• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of preparation parameters on growth and properties of β-Ga2O3 film

    2023-02-20 13:15:40ZiHaoChen陳子豪YongShengWang王永勝NingZhang張寧BinZhou周兵JieGao高潔YanXiaWu吳艷霞YongMa馬永HongJunHei黑鴻君YanYanShen申艷艷ZhiYongHe賀志勇andShengWangYu于盛旺
    Chinese Physics B 2023年1期
    關(guān)鍵詞:艷霞永勝張寧

    Zi-Hao Chen(陳子豪), Yong-Sheng Wang(王永勝), Ning Zhang(張寧), Bin Zhou(周兵),Jie Gao(高潔), Yan-Xia Wu(吳艷霞), Yong Ma(馬永), Hong-Jun Hei(黑鴻君),Yan-Yan Shen(申艷艷), Zhi-Yong He(賀志勇), and Sheng-Wang Yu(于盛旺)

    College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    Keywords: β-Ga2O3,magnetron sputtering,growth parameters,optical and electrical properties

    1. Introduction

    With the excellent physicochemical properties, the wide bandgap semiconductor materials(such as SiC,GaN,AlGaN)are very suitable for high-temperature, high-frequency, and high-power semiconductor devices including diodes, detectors, and high-power electronic devices.[1–3]However, these devices are rarely able to go out of the laboratory and enter into industrialization because of the high cost of fabrication. Therefore, to reduce the cost of wide bandgap semiconductor devices is necessary for their practical application.As a wide bandgap semiconductor, Ga2O3has a band gap of~4.9 eV, a Baliga’s figure of merit (BFOM) of 3400, and a breakdown field strength of 8 MV/cm.[4]Compared with SiC or GaN, the single-crystal Ga2O3wafer with a size of 4 inch(1 inch=2.54 cm)has been synthesized by using several standard melt growth methods.[5]The polycrystalline Ga2O3film has similar semiconductor characteristics to and lower fabrication cost than single crystal,these advantages make Ga2O3receive increasing attention in the field of electroluminescent devices,[6,7]gas sensitive sensors,[8–10]photodetectors,[11–13]field-effect transistor,[14–16]etc.

    The crystal structures of Ga2O3, includingα,β,γ,δ,andε, could transform into each other under given conditions.[17]Among them,defects in the growth ofβ-Ga2O3thin film include VO(oxygen vacancy), Oi(oxygen interstitial),VGa(gallium vacancy), and Gai(gallium interstitial) due to a monoclinic crystal with theC2/mspace group. Owing to the VOand Gaiwith the lower formation energy,[18]β-Ga2O3is prone to forming oxygen vacancies and gallium interstitial during growth. Therefore, theβ-Ga2O3, as a most stable phase,has aroused extensive interest in the semiconductor devices due to its promising future in the industrial application. Sasakiet al. found that the Pt/β-Ga2O3Schottky diode fabricated by the floating-zone has a Schottky barrier height in a range of 1.3 eV–1.5 eV.[19]Shimboriet al. reported that NiO/β-Ga2O3heterojunction diode has a higher breakdown voltage and lower leakage current than Ni/β-Ga2O3Schottky diodes.[20]Ohet al.reported that aβ-Ga2O3MSM photodetector with the transparent graphene electrode increases the photosensitive area and rejection ratio of the photodetector.[21]Zhanget al.reported that single-crystalline sphericalβ-Ga2O3particles with an average diameter of~200 nm are expected to be used in white-LED phosphors due to the blue–green and red–light emission.[22]Many methods have been used to prepare theβ-Ga2O3film and adjust defects. Greenet al.found that theβ-Ga2O3field-effect transistor fabricated by metal–organic vapor phase epitaxy has a gate-to-drain electric field of~3.8 MV/cm.[23]Moreover, Chenet al. found that the growth ofβ-Ga2O3film is dependent on the oxygen pressure of pulsed laser deposition,such as mainly along(201)plane at an oxygen pressure of 0.5 Pa, but along (400) plane for oxygen pressure in a range from 0.5 Pa to 2 Pa.[24]Chenet al.reported that the pressure ofβ-Ga2O3film can affect the preferred orientation and growth rate by metal–organic chemical vapor deposition on GaAs substrate.[25]Shihet al.found that theβ-Ga2O3MOS-HEMT has excellent performance caused byβ-Ga2O3gate dielectric and surface passivation layer.[26]Liaoet al.found that the crystal quality ofβ-Ga2O3film can be adjusted by RF magnetron sputtering under growth pressure in a range of 0.5 Pa–3 Pa,resulting in a similar variation trend to that of the optical bandgap ofβ-Ga2O3film.[27]Ma and Fan preparedβ-Ga2O3nanomaterials by the thermal evaporation method,and found that the photoelectric properties of the nanomaterials change due to the oxygen existing.[28]Based on these results, the preparation method and parameter have important effects on the growth and properties of theβ-Ga2O3film.

