吳宗聲 徐彩龍 李瑞東 徐一帆,2 孫 石 韓天富 宋雯雯,* 吳存祥,*
麥秸覆蓋還田對大豆耕層物理性狀及產(chǎn)量形成的影響
吳宗聲1,**徐彩龍1,**李瑞東1徐一帆1,2孫 石1韓天富1宋雯雯1,*吳存祥1,*
1中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/ 國家大豆產(chǎn)業(yè)技術(shù)研發(fā)中心, 北京 100081;2東北農(nóng)業(yè)大學(xué), 黑龍江哈爾濱 150006
黃淮海是我國優(yōu)質(zhì)高蛋白大豆主產(chǎn)區(qū), 但前茬小麥秸稈嚴(yán)重制約著該地區(qū)的大豆生產(chǎn)。本試驗通過研究秸稈免耕覆蓋還田下大豆耕層溫度、含水量、容重、團(tuán)粒結(jié)構(gòu)等耕層物理性狀以及大豆產(chǎn)量構(gòu)成因素, 試圖解析免耕配合秸稈覆蓋還田對耕層結(jié)構(gòu)及大豆產(chǎn)量的調(diào)控機(jī)制, 為黃淮海地區(qū)大豆高產(chǎn)耕作模式的選擇提供理論依據(jù)。采用裂區(qū)試驗設(shè)計, 主區(qū)為肥料處理, 設(shè)施肥(F: 225 kg hm-2)與不施肥(NF); 副區(qū)為秸稈處理, 設(shè)免耕秸稈不還田(SR)、免耕秸稈覆蓋還田(SM)和免耕秸稈粉碎還田(SC)。結(jié)果表明: (1) 免耕配合秸稈覆蓋還田對耕層的影響主要集中在0~10 cm內(nèi)。(2) SM與SC較SR耕層溫度分別下降0.21℃和0.17℃, 土壤含水量分別增加13.18%和9.07%; SM較SR與SC土壤容重分別下降2.61%和2.87%, 耕層固相占比分別降低2.60%和3.01%, >2 mm土壤團(tuán)聚體分別增加6.84%和3.14%。(3) SM與SC較SR單株莢數(shù)分別增加22.41%和9.49%, 單株粒數(shù)分別增加18.20%和7.51%, 百粒重分別增加1.18%和2.40%, 單株產(chǎn)量分別增加39.16%和18.07%, 單位面積產(chǎn)量分別增加11.56%和5.43%; SM較SC增產(chǎn)效果顯著, 施肥對秸稈還田的增產(chǎn)效果具有促進(jìn)作用。綜上所述, 麥茬夏大豆免耕覆秸精量播種技術(shù)在大豆耕層環(huán)境優(yōu)化與促進(jìn)產(chǎn)量形成方面具有顯著優(yōu)勢。
夏大豆; 耕層溫度; 物理性質(zhì); 產(chǎn)量
目前, 我國大豆年消費量居世界第一, 但是自給率不足15%, 主要依賴進(jìn)口。大量進(jìn)口大豆已經(jīng)嚴(yán)重沖擊我國的糧食生產(chǎn), 影響國家糧食安全。因此, 提高國產(chǎn)大豆的產(chǎn)能是當(dāng)務(wù)之急。然而, 我國耕地面積有限, 大豆種植面積難以擴(kuò)大與大豆需求量不斷攀升的矛盾, 決定了我國大豆生產(chǎn)必須以提高單產(chǎn)來增加總產(chǎn)[1]。黃淮海地區(qū)是我國優(yōu)質(zhì)高蛋白大豆生產(chǎn)的優(yōu)勢產(chǎn)區(qū)[2], 但是大量的前茬小麥秸稈嚴(yán)重影響了大豆的播種和出苗, 在田間常出現(xiàn)缺苗和斷壟的現(xiàn)象, 顯著降低了大豆的產(chǎn)量。為破解秸稈處理難題, 本團(tuán)隊會同國家大豆產(chǎn)業(yè)技術(shù)體系相關(guān)崗站專家研發(fā)了黃淮海麥茬夏大豆免耕覆秸精量播種技術(shù), 該技術(shù)在麥秸全量還田條件下實現(xiàn)了大豆精量播種, 不僅破解了秸稈處理難題, 而且顯著提高了大豆的產(chǎn)量[3]。
耕層環(huán)境是作物生長發(fā)育的基礎(chǔ)保障, 耕層土壤的理化特性直接影響著作物的生長發(fā)育與產(chǎn)量形成[4]。秸稈還田可增加土壤的有機(jī)質(zhì)積累量[5], 降低土壤容重, 促進(jìn)土壤顆粒的團(tuán)聚作用, 增加耕層的總孔隙度, 調(diào)節(jié)耕層三相比[6], 從而改善耕層的水、肥、氣、熱等條件[7]。良好的耕層結(jié)構(gòu)可顯著優(yōu)化作物的根系形態(tài)指標(biāo), 增加根長和根表面積[8], 進(jìn)而提高根系的吸收能力, 促進(jìn)作物地上部的干物質(zhì)積累, 從而提高作物產(chǎn)量[9]。前期研究發(fā)現(xiàn), 麥茬夏大豆免耕覆秸精量播種技術(shù)可顯著提高土壤含水量,從而確保大豆的出苗率, 并可通過生物產(chǎn)量的增加來提高大豆的經(jīng)濟(jì)產(chǎn)量[10-12]。同時, 研究發(fā)現(xiàn), 少、免耕配合秸稈還田的保護(hù)性耕作對耕層的擾動較小,可提高土壤表層土壤有機(jī)質(zhì)含量和土壤團(tuán)聚體的穩(wěn)定性, 從而優(yōu)化耕層結(jié)構(gòu)[13-14]。然而, 目前關(guān)于麥茬夏大豆免耕覆秸精量播種技術(shù)對大田耕層的調(diào)控作用及其與大豆產(chǎn)量形成關(guān)系有待進(jìn)一步探索, 這是解析該技術(shù)增產(chǎn)增效的關(guān)鍵。
本試驗設(shè)置不同的秸稈覆蓋還田模式, 通過對不同處理耕層物理性狀和大豆產(chǎn)量形成的研究, 旨在闡明麥茬夏大豆免耕覆秸精量播種技術(shù)對田間耕層和大豆產(chǎn)量形成的優(yōu)化作用機(jī)制, 為該技術(shù)的推廣應(yīng)用提供理論依據(jù)。
