精品午夜网站| 久久久精品94久久精品| 欧美少妇被猛烈插入视频| 亚洲国产中文字幕在线视频| 法律面前人人平等表现在哪些方面 | 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 国产黄色免费在线视频| 久久久久久久久久久久大奶| 国产有黄有色有爽视频| 国产精品自产拍在线观看55亚洲 | 黑丝袜美女国产一区| 一二三四社区在线视频社区8| 久久毛片免费看一区二区三区| 成年动漫av网址| 欧美 日韩 精品 国产| 国产欧美日韩一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美日韩在线播放| 久久精品国产a三级三级三级| www.熟女人妻精品国产| 日韩中文字幕视频在线看片| 黄频高清免费视频| 美女中出高潮动态图| av在线老鸭窝| 国产成+人综合+亚洲专区| 老司机午夜十八禁免费视频| 永久免费av网站大全| 啪啪无遮挡十八禁网站| 亚洲国产精品一区二区三区在线| 久久免费观看电影| 成在线人永久免费视频| 亚洲精品美女久久久久99蜜臀| 久久中文看片网| 国产欧美日韩一区二区三 | 精品久久久久久久毛片微露脸 | 超色免费av| 男人操女人黄网站| 国产极品粉嫩免费观看在线| 两人在一起打扑克的视频| 国产区一区二久久| 亚洲综合色网址| 国产成人啪精品午夜网站| 最黄视频免费看| 亚洲第一青青草原| 97人妻天天添夜夜摸| 欧美精品av麻豆av| 日韩大片免费观看网站| 视频区图区小说| 一区在线观看完整版| 国产精品偷伦视频观看了| 亚洲精华国产精华精| 天天操日日干夜夜撸| 成年美女黄网站色视频大全免费| 亚洲av日韩精品久久久久久密| 女性生殖器流出的白浆| 一本一本久久a久久精品综合妖精| 男人添女人高潮全过程视频| 精品人妻1区二区| 黄片播放在线免费| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| 中文字幕人妻丝袜制服| 人人妻人人澡人人看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产中文字幕在线视频| 久久国产精品人妻蜜桃| 久久这里只有精品19| 最黄视频免费看| 少妇的丰满在线观看| 国精品久久久久久国模美| 免费日韩欧美在线观看| 99热全是精品| 国产高清视频在线播放一区 | 满18在线观看网站| 久久九九热精品免费| 亚洲av电影在线进入| 欧美黄色片欧美黄色片| 日韩电影二区| 久久国产精品男人的天堂亚洲| 国产av一区二区精品久久| 十八禁网站网址无遮挡| 国产男女超爽视频在线观看| 岛国毛片在线播放| 天天添夜夜摸| av网站免费在线观看视频| 国产av又大| 日本vs欧美在线观看视频| 国产一区二区 视频在线| av免费在线观看网站| 免费黄频网站在线观看国产| 亚洲av日韩精品久久久久久密| 欧美日韩成人在线一区二区| e午夜精品久久久久久久| 国产成人欧美在线观看 | 12—13女人毛片做爰片一| 99久久人妻综合| 国产精品国产av在线观看| 一个人免费在线观看的高清视频 | 国产在线视频一区二区| 亚洲伊人色综图| 久热爱精品视频在线9| 午夜91福利影院| 国产人伦9x9x在线观看| 桃花免费在线播放| 国产欧美日韩综合在线一区二区| 久久99一区二区三区| 桃红色精品国产亚洲av| 免费人妻精品一区二区三区视频| 电影成人av| 人人妻人人澡人人看| 精品一区在线观看国产| 午夜91福利影院| 欧美亚洲日本最大视频资源| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 人妻久久中文字幕网| 不卡av一区二区三区| 国产真人三级小视频在线观看| 老司机影院毛片| 男女下面插进去视频免费观看| 99久久国产精品久久久| 国产成人欧美在线观看 | 看免费av毛片| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 免费少妇av软件| 日韩 欧美 亚洲 中文字幕| 宅男免费午夜| 国产精品久久久人人做人人爽| 日韩精品免费视频一区二区三区| 亚洲国产欧美日韩在线播放| 韩国高清视频一区二区三区| 国产精品一区二区精品视频观看| 日韩一区二区三区影片| 激情视频va一区二区三区| 成人国产一区最新在线观看| 日本欧美视频一区| 蜜桃在线观看..| 日韩熟女老妇一区二区性免费视频| 国内毛片毛片毛片毛片毛片| 日韩人妻精品一区2区三区| 国产精品av久久久久免费| 交换朋友夫妻互换小说| 国产色视频综合| 亚洲免费av在线视频| 男女边摸边吃奶| 后天国语完整版免费观看| 最黄视频免费看| 欧美国产精品一级二级三级| 国产成人精品久久二区二区免费| 亚洲三区欧美一区| 欧美精品高潮呻吟av久久| 性高湖久久久久久久久免费观看| 国产一区二区三区av在线| 国产精品欧美亚洲77777| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美| 中文字幕色久视频| 久久这里只有精品19| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| 一本久久精品| 18禁观看日本| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 亚洲精品自拍成人| 精品欧美一区二区三区在线| 精品少妇内射三级| 色婷婷久久久亚洲欧美| 日本五十路高清| 美女高潮到喷水免费观看| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 