    In this work,the Ga2O3films are prepared on the silicon and quartz substrates by radio frequency(RF)magnetron sputtering, then transformed intoβ-Ga2O3by annealing. The effects of preparation parameters on the structure and properties ofβ-Ga2O3film are studied by tailoring argon–oxygen flow ratio,sputtering power,sputtering time and annealing temperature.

    2. Experimental details

    The Ga2O3films were fabricated on the surface of(100) silicon substrates by the RF magnetron sputtering method. The monocrystalline silicon wafers were ultrasonically cleaned in ethanol solution for 10 min and washed with deionized water and dried, then placed into the deposition chamber of magnetron sputtering apparatus. In order to remove impurities from the surface of gallium oxide target as much as possible, the pre-sputtering was carried out in argon atmosphere for 5 min, then the presetting sputtering power and gas flow were adjusted. The atmospheric pressure of the chamber was adjusted to 0.8 Pa by controlling the outlet valve.A small amount of O2is added in addition to argon to improve crystallinity of the film and reduce internal defects.[29]Under the combined action of electric field, magnetic field and argon particles, gallium particles in the target were bombarded and reacted with oxygen to form amorphous Ga2O3film on the substrate. Theβ-Ga2O3film was obtained after being annealed.[30]The effects of preparation parameters including argon–oxygen flow ratio,sputtering power,sputtering time and annealing temperature on the growth and properties ofβ-Ga2O3thin films were studied as shown in Table 1. All samples were annealed in air for 120 min. In each experiment,a quartz substrate (optical transmittance>90%) was placed in the sputtering system so as to be used for characterizing the optical properties of the films.

    Table 1. Detailed growth parameters of β-Ga2O3 thin films. AO:argon–oxygen flow ratio,SP:sputtering power,Pre:sputtering pressure,ST:sputtering time,AT:annealing temperature.

    Fig.1. Schematic diagram of preparation process of β-Ga2O3 thin films.

    The metal electrodes were prepared on the film to study the electrical property. Theβ-Ga2O3film samples were ultrasonically cleaned in ethanol solution for 5 min,then rinsed with deionized water and dried. The Ti could form Ohmic contact withβ-Ga2O3under a certain condition.[31]The metal electrodes were obtained by depositing Ti(40 nm)/Ag(80 nm)on the surface of sample by vacuum evaporation via a special mask. Each electrode has a size of 1 mm×1 mm and the spacing between adjacent electrodes is 2 mm. The samples with metal electrodes were annealed in air for 30 s at 400°C.Figure 1 shows a schematic diagram of the preparation process and the final product.

    The crystal structure ofβ-Ga2O3were characterized by x-ray diffraction (XRD, Smartlab X, Rigaku). The morphology ofβ-Ga2O3and Ti/Ag electrodes were characterized by scanning electron microscope (SEM, ZEISS GeminiSEM 300). The optical properties were obtained by UV-vis spectrophotometer(Agilent cary 100). TheI–Vcurve of the films were measured by Hall effect measurement(Lake shore 8400 Series).