試驗于2020—2021年在中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所新鄉(xiāng)試驗基地(35.18°N, 113.54°E)進(jìn)行。試驗基地為暖溫帶大陸性季風(fēng)氣候, 試驗期間溫度和降雨量如圖1所示。土壤類型為潮土, 試驗前耕層含有機(jī)質(zhì)12.9 g kg–1、速效氮63.8 mg kg–1、速效磷15.9 mg kg–1、速效鉀112.1 mg kg–1, pH 8.18。
供試材料為中黃301, 本團(tuán)隊選育。采用裂區(qū)試驗設(shè)計, 主區(qū)為肥料處理, 設(shè)施肥(225 kg hm–2, N∶P2O5∶K2O=16.7∶23.0∶16.7, F)和不施肥(NF); 副區(qū)為秸稈處理, 設(shè)免耕秸稈不還田(SR)、免耕秸稈覆蓋還田(SM)和免耕秸稈粉碎還田(SC)。免耕秸稈不還田處理于秸稈清除后, 再進(jìn)行人工點播大豆; 免耕秸稈覆蓋還田處理于人工點播大豆后, 再將秸稈(秸稈長度同聯(lián)合收割機(jī)收獲后留田的秸稈長度)均勻覆蓋到原大田; 秸稈粉碎處理于人工將粉碎麥秸(秸稈狀態(tài)同滅茬機(jī)打碎秸稈的狀態(tài))均勻撒于原大田后, 再點播大豆。大豆播種行距0.4 m, 株距9 cm,每小區(qū)長寬分別為8.0 m和7.2 m, 每處理4次重復(fù)。在播種后的主區(qū)人工撒施化肥, 視土壤墑情噴灌補水。
圖1 試驗期間降雨量及溫度
1.3.1 土壤溫度 大豆播種后在各處理田塊0~5 cm與5~10 cm耕層放置土壤溫濕度記錄儀(HZTJ2), 每隔10 min自動記錄耕層的溫度。
1.3.2 土壤含水量 大豆出苗期(VE)、三葉期(V3)、始花期(R1)、始莢期(R3)、鼓粒期(R5)、初熟期(R7)、完熟期(R8), 利用土鉆對各處理田塊進(jìn)行取樣, 0~5 cm和5~10 cm耕層土樣分開放置于鋁盒內(nèi)烘干, 采用差量法計算土壤質(zhì)量含水量: 土壤質(zhì)量含水量(%)= (M1-M2)/(M2-M0)×100, 式中, M0為鋁盒質(zhì)量; M1為烘前土樣和鋁盒總重; M2為烘后土樣和鋁盒總重。
1.3.3 土壤容重和三相比 采用取土環(huán)飽和法, 于大豆R8期使用環(huán)刀取各處理田塊0~5 cm、5~10 cm以及10~20 cm的耕層土, 然后將帶土環(huán)刀放置在墊有濾紙的吸水石上, 利用濾紙的毛管力吸水至恒重, 最后放置于烘箱再烘干至恒重。利用以下公式分別計算土壤容重和孔隙度:
容重(g cm-3)=(M2-M0)/V (1)
固相(%)=(M2-M0)/(ρ/V)×100 (2)
液相(%)=(M1-M2)/V×100 (3)
氣相(%)=100-固相-氣相 (4)
式中, M0為環(huán)刀質(zhì)量; M1為吸水飽和后土樣和環(huán)刀總重; M2為烘干至恒重后土樣和環(huán)刀總重; V為環(huán)刀體積; ρ為土壤密度2.65 g cm-3。
1.3.4 團(tuán)粒結(jié)構(gòu) 大豆R8期采集各處理田塊的耕層原狀土壤, 無擾動帶回實驗室自然風(fēng)干, 當(dāng)土壤含水量達(dá)到塑限時, 沿自然斷裂縫隙用手把大土塊掰成小土塊, 挑出植物殘根、小石塊、秸稈等雜質(zhì)后進(jìn)行土壤團(tuán)聚體篩分。將處理好的風(fēng)干土樣置于土壤分級篩中, 人工搖篩, 分出大團(tuán)粒(>2 mm)、小團(tuán)粒(0.25~2 mm)和微團(tuán)粒(<0.25 mm), 每處理3次重復(fù)。利用以下公式計算各粒級占比: 土壤團(tuán)粒占比(%)=M1/M0×100, 式中, M0為各粒級土壤團(tuán)??傊? M1為某粒級土壤團(tuán)粒重。
1.3.5 產(chǎn)量及產(chǎn)量構(gòu)成 于大豆R8期, 每小區(qū)隨機(jī)選取3個2.4 m2(3行×2 m)區(qū)域進(jìn)行測產(chǎn), 計算最終產(chǎn)量(籽粒含水量按13.5%計算); 在各個處理田塊隨機(jī)選取長勢一致的10株大豆進(jìn)行考種, 測定單株莢數(shù)、單株粒數(shù)、百粒重和單株產(chǎn)量。
采用SPSS 17.0和Origin 2019b進(jìn)行數(shù)據(jù)分析與做圖。相同試驗?zāi)攴莸姆柿咸幚碇? 差異不顯著的指標(biāo)取施肥與不施肥處理的平均值進(jìn)行數(shù)據(jù)分析與做圖。
秸稈還田處理相較于秸稈不還田處理降低了耕層溫度(圖2)。綜合2年數(shù)據(jù)發(fā)現(xiàn), 各處理0~5 cm和5~10 cm耕層內(nèi)的溫度變化趨勢一致, 隨著夏大豆生長天數(shù)的延長表現(xiàn)為波動下降。在整個觀測周期內(nèi)0~5 cm耕層的平均溫度SM與SC較SR處理分別下降0.214℃和0.181℃, SM、SC與SR的日平均溫差范圍分別為-2.660~1.325℃和-1.280~ 1.565℃; 5~10 cm內(nèi)耕層平均溫度分別下降0.206℃和0.169℃, SM、SC與SR的日平均溫差范圍分別為-2.610~1.010℃和-1.770~1.055℃。SM處理耕層的降溫幅度大于SC處理耕層的降溫幅度。
圖2 秸稈還田對耕層溫度的影響
SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。
SR: straw removing; SM: straw mulching; SC: straw crushing.