亚洲国产毛片av蜜桃av| 天天添夜夜摸| 最黄视频免费看| 国产99久久九九免费精品| 国产成人av激情在线播放| xxxhd国产人妻xxx| 久久青草综合色| 亚洲专区字幕在线| 一本久久精品| 在线十欧美十亚洲十日本专区| 一区二区三区乱码不卡18| 一本综合久久免费| 国产视频一区二区在线看| 97人妻天天添夜夜摸| 亚洲精品国产区一区二| 免费在线观看影片大全网站| 在线观看免费视频网站a站| 国内毛片毛片毛片毛片毛片| 极品人妻少妇av视频| 久久青草综合色| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 国产成人精品在线电影| 免费观看a级毛片全部| 久久热在线av| 久久久久网色| 日韩制服丝袜自拍偷拍| 午夜福利乱码中文字幕| 人人妻人人澡人人爽人人夜夜| 国内毛片毛片毛片毛片毛片| 日本av免费视频播放| 久久精品成人免费网站| 啪啪无遮挡十八禁网站| 亚洲伊人久久精品综合| av天堂久久9| 午夜福利影视在线免费观看| 蜜桃国产av成人99| 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 汤姆久久久久久久影院中文字幕| 亚洲成国产人片在线观看| 一区二区三区四区激情视频| 久热爱精品视频在线9| 国产亚洲精品第一综合不卡| 一本一本久久a久久精品综合妖精| 亚洲九九香蕉| 亚洲美女黄色视频免费看| 夜夜夜夜夜久久久久| 国产精品欧美亚洲77777| 国产免费一区二区三区四区乱码| 亚洲精品国产av蜜桃| av有码第一页| 99久久国产精品久久久| 99国产精品99久久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲中文av在线| 午夜精品久久久久久毛片777| 国精品久久久久久国模美| 一边摸一边做爽爽视频免费| 宅男免费午夜| 又大又爽又粗| 久久影院123| 亚洲欧美日韩另类电影网站| 91成人精品电影| 一二三四社区在线视频社区8| 交换朋友夫妻互换小说| 十分钟在线观看高清视频www| 在线观看舔阴道视频| www.自偷自拍.com| 亚洲九九香蕉| 久久这里只有精品19| 一级毛片女人18水好多| 激情视频va一区二区三区| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 国产激情久久老熟女| 无限看片的www在线观看| 国产亚洲av片在线观看秒播厂| 亚洲人成77777在线视频| 美女主播在线视频| 91精品伊人久久大香线蕉| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 精品少妇内射三级| 涩涩av久久男人的天堂| 成人免费观看视频高清| 亚洲国产精品一区二区三区在线| bbb黄色大片| 国产亚洲午夜精品一区二区久久| 中文字幕av电影在线播放| 老司机深夜福利视频在线观看 | 国产又色又爽无遮挡免| 久久女婷五月综合色啪小说| 久久免费观看电影| 国产成人一区二区三区免费视频网站| xxxhd国产人妻xxx| 国产成人欧美| 亚洲精品美女久久av网站| 久久中文字幕一级| 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 男女之事视频高清在线观看| 免费久久久久久久精品成人欧美视频| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 精品熟女少妇八av免费久了| 色播在线永久视频| 国产精品久久久av美女十八| 国产成人精品久久二区二区91| 国产精品欧美亚洲77777| 丰满饥渴人妻一区二区三| 亚洲成av片中文字幕在线观看| 最新的欧美精品一区二区| 9色porny在线观看| 999久久久精品免费观看国产| 久久久欧美国产精品| 男女边摸边吃奶| 人人妻人人澡人人看| 国精品久久久久久国模美| 国产欧美日韩一区二区三区在线| 大香蕉久久网| 国产极品粉嫩免费观看在线| 亚洲中文日韩欧美视频| 韩国精品一区二区三区| 国产男女超爽视频在线观看| 亚洲av男天堂| 欧美人与性动交α欧美软件| 丝袜喷水一区| 国产免费福利视频在线观看| 婷婷丁香在线五月| 欧美性长视频在线观看| 精品人妻一区二区三区麻豆| 中文字幕人妻丝袜制服| 欧美一级毛片孕妇| 老司机影院成人| 国产真人三级小视频在线观看| 亚洲欧美精品自产自拍| 美女扒开内裤让男人捅视频| 久久久久国产精品人妻一区二区| 十八禁网站免费在线| 各种免费的搞黄视频| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 一级片'在线观看视频| 亚洲欧美激情在线| 国产在线免费精品| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 搡老岳熟女国产| 肉色欧美久久久久久久蜜桃| 亚洲第一欧美日韩一区二区三区 | 青草久久国产| 午夜91福利影院| av在线老鸭窝| 精品福利永久在线观看| 免费av中文字幕在线| 成人av一区二区三区在线看 | 高潮久久久久久久久久久不卡| 日本五十路高清| 一级,二级,三级黄色视频| 一级毛片精品| 日韩电影二区| 亚洲人成电影免费在线| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| 三级毛片av免费| 午夜免费成人在线视频| 国产av精品麻豆| 男女国产视频网站| videos熟女内射| 免费高清在线观看视频在线观看| 