    3. Results and discussion

    Figure 2 shows the XRD patterns of Ga2O3films deposited under different conditions. The broad diffraction patterns of Ga2O3samples indicate the amorphous structures under different argon–oxygen flow ratios (Fig. 2(a)). The obvious diffraction peaks at 30.5°, 35.2°, and 64.7°correspond to (ˉ401), (111), and (403) planes ofβ-Ga2O3by examining the standard card of JCPDS43-1012, and superimpose on the broad diffraction pattern of the amorphous Ga2O3, suggesting that the amorphous Ga2O3films have transformed intoβphase after being annealed.The oxygen content increases with the argon–oxygen flow ratio dropping, leading to the shift of diffraction peak in the crystal plane of(403). The crystal lattice contains the increased amount of VOunder the hypoxia environment,and in an oxygen-rich environment,enough oxygen atoms exist as Oi, leading to the lattice distortion. When the sputtering power is 140 W (Fig. 2(b)), the crystal plane of (ˉ401) dominates the process of crystallization. With the increase of sputtering power, the diffraction peak in the crystal plane of (111) instead of in the crystal plane of (ˉ401) is enhanced, indicating the preferential growth of the film. According to the Scherrer formula[32]

    whereDis the grain size perpendicular to the lattice plane,kis the Scherrer constant with a value of 0.9,λis the wavelength of x-ray radiation,Bis the full width at half maximum(FWHM)of diffraction peaks,andθis the corresponding Bragg angle. Here, the FWHM of the diffraction peak at crystal plane of(ˉ401)increases with the augment of sputtering power(Fig.2(b)),indicating that the grain size decreases. The increase of sputtering power leads to a strong bombardment effect. So,more atoms bombarded out of Ga2O3target result in more deposited-nanocrystals.

    Fig.2. XRD patterns of β-Ga2O3 films deposited under different parameters: (a)argon–oxygen flow ratio;(b)sputtering power;(c)sputtering time;(d)annealing temperature.

    Moreover,as the sputtering time increases(Fig.2(c)),the intensities of diffraction peaks increase. Specially,the diffraction peaks appear at 19.0°and 59.2°corresponding to the crystal planes of (ˉ201) and (ˉ603) for 150 min. As for samples of the different annealing temperatures(Fig.2(d)),the diffraction peaks at 30.5°and 64.7°superimpose on the broad diffraction pattern of the amorphous Ga2O3for sample annealed at 600°C.With the temperature increasing to 900°C,the diffraction peaks are enhanced in(111),(ˉ201),(002),and(401)crystal planes. We find that each crystal plane of all samples annealed at 600°C shows the low diffraction peak intensity and the large FWHM,but the diffraction peak intensity of samples annealed at 900°C all increase(Figs.2(a)–2(d)). It means that the crystallinity ofβ-Ga2O3films increases with the annealed temperature rising.

    Fig.3. (a)Cross-sectional SEM image of β-Ga2O3 film and(b)plot of thickness versus sputtering time, sputtering power, and argon–oxygen flow rate of β-Ga2O3 film.

    Figure 3(a) shows the cross-sectional morphology ofβ-Ga2O3film. Theβ-Ga2O3film has the uniform and dense cross-sectional morphology without internal holes. Under this preparation condition, the thickness of theβ-Ga2O3film is 197.2 nm. Moreover, the thickness values of theβ-Ga2O3films at various preparation parameters are summarized via the cross-sectional image(Fig.3(b)). Obviously,the thickness of theβ-Ga2O3film increases with the increase of the argon–oxygen flow ratio, sputtering power and time. The annealing temperature has almost no influence on the thickness of the film(not shown). With the enlargement of argon–oxygen flow ratio,more argon particles bombard Ga2O3target,resulting in the increase of growth rate. Moreover, with the increase of sputtering power,more Ga2O3particles are generated and react with the oxygen due to the enhanced bombardment effect on the Ga2O3target,resulting in the increased thickness of the film.

    Figure 4(a)shows the surface morphologies ofβ-Ga2O3films annealed at different temperatures. The flat surface morphologies of films annealed at 600°C shows small grains of Ga2O3, which are due to the incomplete crystallization. The formation of small nanocrystalline grains forβ-Ga2O3can be confirmed by the weaker diffraction peak intensity and larger FWHM (Fig. 2(d)). With the increase of annealing temperature,the crystallinity of the film can be greatly improved,and the obvious spherical protrusions can be observed on the surface of sample annealed at 800°C.When the annealing temperature is further increased to 900°C, the spherical grains on the surface become dense, and more spherical grains with diameters ranging from 20 nm to 30 nm form.