秸稈還田對耕層土壤含水量的影響顯著(圖3)。2020年和2021年0~10 cm耕層內(nèi)的土壤含水量SR均顯著低于SM和SC。2種秸稈還田處理SM與SC之間土壤含水量除個別生育時期SM高于SC外, 其余生育時期無顯著差異, 施肥與不施肥處理呈現(xiàn)相同的變化趨勢。各處理0~5 cm和5~10 cm耕層內(nèi)的土壤含水量變化趨勢一致。由圖3可知, 在R1和R5期前后0~5 cm耕層內(nèi)各處理土壤含水量差異明顯。0~5 cm耕層內(nèi)不施肥處理平均土壤含水量SM與SC較SR分別提高20.81%和17.25%, 施肥處理耕層平均土壤含水量SM與SC較SR分別提高14.64%和8.59%; 5~10 cm耕層內(nèi)不施肥處理平均土壤含水量SM與SC較SR分別提高7.52%和6.24%, 施肥處理耕層平均土壤含水量SM與SC較SR分別提高9.77%和5.78%。SM處理對耕層土壤的保水效果優(yōu)于SC處理。
秸稈覆蓋還田和粉碎還田影響了0~20 cm耕層內(nèi)的土壤容重(圖4)。綜合2年數(shù)據(jù)發(fā)現(xiàn), 秸稈還田在0~10 cm耕層內(nèi)可明顯降低土壤容重。SM處理0~5 cm耕層土壤容重較SR和SC處理分別降低1.17%和1.95%; SM處理5~10 cm耕層土壤容重較SR和SC處理分別降低2.30%和5.08%; SM處理10~20 cm耕層土壤容重較SR和SC處理分別降低4.36%和1.59%。
圖3 秸稈還田與肥料施用對土壤含水量的影響
S: 秸稈; F: 施肥; NF: 不施肥; SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。**表示在0.01概率水平差異顯著; Ns: 差異不顯著。VE: 出苗期; V3: 三葉期; R1: 始花期; R3: 始莢期; R5: 鼓粒期; R7: 初熟期; R8: 完熟期。
S: straw; F: fertilization; NF: no fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing. ** means significant difference at the 0.01 probability level. Ns: not significant. VE: emergence; V3: the third trifoliolate; R1: beginning bloom; R3: beginning pod; R5: beginning seed; R7: beginning maturity; R8: full maturity.
圖4 秸稈還田對土壤容重的影響
SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。不同小寫字母表示處理間差異顯著(< 0.05)。
SR: straw removing; SM: straw mulching; SC: straw crushing. Different lowercase letters indicate significant difference at the 0.05 probabi-lity level.
秸稈還田對0~20 cm耕層內(nèi)的土壤三相影響顯著(圖5)。綜合2年的耕層三相試驗結(jié)果發(fā)現(xiàn), 隨著耕層深度的增加耕層固相占比上升, 液相和氣相占比下降, 耕層孔隙度變差。秸稈覆蓋降低耕層固相占比的效果要優(yōu)于免耕和滅茬。SM固相占比相較于SR與SC處理0~5 cm耕層內(nèi)分別降低0.19%和3.10%; 5~10 cm耕層內(nèi)分別降低2.30%和4.44%; 10~20 cm耕層內(nèi)分別降低5.32%和1.60%。
施肥配合秸稈還田對0~20 cm耕層內(nèi)>0.25 mm的土壤團(tuán)聚體含量影響顯著(表1)。綜合2年數(shù)據(jù)發(fā)現(xiàn), 隨著耕層的加深各處理土壤微團(tuán)粒結(jié)構(gòu)和小團(tuán)粒結(jié)構(gòu)含量降低, 大團(tuán)粒結(jié)構(gòu)占比增加(圖6)。0~5 cm耕層內(nèi), SM處理土壤大團(tuán)粒結(jié)構(gòu)含量較SR和SC處理, 分別增加2.61%和9.06%; 5~10 cm耕層SM處理土壤大團(tuán)粒結(jié)構(gòu)含量較SR和SC處理分別增加17.47%和2.88%。施肥條件下, SM處理0~20 cm耕層土壤大團(tuán)粒結(jié)構(gòu)含量較SR和SC處理分別增加1.11%和0.61%。
施肥和秸稈還田對大豆的產(chǎn)量和產(chǎn)量構(gòu)成參數(shù)影響顯著(表2和圖7)。相較于SR處理, SM與SC處理單株莢數(shù)平均增加22.41%和9.49%, 單株粒數(shù)平均增加18.20%和7.51%, 百粒重平均增加1.18%和2.40%, 單株產(chǎn)量平均提高39.16%和18.07%, 單位面積產(chǎn)量平均提高11.56%和5.43%。同時, 與不施肥處理相比, 施肥條件后大豆產(chǎn)量及其構(gòu)成指標(biāo)均表現(xiàn)升高趨勢, 說明施肥對秸稈還田的增產(chǎn)效果具有促進(jìn)作用。2021年各處理的單株莢數(shù)、單株粒數(shù)、百粒重以及單株產(chǎn)量較2020年有增加趨勢, 這說明秸稈還田的增產(chǎn)效果還與秸稈還田年限有關(guān)。
試驗各指標(biāo)年際間存在顯著差異(表3)。各不施肥處理單株莢數(shù)和單株粒數(shù)年際間差異不顯著, 而施肥處理年際間差異顯著, 說明施肥對秸稈還田的增產(chǎn)效應(yīng)可能存在促進(jìn)作用, 單株莢數(shù)和粒數(shù)的增加可能對于產(chǎn)量的提高起了重要作用。各施肥與不施肥處理百粒重、單株產(chǎn)量和單位面積產(chǎn)量均表現(xiàn)為2021年顯著高于2020年, 說明秸稈還田對產(chǎn)量的影響可能存在時間效應(yīng)。3種秸稈處理的土壤容重和總孔隙度年際間均差異不顯著, 但各處理>2 mm團(tuán)粒結(jié)構(gòu)2021年較2020年顯著增加, 這說明秸稈還田對于耕層結(jié)構(gòu)的改造是一個緩慢的過程, 也可能存在時間效應(yīng)。
圖5 秸稈還田對耕層三相的影響
SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田; BEST: 最佳三相比。
SR: straw removing; SM: straw mulching; SC: straw crushing; BEST: optimum three-phase ratio.