在线十欧美十亚洲十日本专区| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 日韩制服丝袜自拍偷拍| 亚洲精品久久久久久婷婷小说| 又黄又粗又硬又大视频| 久久久久精品人妻al黑| 高清在线国产一区| 亚洲国产毛片av蜜桃av| 亚洲人成电影免费在线| 9热在线视频观看99| 国产伦人伦偷精品视频| 国产免费视频播放在线视频| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 51午夜福利影视在线观看| 日日摸夜夜添夜夜添小说| 人妻 亚洲 视频| 免费不卡黄色视频| 曰老女人黄片| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 国产精品偷伦视频观看了| 久久99热这里只频精品6学生| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 免费在线观看日本一区| 午夜福利视频在线观看免费| 1024视频免费在线观看| 国产亚洲精品一区二区www | 精品久久久久久电影网| 老熟妇乱子伦视频在线观看 | av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看 | 国产精品久久久久久人妻精品电影 | 日韩中文字幕欧美一区二区| 国产免费现黄频在线看| www.精华液| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 大香蕉久久网| 日本av手机在线免费观看| 久久精品国产亚洲av香蕉五月 | 国产真人三级小视频在线观看| 日韩制服骚丝袜av| 久久久久久人人人人人| 18在线观看网站| 欧美国产精品va在线观看不卡| 天天添夜夜摸| 美女福利国产在线| 久久亚洲国产成人精品v| 成人三级做爰电影| 韩国精品一区二区三区| 亚洲五月婷婷丁香| 一边摸一边抽搐一进一出视频| 91成年电影在线观看| 色视频在线一区二区三区| 1024香蕉在线观看| 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 欧美成狂野欧美在线观看| 9热在线视频观看99| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 91成年电影在线观看| 国产免费视频播放在线视频| 他把我摸到了高潮在线观看 | 操出白浆在线播放| 国产精品1区2区在线观看. | 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 飞空精品影院首页| cao死你这个sao货| 欧美日韩国产mv在线观看视频| a级片在线免费高清观看视频| 18禁裸乳无遮挡动漫免费视频| 久久精品国产a三级三级三级| 男人操女人黄网站| 又紧又爽又黄一区二区| 纵有疾风起免费观看全集完整版| 国产成人精品久久二区二区免费| 精品国产一区二区三区四区第35| 18禁黄网站禁片午夜丰满| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | 国产又爽黄色视频| 国产成人av教育| 99热全是精品| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 一本一本久久a久久精品综合妖精| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 成在线人永久免费视频| 脱女人内裤的视频| 国产不卡av网站在线观看| 国产成人欧美在线观看 | 美女大奶头黄色视频| 午夜91福利影院| www.av在线官网国产| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 两人在一起打扑克的视频| 欧美日韩亚洲高清精品| 黄片大片在线免费观看| 老司机在亚洲福利影院| 国产有黄有色有爽视频| 午夜福利视频精品| 十八禁网站网址无遮挡| 精品一区在线观看国产| 美女中出高潮动态图| 在线av久久热| 亚洲伊人色综图| 日本一区二区免费在线视频| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 少妇粗大呻吟视频| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 日韩制服骚丝袜av| 三上悠亚av全集在线观看| 免费观看a级毛片全部| av免费在线观看网站| 亚洲国产精品一区二区三区在线| 午夜91福利影院| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 日韩视频一区二区在线观看| 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 精品少妇内射三级| 亚洲九九香蕉| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av | 国产精品一区二区在线观看99| 日本av手机在线免费观看| 久久久水蜜桃国产精品网| 啦啦啦在线免费观看视频4| 性高湖久久久久久久久免费观看| 中文字幕高清在线视频| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在| 久久九九热精品免费| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 精品人妻在线不人妻| 精品第一国产精品|