    The 3D contour image of the sample surface is characterized, and the roughness-related parameters are obtained as follows: average roughness (Ra), maximum peak of contour(Rp)and minimum valley of contour(Rv). Figure 4(b)shows the 3D contour image of the sample annealed at 600°C, the overall surface of the film is smooth and flat without obvious pits and spikes, which is consistent with the scenario of SEM image in Fig. 4(a). With the enlargement of argon–oxygen flow ratio(Fig.4(c)),theRaof the film first decreases,then increases. A minimumRa-value can be obtained at an argon–oxygen flow ratio of 8:1. The higherRa-value means the oxygen-deficient situation, which is caused by stronger bombardment of the film surface at low oxygen content. The growth rate ofβ-Ga2O3thin film slows down with the increase of oxygen content. Moreover, the oxygen-rich environment reduces surface defects of the films. However, with the increase of sputtering power, theRa-value decreases by nearly half, thus improving the surface quality. The increased sputtering power means the strengthening of bombardment effect,which improves the adatom mobility and contributes to the surface quality of film. There has little effect on theRa-values of samples annealed at different temperature,but the values ofRpandRvincrease with the annealing temperature increasing(Rp:7.8 nm→145.9 nm;Rv: 43.5 nm→-245.2 nm). With the increase of sputtering time, theRaofβ-Ga2O3thin film increases gradually to 2.8 nm at 150 min. The increase of time can lead to the accumulation of defects to accumulate,resulting in uneven distribution of grains on the surface.

    Fig.4. (a) Top-view SEM images of β-Ga2O3 thin films annealed at different temperatures, (b) three-dimensional (3D) contour image of β-Ga2O3 thin film annealed at 600 °C for 120 min,(c)plot of average roughness(Ra)versus argon–oxygen flow ratio and sputtering power,and(d)plot of average roughness versus annealing temperature and sputtering time of β-Ga2O3 thin films.

    Figure 5(a) shows the SEM cross-section image of the prepared electrode structure.By combining the EDS results of the cross-section (Fig. 5(b)), the obvious layered structure of Ag/Ti/Ga2O3/Si-substrate can be confirmed. The O element not only exists in the gallium layer, but also penetrates into the Si layer and diffuses into the Ti/Ag electrode after being annealed (EDS result). In addition, Si also diffuses toward the Ga2O3layer,which has a similar mechanism to that of Si dopedβ-Ga2O3affecting the bandgap ofβ-Ga2O3thin films.

    Fig.5. (a) Cross-section SEM image of prepared electrode structure, and(b)corresponding EDS mapping element distributions.

    Figure 6 shows the optical transmittance spectra of currentβ-Ga2O3films at different preparation parameters. Allβ-Ga2O3films display the good optical transmittances in the visible range of 380 nm–780 nm. An obvious absorption edge appears near to 250 nm, which indicates thatβ-Ga2O3films are suitable for the detection of UVC.Fabry–Perot oscillation of the transmission curve implies good interface quality betweenβ-Ga2O3films and substrates.[33]The optical transmittance of the film is enhanced with the increase of sputtering power and annealing temperature, which is related to the improvement of film quality. Moreover,it is notable that the absorption edge has a red shift with the increase of sputtering time and power. Since main defects of VOaccumulate in the process of deposition and growth of film, these VOexist in the energy band as the donor energy, leading to the shifting of band structure. As Liet al.[34]believed, that was a degradation of quantum size effect. Becauseβ-Ga2O3is a direct bandgap semiconductor,[35]the bandgap ofβ-Ga2O3thin film can be calculated from Tauc formula[36]

    whereαis the absorption coefficient,hνis the incident photon energy,Ais the constant,andEgis the bandgap,the value ofEgcan be derived by fitting the linear region of the(αhν)2versus hνplot and taking the intercept on thehν-axis(Fig.6). Here,the bandgap of theβ-Ga2O3decreases with the decrease of oxygen,which can be attributed to the increase of point defects dominated by oxygen vacancies. In addition,the bandgap also gradually decreases with the increase of sputtering power and annealing temperature. In short,the surface quality can be improved by increasing the sputtering power,resulting in the reducing bandgap;the crystal quality increases with the increase of temperature,leading to the decrease of bandgap. All these results indicate that the bandgap ofβ-Ga2O3films is affected by the film quality.