圖6 秸稈還田與肥料施用對耕層團(tuán)粒結(jié)構(gòu)的影響
F: 施肥; NF: 不施肥; SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。
F: fertilization; NF: no fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing.
表1 秸稈還田與肥料施用對土壤穩(wěn)定性的影響
*和**分別表示在0.05和0.01概率水平差異顯著; Ns表示差異不顯著。
* and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively. Ns: not significant.
表2 秸稈還田與肥料施用對大豆產(chǎn)量形成的影響
(續(xù)表2)
NF: 不施肥; F: 施肥; SR: 秸稈清理; SM: 秸稈覆蓋還田; SC: 滅茬。不同小寫字母表示處理間差異顯著(< 0.05); *和**分別表示在0.05和0.01概率水平差異顯著; Ns表示差異不顯著。
NF: no fertilization; F: fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing. Different lowercase letters indicate significant difference at the 0.05 probability level. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively. Ns: not significant.
圖7 秸稈還田與肥料施用對大豆產(chǎn)量的影響
S表示秸稈, F表示施肥; **表示在0.01概率水平差異顯著; Ns 表示差異不顯著。不同小寫字母表示處理間差異顯著(< 0.05)。
S: straw; F: fertilization; ** indicates significant difference at the 0.01 probability level, respectively. Ns: not significant. Different lowercase letters indicate significant difference at the 0.05 probability level.
表3 秸稈還田配合肥料施用的年際間效應(yīng)分析
(續(xù)表3)
F: 施肥; NF: 不施肥; SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。不同小寫字母表示處理間差異顯著(< 0.05)。
F: fertilization; NF: no fertilization; SR: straw removing; SM: straw mulching; SC: straw crushing. Different lowercase letters indicate significant difference at the 0.05 probability level.
主成分分析(圖8)表明, 大豆產(chǎn)量受土壤容重、耕層總孔隙度、耕層溫度、耕層含水量和>2 mm團(tuán)粒結(jié)構(gòu)的影響。PC1軸和PC2 軸的貢獻(xiàn)率分別為64.7%和19.5%, 耕層各物理指標(biāo)解釋了84.2%。其中, 耕層總孔隙度、耕層含水量和>2 mm團(tuán)粒結(jié)構(gòu)與大豆產(chǎn)量正相關(guān), 土壤容重和耕層溫度與大豆產(chǎn)量負(fù)相關(guān)。耕層結(jié)構(gòu)的改善有利于大豆產(chǎn)量的提高。
秸稈還田可改變地表的熱學(xué)和動力學(xué)性質(zhì), 從而影響近地層的土壤溫度以及空氣溫濕度等氣象要素[15]。地面的秸稈在地表和空氣之間建立了一個緩沖層, 使二者的熱交換不能直接進(jìn)行, 通過減弱光照對地表的輻射來調(diào)節(jié)耕層溫度[16], 減少水分蒸發(fā), 從而提高作物的水分利用效率[17]。本試驗結(jié)果表明, 秸稈覆蓋還田可提高耕層土壤含水量[18-19], 但與地膜覆蓋的增溫效果不同[20], SM與SC均可降低耕層溫度[21]。同時, 秸稈覆蓋對于耕層溫度具有雙抑制效應(yīng), 秸稈覆蓋還田可降低耕層熱通量, 在低溫時抑制地面輻射, 高溫時抑制太陽對地表的直接輻射, 地表蒸發(fā)量伴隨著熱交換的減弱而降低[22]。其中SM的效果要優(yōu)于SC, 可能是因為秸稈粉碎之后在地表的緩沖層變薄, 阻隔太陽直接輻射的效果變差, 同時緩沖層秸稈網(wǎng)狀結(jié)構(gòu)的破壞也可能影響其對地表蒸發(fā)的抑制效果。
穩(wěn)定的耕層結(jié)構(gòu)是提高作物產(chǎn)量的基礎(chǔ)[23]。還田的秸稈在地表所形成的緩沖層可維持土壤原有物理性質(zhì)的穩(wěn)定[24], 并且秸稈的腐解還可增加土壤的有機(jī)質(zhì)含量, 進(jìn)而改善耕層結(jié)構(gòu)[25]。本試驗結(jié)果表明SM與SC均可降低土壤容重, 增加耕層總孔隙度[26], 但同一年內(nèi)SM與SC土壤容重和總孔隙度均隨耕層的加深而變差; 免耕配合秸稈還田可明顯提高>0.25 mm粒級的團(tuán)聚體含量, 改善土壤團(tuán)聚體的穩(wěn)定性[27-28]。但免耕配合秸稈還田對耕層的影響主要集中在0~10 cm的耕層內(nèi), 土壤孔隙度增加, 容重降低[29], 更深層次耕層則變化不明顯。這可能是因為免耕條件下不動耕層, 秸稈腐解產(chǎn)生的有機(jī)質(zhì)在表層積累[30], 并且下茬冬小麥播前只進(jìn)行旋耕, 機(jī)械工作深度有限[31], 有機(jī)質(zhì)無法到達(dá)更深處耕層。本試驗2年的結(jié)果表明, SM和SC相較于SR雖然有改善耕層結(jié)構(gòu)的趨勢但效果不明顯, 可見秸稈還田對耕層結(jié)構(gòu)的調(diào)控存在著累積效應(yīng)[32], 耕層的改良效果與秸稈還田年限有關(guān)。
圖8 主成分分析
SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。
SR: straw removing; SM: straw mulching; SC: straw crushing.
作物秸稈還田具有顯著的增產(chǎn)效應(yīng)[33]。秸稈還田可通過對耕層理化性質(zhì)的改變來增加花生的產(chǎn)量[34], 提高棉花的總鈴數(shù)、單鈴重以及籽棉產(chǎn)量[35-36], 促進(jìn)東北春玉米苗期的干物質(zhì)積累[37], 并提升春玉米的穗粒數(shù)以及收獲指數(shù)[38]。本試驗結(jié)果表明秸稈還田可顯著提高大豆的單株莢數(shù)和單株粒數(shù)[10], SM較SC有增產(chǎn)優(yōu)勢。但秸稈還田的增產(chǎn)機(jī)質(zhì)缺乏一致性, 研究表明秸稈還田可通過提高土壤有機(jī)碳含量來影響NH4+的吸附和固定, 增加作物對氮的吸收, 從而提高作物產(chǎn)量[39-40], 此外秸稈還田還可通過提高作物的水分利用率和影響根系的生長狀況來提高作物產(chǎn)量[41-42]。本試驗的秸稈還田處理在2年內(nèi)均顯著提高了耕層含水量, 并且施肥配合秸稈還田處理也進(jìn)一步提高了大豆產(chǎn)量。分析認(rèn)為, 本研究中秸稈覆蓋條件下大豆產(chǎn)量的增加主要源于秸稈還田改善了耕層環(huán)境, 降低了土壤容重, 增加了耕層空隙度和含水量, 為大豆根系的生長創(chuàng)造了適宜的環(huán)境, 促進(jìn)了根鮮重、根長、根表面積和根體積增加, 優(yōu)化了根系在土壤中的分布, 增大了根系的厚度和寬度[43-45]。同時, 根系性狀的改善提高了大豆對土壤養(yǎng)分和水分的利用效率, 促進(jìn)了地上部的干物質(zhì)積累[46-47], 為大豆籽粒產(chǎn)量提高奠定了基礎(chǔ)。本試驗2021年的考種結(jié)果優(yōu)于2020年, 說明秸稈還田對產(chǎn)量的影響還可能存在著時間效應(yīng), 長期的秸稈還田能夠獲得更高的增產(chǎn)效應(yīng)[33]。此外有研究表明秸稈還田可顯著增加稻米中的蛋白質(zhì)含量, 改善稻米的外觀品質(zhì)與營養(yǎng)品質(zhì)[48], 還可提高甘薯的淀粉含量[26],這說明秸稈還田除了具有增產(chǎn)效應(yīng)以外還能改善作物的品質(zhì)。
秸稈覆蓋還田可改善耕層的物理性狀, 降低耕層溫度, 增加耕層大團(tuán)聚體數(shù)量和孔隙度(圖9)。秸稈覆蓋還田對耕層的影響集中在0~10 cm左右, SM對耕層的改善效果要優(yōu)于SC。免耕配合秸稈還田可顯著提高大豆的單株莢數(shù)、單株粒數(shù)和單株產(chǎn)量, SM較SC有增產(chǎn)優(yōu)勢。此外施肥對秸稈還田的增產(chǎn)效果具有促進(jìn)作用。綜上, 麥茬夏大豆免耕覆秸精量播種技術(shù)可改善耕層結(jié)構(gòu), 提高土壤含水量, 同時增加大豆產(chǎn)量。然而, 本研究中未對大豆根系及其根瘤等進(jìn)行分析, 使土壤與作物之間缺乏聯(lián)系, 下一步將深入研究。
圖9 不同處理結(jié)果綜合分析
SR: 免耕秸稈不還田; SM: 免耕秸稈覆蓋還田; SC: 免耕秸稈粉碎還田。
SR: straw removing; SM: straw mulching; SC: straw crushing.
[1] 尹陽陽, 徐彩龍, 宋雯雯, 胡水秀, 吳存祥. 密植是挖掘大豆產(chǎn)量潛力的重要栽培途徑. 土壤與作物, 2019, 8: 361–367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield., 2019, 8: 361–367 (in Chinese with English abstract).
[2] 宋雯雯, 秦培友, 楊修仕, 任貴興, 韓天富. 中國大豆品質(zhì)性狀的地理分布. 大豆科技, 2013, (3): 5.
Song W W, Qin P Y, Yang X S, Ren G X, Han T F. Geographical distribution of soybean quality traits in China., 2013, (3): 5 (in Chinese with English abstract).
[3] 徐彩龍, 韓天富, 吳存祥. 黃淮海麥茬大豆免耕覆秸精量播種栽培技術(shù)研究. 大豆科學(xué), 2018, 37: 197–201.
Xu C L, Han T F, Wu C X. No-tillage plus straw mulching and precise sowing cultivation technology research for soybean after winter wheat in Huang-Huai-Hai region., 2018, 37: 197–201 (in Chinese with English abstract).
[4] 趙明, 周寶元, 馬瑋, 李從鋒, 丁在松, 孫雪芳. 糧食作物生產(chǎn)系統(tǒng)定量調(diào)控理論與技術(shù)模式. 作物學(xué)報, 2019, 45: 485–498.
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system., 2019, 45: 485–498 (in Chinese with English abstract).
[5] Wang Y, Wu P, Mei F, Ling Y, Wang T. Does continuous straw returning keep China farmland soil organic carbon continued increase? a meta-analysis., 2021, 288: 112391.
[6] 王秋菊, 常本超, 張勁松, 韓東來, 隋玉剛, 陳海龍, 楊興玉, 王雪冬, 焦峰, 新家憲, 劉峰. 長期秸稈還田對白漿土物理性質(zhì)及水稻產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50: 2748–2757.
Wang Q J, Chang B C, Zhang J S, Han D L, Sui Y G, Chen H L, Yang Y X, Wang X D, Jiao F, Xin J X, Liu F. Effects of albic soil physical properties and rice yield after long-term straw incorporation., 2017, 50: 2748–2757 (in Chinese with English abstract).
[7] 白偉, 安景文, 張立禎, 逄煥成, 孫占祥, 牛世偉, 蔡倩. 秸稈還田配施氮肥改善土壤理化性狀提高春玉米產(chǎn)量. 農(nóng)業(yè)工程學(xué)報, 2017, 33(15): 168–176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer., 2017, 33(15): 168–176 (in Chinese with English abstract).
[8] 白偉, 孫占祥, 張立禎, 鄭家明, 馮良山, 蔡倩, 向午燕, 馮晨, 張哲. 耕層構(gòu)造對土壤三相比和春玉米根系形態(tài)的影響. 作物學(xué)報, 2020, 46: 759–771.