    Fig.6. Variations of optical transmittance spectra of β-Ga2O3thin films: with(a)argon–oxygen flow ratio,(b)sputtering power,(c)sputtering time,and(d)annealing temperature,with inset showing variations of(αhν)2 with photon energy(hν).

    Fig.7. (a) The I–V curves of β-Ga2O3 thin films annealed at different temperatures and (b) current flowing through the thin film versus annealing temperature at a bias voltage of 1 V.

    TheI–Vcurves ofβ-Ga2O3thin films at different growth parameters are tested. The sample annealed at 900°C shows the Ohmic behavior between Ti andβ-Ga2O3,and the remaining samples exhibit the Schottky contact behavior(Fig.7(a)).Moreover,the forward/reverse current at 1-V bias voltage are calculated (Fig. 7(b)). The current flowing through theβ-Ga2O3film increases almost with the increase of annealing temperature,indicating that the resistance of the film gradually decreases. It is closely related to the crystallization quality of the film (Fig. 2(d)). There is a higher intensity of diffraction peak and a smaller FWHM at 900°C, thus the currents can flow across the grain boundaries.[37]

    TheEg-values obtained at different preparation parameters are calculated in Fig. 8(a). TheEg-value represents the distance from the top of valence band to the bottom of conduction band in the band structure,which varies from 4.94 eV to 5.34 eV depending on the preparation process. However,almost all samples(except for the sample annealed at 900°C)are of Schottky contact,indicating that the formation of Ohmic contact is not just related to the band gap of the film. In fact,for n-type intrinsic semiconductor such asβ-Ga2O3,the formation of Ohmic contact depends on the Schottky barrier heightφB:

    whereφMis the metal work function, andχsis the electron affinity of the semiconductor. Usually, theφBwith a negative value is achieved by choosing a metal of lowφMat the constantχs(4.00±0.05 eV),named Ohmic contact.[38]However,theφBofβ-Ga2O3does not rely onφMdirectly because of the surface states, metal-induced gap-states and near surface defects.[39]Previous report found that there can be the upward bending of the band onβ-Ga2O3surface,[40]causing the contacts formed betweenβ-Ga2O3and metals to be always Schottky contacts(Fig.8(b)). The Ohmic contact between the metal andβ-Ga2O3forms at 900°C temperature. As mentioned above,the point defects inβ-Ga2O3film are dominated by oxygen vacancies,thus introducing additional defect levels into the band structure. However, it is too deep to be excited according to previous report,so it is not generally considered to be the source of charge carriers. When the annealing temperature reaches 900°C,the high temperature provides a large amount of energy for the thermal motion of the electrons,thus leading a large number of electrons to be excited and transit to the conduction band. So, the Ohmic contact is achieved through the tunneling effect.

    Fig.8. (a)The Eg values of β-Ga2O3 thin films at different growth parameters,(b)energy band of Schottky contact between Ti and β-Ga2O3,and(c)mechanism for Ohmic contact formation annealed at 900 °C.

    4. Conclusions

    Theβ-Ga2O3thin films are prepared on the silicon substrates by RF magnetron sputtering method. The effects of preparation parameters are studied including argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature. The annealing temperature plays a vital role in the crystallinity of theβ-Ga2O3film. The thickness ofβ-Ga2O3films depend on argon–oxygen flow ratio, sputtering power and sputtering time. The surface roughness of Ga2O3film increases with the augment of argon–oxygen flow ratio and sputtering time,while decreases with the sputtering power increasing. The transmission spectra of the films are tested by UV-vis, and the bandgap are calculated according to the Tauc formula. The bandgap is closely related to the quality of the film and affected by the number of oxygen vacancy defects. The Ti/Ag electrode is deposited on the surface of the films for testing theI–Vcurve. Ohmic contact is obtained at 900°C, which is probably related to the transition behavior of electrons at the defect level when gain enough energy. The resistance of the film is reduced by increasing the annealing temperature because of the improved crystallinity.