Bai W, Sun Z X, Zhang L Z, Zheng J M, Feng L S, Cai Q, Xiang W Y, Feng C, Zhang Z. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China., 2020, 46: 759–771 (in Chinese with English abstract).
[9] 樸琳, 李波, 陳喜昌, 丁在松, 張宇, 趙明, 李從鋒. 優(yōu)化栽培措施對春玉米密植群體冠層結(jié)構(gòu)及產(chǎn)量形成的調(diào)控效應(yīng). 中國農(nóng)業(yè)科學(xué), 2020, 53: 3048–3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population., 2020, 53: 3048–3058 (in Chinese with English abstract).
[10] Xu C L, Li R D, Song W W, Wu T T, Sun S, Shen W L, Hu S X, Han T F, Wu C X. Integrating straw management and seeding to improve seed yield and reduce environmental impacts in soybean production., 2021, 11: 1033–1033.
[11] 王幸, 吳存祥, 齊玉軍, 徐澤俊, 王宗標(biāo), 韓天富. 麥秸處理和播種方式對夏大豆農(nóng)藝性狀及土壤物理性狀的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49: 1453–1465.
Wang X, Wu C X, Qi Y J, Xu Z J, Wang Z B, Han T F. Effects of straw management and sowing methods on soybean agronomic traits and soil physical properties., 2016, 49: 1453–1465 (in Chinese with English abstract).
[12] 趙俊卿, 任建軍, 盧為國, 陳海濤, 朱貝貝, 段國占, 韓天富, 吳存祥. 免耕覆秸精量播種對大豆生長發(fā)育和產(chǎn)量構(gòu)成因素的影響. 大豆科學(xué), 2012, 31: 734–738.
Zhao J Q, Ren J J, Lu W G, Chen H T, Zhu B B, Duan G Z, Han T F, Wu C X. Effects of no-tillage and straw mulching precise sowing on growth, development and yield components of post- wheat summer-sowing soybean in Huang-Huai-Hai region., 2012, 31: 734–738(in Chinese with English abstract).
[13] Krauss M, Wiesmeier M, Don A, Cuperus F, Gattinger A, Gruber S, Haagsma W K, Peigné J, Palazzoli M C, Schulz F, van der Heijden M G A, Vincent-Caboud L, Wittwer R A, Zikeli S, Steffens M. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe., 2022, 216: 105262.
[14] 張維理, Kolbe H, 張認(rèn)連. 土壤有機(jī)碳作用及轉(zhuǎn)化機(jī)制研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2020, 53: 317–331.
Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms., 2020, 53: 317–331 (in Chinese with English abstract).
[15] 李全起, 陳雨海, 于舜章, 吳巍, 周勛波, 董慶裕, 余松烈. 灌溉與秸稈覆蓋條件下冬小麥農(nóng)田小氣候特征. 作物學(xué)報, 2006, 32: 306–309.
Li Q Q, Chen Y H, Yu S Z, Wu W, Zhou X B, Dong Q Y, Yu S L. Micro-climate of winter wheat field under the conditions of irrigation and straw mulching., 2006, 32: 306–309 (in Chinese with English abstract).
[16] 鄧浩亮, 張恒嘉, 肖讓, 張永玲, 田建良, 李福強, 王玉才, 周宏, 李煊. 隴中半干旱區(qū)不同覆蓋種植方式對土壤水熱效應(yīng)和玉米產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53: 273–287.
Deng H L, Zhang H J, Xiao R, Zhang Y L, Tian J L, Li F Q, Wang Y C, Zhou H, Li X. Effects of different covering planting patterns on soil moisture, temperature characteristics and maize yield in semi-arid region of the loess plateau., 2020, 53: 273–287 (in Chinese with English abstract).
[17] Qin X L, Huang T T, Lu C, Dang P F, Zhang M M, Guan X K, Wen P F, Wang T C, Chen Y L, Siddique K H M. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency., 2021, 256: 107128.
[18] 殷文, 柴強, 胡發(fā)龍, 樊志龍, 范虹, 于愛忠, 趙財. 干旱內(nèi)陸灌區(qū)不同秸稈還田方式下春小麥田土壤水分利用特征. 中國農(nóng)業(yè)科學(xué), 2019, 52: 1247–1259.
Yin W, Chai Q, Hu F L, Fan Z L, Fan H, Yu A Z, Zhao C. Characteristics of soil water utilization in spring wheat field with different straw retention approaches in dry inland irrigation areas., 2019, 52: 1247–1259 (in Chinese with English abstract).
[19] 趙云, 徐彩龍, 楊旭, 李素真, 周靜, 李繼存, 韓天富, 吳存祥.不同播種方式對麥茬夏大豆保苗和生產(chǎn)效益的影響. 作物雜志, 2018, (4): 114–120.
Zhao Y, Xu C L, Yang X, Li S Z, Zhou J, Li J C, Han T F, Wu C X. Effects of sowing methods on seeding and production profit of summer soybean under wheat-soybean system., 2018, (4): 114–120 (in Chinese with English abstract).
[20] 普雪可, 吳春花, 勉有明, 苗芳芳, 侯賢清, 李榮. 不同覆蓋方式對旱作馬鈴薯生長及土壤水熱特征的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53: 734–747.
Pu X K, Wu C H, Mian Y M, Miao F F, Hou X Q, Li R. Effects of different mulching patterns on growth of potato and characteristics of soil water and temperature in dry farmland., 2020, 53: 734–747 (in Chinese with English abstract).
[21] Zhao J, Lu Y, Tian H L, Jia H L, Guo M Z. Effects of straw returning and residue cleaner on the soil moisture content, soil temperature, and maize emergence rate in China’s three major maize producing areas., 2019, 11: 5796.
[22] 馬永財, 滕達(dá), 衣淑娟, 劉少東, 王漢羊. 秸稈覆蓋還田及腐解率對土壤溫濕度與玉米產(chǎn)量的影響. 農(nóng)業(yè)機(jī)械學(xué)報, 2021, 52(10): 90–99.
Ma Y C, Teng D, Yi S J, Liu S D, Wang H Y. Effects of straw mulching and decomposition rate on soil temperature and humi-dity and maize yield., 2021, 52(10): 90–99 (in Chinese with English abstract).