    Acknowledgements

    Project supported by the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013),the “1331 Project” Engineering Research Center of Shanxi Province, China (Grant No. PT201801), and the Natural Science Foundation of Shanxi Province, China (Grant No.201801D221131).

    猜你喜歡
    艷霞永勝張寧
    一杯茶
    捧卷傍春山
    牡丹(2023年1期)2023-01-14 06:36:22
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    敬廉 守廉 踐廉
    樂普 《欣忭》
    唱一首祖國的贊歌
    Umbrella Day傘日
    There
    一種兩級(jí)雙吸管道輸油泵
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    三级国产精品片| 午夜福利网站1000一区二区三区| 国产乱来视频区| 一区二区三区乱码不卡18| 丝袜美足系列| 夜夜骑夜夜射夜夜干| 国内精品宾馆在线| 国语对白做爰xxxⅹ性视频网站| 久久影院123| 国产精品三级大全| 午夜久久久在线观看| 一级a做视频免费观看| 久久久国产一区二区| 夫妻午夜视频| 久久午夜综合久久蜜桃| 黄片播放在线免费| 日韩av免费高清视频| 成人国产av品久久久| 视频中文字幕在线观看| 欧美性感艳星| 青青草视频在线视频观看| 99九九线精品视频在线观看视频| xxxhd国产人妻xxx| 久久午夜福利片| 五月天丁香电影| 国产视频内射| 亚洲国产成人一精品久久久| 十八禁高潮呻吟视频| 黄色欧美视频在线观看| 国产又色又爽无遮挡免| 亚洲美女搞黄在线观看| 校园人妻丝袜中文字幕| 午夜福利网站1000一区二区三区| 日韩中字成人| 五月玫瑰六月丁香| 国产精品三级大全| 王馨瑶露胸无遮挡在线观看| 插阴视频在线观看视频| 中文精品一卡2卡3卡4更新| 只有这里有精品99| 汤姆久久久久久久影院中文字幕| 国产免费又黄又爽又色| 超碰97精品在线观看| 精品国产国语对白av| 美女国产高潮福利片在线看| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 狠狠精品人妻久久久久久综合| 中文字幕人妻熟人妻熟丝袜美| 一级毛片aaaaaa免费看小| 国产伦理片在线播放av一区| 波野结衣二区三区在线| 寂寞人妻少妇视频99o| 欧美日韩成人在线一区二区| 亚洲av成人精品一二三区| 夫妻午夜视频| 热re99久久国产66热| 男男h啪啪无遮挡| 亚洲国产精品一区三区| 狂野欧美激情性xxxx在线观看| 日韩大片免费观看网站| 大码成人一级视频| 亚洲国产精品一区三区| 午夜福利影视在线免费观看| 最近2019中文字幕mv第一页| 女的被弄到高潮叫床怎么办| av在线老鸭窝| 国产精品99久久久久久久久| 精品国产露脸久久av麻豆| 满18在线观看网站| 日本色播在线视频| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 久久午夜福利片| 最近中文字幕高清免费大全6| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| h视频一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕免费在线视频6| 亚洲少妇的诱惑av| 欧美变态另类bdsm刘玥| 亚洲中文av在线| 视频在线观看一区二区三区| 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 男女国产视频网站| 大码成人一级视频| 国产日韩欧美在线精品| 国产精品一区www在线观看| 久久久久国产精品人妻一区二区| 91精品国产九色| 熟妇人妻不卡中文字幕| 91精品国产九色| 亚洲精品456在线播放app| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 亚洲久久久国产精品| 国产永久视频网站| 桃花免费在线播放| 啦啦啦视频在线资源免费观看| 午夜老司机福利剧场| av女优亚洲男人天堂| 十八禁高潮呻吟视频| 亚洲三级黄色毛片| av线在线观看网站| 人妻 亚洲 视频| 欧美+日韩+精品| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 免费看不卡的av| 大陆偷拍与自拍| 亚洲精品乱码久久久久久按摩| 一区二区av电影网| 中文字幕最新亚洲高清| 好男人视频免费观看在线| 国产 精品1| 久久久久久人妻| 日韩成人伦理影院| 男女免费视频国产| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| av电影中文网址| 婷婷成人精品国产| 日日啪夜夜爽| 丝袜喷水一区| 一个人免费看片子| 欧美精品高潮呻吟av久久| 伦精品一区二区三区| 国产精品.