[23] Yan Z J, Zhou J, Yang L, Gunina A, Yang Y D, Peixoto L, Zeng Z H, Zang H D, Kuzyakov Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: results of three fractionation methods., 2022, 824: 153878.
[24] 郭孟潔, 李建業(yè), 李健宇, 齊佳睿, 張興義. 實施16年保護(hù)性耕作下黑土土壤結(jié)構(gòu)功能變化特征. 農(nóng)業(yè)工程學(xué)報, 2021, 37(22): 108–118.
Guo M J, Li J Y, Li J Y, Qi J R, Zhang X Y. Changes of soil structure and function after 16-year conservation tillage in back soil., 2021, 37(22): 108–118 (in Chinese with English abstract).
[25] Huang T T, Yang N, Lu C, Qin X L, Siddique K H M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods., 2021, 214: 105171.
[26] Anning D K, Qiu H Z, Zhang C H, Ghanney P, Zhang Y J, Guo Y J. Maize straw return and nitrogen rate effects on potato performance and soil physicochemical characteristics in northwest China., 2021, 13: 5508.
[27] 鄭鳳君, 王雪, 李生平, 劉曉彤, 劉志平, 盧晉晶, 武雪萍, 席吉龍, 張建誠, 李永山. 免耕覆蓋下土壤水分、團(tuán)聚體穩(wěn)定性及其有機(jī)碳分布對小麥產(chǎn)量的協(xié)同效應(yīng). 中國農(nóng)業(yè)科學(xué), 2021, 54: 596–607.
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice., 2021, 54: 596–607 (in Chinese with English abstract).
[28] 苗芳芳, 勉有明, 普雪可, 吳春花, 周永瑾, 侯賢清. 耕作覆蓋對寧南旱區(qū)土壤團(tuán)粒結(jié)構(gòu)及馬鈴薯水分利用效率的影響. 中國農(nóng)業(yè)科學(xué), 2021, 54: 2366–2376.
Miao F F, Mian Y M, Pu X K, Wu C H, Zhou Y J, Hou X Q. Effects of tillage with mulching on soil aggregate structure and water use efficiency of potato in dry-farming area of southern Ningxia., 2021, 54: 2366–2376 (in Chinese with English abstract).
[29] 湯文光, 肖小平, 唐海明, 張海林, 陳阜, 陳中督, 薛建福, 楊光立. 長期不同耕作與秸稈還田對土壤養(yǎng)分庫容及重金屬Cd的影響. 應(yīng)用生態(tài)學(xué)報, 2015, 26: 168–176.
Tang W G, Xiao X P, Tang H M, Zhang H L, Chen F, Chen Z D, Xue J F, Yang G L. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration., 2015, 26: 168–176 (in Chinese with English abstract).
[30] Zhang L, Mao L L, Yan X Y, Liu C M, Song X L, Sun X Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil., 2022, 177: 114472.
[31] 高中超, 宋柏權(quán), 王翠玲, 高文超, 張麗麗, 孫磊, 郝小雨, 劉峰. 不同機(jī)械深耕的改土及促進(jìn)作物生長和增產(chǎn)效果. 農(nóng)業(yè)工程學(xué)報, 2018, 34(12): 79–86.
Gao Z C, Song B Q, Wang C L, Gao W C, Zhang L L, Sun L, Hao X Y, Liu F. Soil amelioration by deep ploughing of different machineries and its effect on promoting crop growth and yield., 2018, 34(12): 79–86 (in Chinese with English abstract).
[32] Cui H X, Luo Y L, Chen J, Jin M, Li Y, Wang Z L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system., 2022, 133: 126436.
[33] 楊竣皓, 駱永麗, 陳金, 金敏, 王振林, 李勇. 秸稈還田對我國主要糧食作物產(chǎn)量效應(yīng)的整合(Meta)分析. 中國農(nóng)業(yè)科學(xué), 2020, 53: 4415–4429.
Yang J H, Luo Y L, Chen J, Jin M, Wang Z L, Li Y. Effects of main food yield under straw return in China: a meta-analysis., 2020, 53: 4415–4429 (in Chinese with English abstract).
[34] Zhao J H, Liu Z X, Gao F, Wang Y, Lai H J, Pan X Y, Yang D Q, Li X DA 2-year study on the effects of tillage and straw management on the soil quality and peanut yield in a wheat–peanut rotation system., 2021, 21: 1698–1712.
[35] 劉艷慧, 王雙磊, 李金埔, 秦都林, 張美玲, 聶軍軍, 毛麗麗, 宋憲亮, 孫學(xué)振. 棉花秸稈還田對土壤速效養(yǎng)分及微生物特性的影響. 作物學(xué)報, 2016, 42: 1037–1046.
Liu Y H, Wang S L, Li J P, Qin D L, Zhang M L, Nie J J, Mao L L, Song X L, Sun X Z. Effects of cotton straw returning on soil available nutrients and microbial characteristics., 2016, 42: 1037–1046 (in Chinese with English abstract).
[36] Ma L J, Kong F X, Wang Z, Luo Y, Lyu X B, Zhou Z G, Meng Y L. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input., 2019, 243: 107616.
[37] Zhao J L, Wang X G, Zhuang J, Cong Y J, Lu Y, Guo M Z. Fine-crush straw returning enhances dry matter accumulation rate of maize seedlings in northeast China., 2021, 11: 1144.
[38] 安俊朋, 李從鋒, 齊華, 隋鵬祥, 張文可, 田平, 有德寶, 梅楠,邢靜. 秸稈條帶還田對東北春玉米產(chǎn)量、土壤水氮及根系分布的影響. 作物學(xué)報, 2018, 44: 774–782.
An J P, Li C F, Qi H, Sui P X, Zhang W K, Tian P, You D B, Mei N, Xing J. Effects of straw strip returning on spring maize yield, soil moisture, nitrogen contents and root distribution in northeast China., 2018, 44: 774–782 (in Chinese with English abstract).
[39] 鄒文秀, 韓曉增, 陸欣春, 陳旭, 郝翔翔, 嚴(yán)君. 秸稈還田后效對玉米氮肥利用率的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53: 4237–4247.
Zou W X, Han X Z, Lu X C, Chen X, Hao X X, Yan J. Effect of Maize straw return aftereffect on nitrogen use efficiency of maize., 2020, 53: 4237–4247 (in Chinese with English abstract).
[40] Huang Y W, Tao B, Zhu X C, Yang Y J, Liang L, Wang L X, Jacinthe P A, Tian H Q, Ren W. Conservation tillage increases corn and soybean water productivity across the Ohio River Basin., 2021, 254: 106962.
[41] Zhang W Z, Chen X Q, Wang H Y, Wei W X, Zhou J M. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an anthrosol with rice-wheat rotations in China., 2020, 21: 521–531.
[42] 姜英, 王崢宇, 廉宏利, 王美佳, 蘇業(yè)涵, 田平, 隋鵬祥, 馬梓淇, 王英儼, 孟廣鑫, 孫悅, 李從鋒, 齊華. 耕作和秸稈還田方式對東北春玉米吐絲期根系特征及產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2020, 53: 3071–3082.
Jiang Y, Wang Z Y, Lian H L, Wang M J, Su Y H, Tian P, Sui P X, Ma Z Q, Wang Y Y, Meng G X, Sun Y, Li C F, Qi H. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in northeast China., 2020, 53: 3071–3082 (in Chinese with English abstract).
[43] Wang D, Sun C X, Cui M, Shen X B, Zhang Y L, Xiao J H, Liu P Y, Zhang Y, Xie H T. An integrated analysis of transcriptome and metabolome provides insights into the responses of maize (L) roots to different straw and fertilizer conditions., 2022, 194: 104732.
[44] Xu X, Pang D W, Chen J, Luo Y L, Zheng M J, Yin Y P, Li Y X, Li Y, Wang Z L. Straw return accompany with low nitrogen moderately promoted deep root., 2018, 221: 71–80.
[45] Gao F, Zhao B, Dong S, Liu P, Zhang J. Response of maize root growth to residue management strategies., 2018, 110: 95–103.
[46] Fan Y, Gao J, Sun J, Liu J, Su Z, Wang Z, Yu X, Hu S. Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner Mongolia., 2021, 113: 4369–4385.
[47] Sui P, Tian P, Lian H, Wang Z, Ma Z, Qi H, Mei N, Sun Y, Wang Y, Su Y, Meng G, Jiang Y. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution., 2020; 10: 324.
[48] 陳夢云, 李曉峰, 程金秋, 任紅茹, 梁健, 張洪程, 霍中洋. 秸稈全量還田與氮肥運籌對機(jī)插優(yōu)質(zhì)食味水稻產(chǎn)量及品質(zhì)的影響. 作物學(xué)報, 2017, 43: 1802–1816.
Chen M Y, Li X F, Cheng J Q, Ren H R, Liang J, Zhang H C, Huo Z Y. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplantingrice with good taste quality., 2017, 43: 1802–1816 (in Chinese with English abstract).
Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean
WU Zong-Sheng1,**, XU Cai-Long1,**, LI Rui-Dong1, XU Yi-Fan1,2, SUN Shi1, HAN Tian-Fu1, SONG Wen-Wen1,*, and WU Cun-Xiang1,*
1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R&D Center, Beijing 100081, China;2College of Agronomy, Northeast Agricultural University, Harbin 150006, Heilongjiang, China
Huang-Huai-Hai Rivers region is the main producing area of soybean with high protein content in China. However, the previous wheat straw seriously restricts the production of summer soybean in this area. The traditional farming system with high input and low output cannot meet the demand for high-quality soybean. In this experiment, the soil temperature, soil moisture content, soil apparent density, and soil aggregate structure of the topsoil, yield and yield composition of soybean under different crop system were investigated. The aim of this study is to analyze the regulation mechanism of no-tillage combined with straw mulching on surface soil structure and soybean yield, and to provide theoretical reference for the selection of the best crop system for soybean in the Huang-Huai-Hai Rivers region. A split-plot experimental design was adopted in the experiment. The main plot was fertilizer treatment [fertilization (F: 225 kg hm-2) and no fertilization (NF)]. The subplot was straw treatment [no-tillage without straw returning (SR), no-tillage with straw mulching (SM), and no-tillage with straw crushing returning (SC)]. The results showed that: (1) The effect of no-tillage combined with straw returning on the surface layer was mainly concentrated in soil depth of 0–10 cm. (2) Compared with SR, the soil temperature of SM and SC decreased by 0.21°C and 0.17°C, respectively. The soil water content increased by 13.18% and 9.07%, respectively. Compared with SR and SC, the soil apparent density of SM decreased by 2.61% and 2.87%, respectively, the solid phase proportion of the plough layer decreased by 2.60% and 3.01%, respectively, and the soil aggregate >2 mm increased by 6.84% and 3.14%, respectively. (3) Compared with SR, the number of pods per plant in SM and SC treatments increased by 22.41% and 9.49%, the 100-seed weight of soybean under SM and SC increased by 1.18% and 2.40%, while the number of grains per plant under SM and SC increased by18.20% and 7.51%, respectively. In addition, compared with SR, the yield and yield per plant were increased by 11.56% and 39.16% in SM and 5.43% and 18.07% in SC, respectively. In this study, the fertilization can promote yield increase effects on straw returning, and SM has a more significant yield increase effect than SC. In conclusion, no-tillage plus straw mulching and precise sowing cultivation technology for summer soybean after winter wheat has significant advantages in optimizing soybean root layer environment and promoting yield formation.
soybean; soil temperature; soil physical properties; yield
10.3724/SP.J.1006.2023.24051
本研究由國家重點研發(fā)計劃項目(2018YFD1000900),財政部和農(nóng)業(yè)農(nóng)村部國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-04),國家自然科學(xué)基金項目(32101845)和中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項目資助。
This study was supported by the National Key Research and Development Program of China (2018YFD1000900), the China Agriculture Research System of MOF and MARA (CARS-04), the National Natural Science Foundation of China (32101845), and the Agriculture Science and Technology Innovation Program in CAAS.
吳存祥, E-mail: wucunxiang@caas.cn; 宋雯雯, E-mail: songwenwen@caas.cn
**同等貢獻(xiàn)(Contributed equally to this work)
吳宗聲, E-mail: 3193617957@qq.com; 徐彩龍, E-mail: xucailong@caas.cn
2022-03-08;
2022-09-05;
2022-09-15.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220913.1858.008.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).