久久久| av网站免费在线观看视频| 国产一区二区在线观看日韩| 国产精品欧美亚洲77777| videossex国产| 性色av一级| 日韩视频在线欧美| 久久久久久久久久人人人人人人| 免费人妻精品一区二区三区视频| 一级毛片 在线播放| 久久青草综合色| 最近2019中文字幕mv第一页| 国产深夜福利视频在线观看| 久热久热在线精品观看| 久久久久久久久久久丰满| 国产精品国产av在线观看| 人体艺术视频欧美日本| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 久久国内精品自在自线图片| 日韩视频在线欧美| 国产精品.久久久| 精品国产露脸久久av麻豆| 人妻夜夜爽99麻豆av| 汤姆久久久久久久影院中文字幕| 五月伊人婷婷丁香| a级毛片免费高清观看在线播放| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 在线精品无人区一区二区三| 永久免费av网站大全| 久久精品国产自在天天线| 色婷婷av一区二区三区视频| 国产精品欧美亚洲77777| 丝袜美足系列| 亚洲av综合色区一区| h视频一区二区三区| 大陆偷拍与自拍| 亚洲av福利一区| 狂野欧美激情性bbbbbb| 精品亚洲成a人片在线观看| 蜜桃在线观看..| 国产毛片在线视频| 精品熟女少妇av免费看| 欧美精品一区二区免费开放| av又黄又爽大尺度在线免费看| 国产成人a∨麻豆精品| 国产精品久久久久久久久免| 人妻夜夜爽99麻豆av| 美女xxoo啪啪120秒动态图| 国内精品宾馆在线| 麻豆精品久久久久久蜜桃| 女的被弄到高潮叫床怎么办| 精品一区二区三卡| 插逼视频在线观看| 亚洲国产av影院在线观看| 亚洲综合色网址| 五月玫瑰六月丁香| 大片电影免费在线观看免费| 欧美另类一区| 综合色丁香网| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 亚洲经典国产精华液单| 视频区图区小说| 精品少妇久久久久久888优播| 香蕉精品网在线| 久久毛片免费看一区二区三区| 秋霞伦理黄片| 欧美激情极品国产一区二区三区 | 蜜桃在线观看..| 日韩一本色道免费dvd| 九色成人免费人妻av| 国内精品宾馆在线| 岛国毛片在线播放| 国产一区二区在线观看av| 校园人妻丝袜中文字幕| 国模一区二区三区四区视频| 少妇人妻精品综合一区二区| 成年av动漫网址| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 一级二级三级毛片免费看| 免费观看无遮挡的男女| 久久久久精品性色| 欧美成人午夜免费资源| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 国产成人a∨麻豆精品| 欧美一级a爱片免费观看看| 日本av免费视频播放| 国产精品久久久久久av不卡| 日本91视频免费播放| 国产精品一区二区三区四区免费观看| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| 精品久久久久久电影网| 久久青草综合色| 国产日韩欧美视频二区| 五月开心婷婷网| 国产男人的电影天堂91| 99热这里只有精品一区| 国产黄频视频在线观看| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 亚洲国产精品999| 久久久亚洲精品成人影院| 精品国产乱码久久久久久小说| 久久影院123| 亚洲欧美一区二区三区国产| 成人综合一区亚洲| 欧美日本中文国产一区发布| 久久99一区二区三区| 亚洲国产av新网站| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 精品酒店卫生间| av一本久久久久| 精品人妻一区二区三区麻豆| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| av福利片在线| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 午夜福利,免费看| 精品午夜福利在线看| 中文字幕亚洲精品专区| 2022亚洲国产成人精品| 亚洲国产精品成人久久小说| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 久久久久久人妻| 99国产精品免费福利视频| 国产成人精品久久久久久| 精品国产一区二区久久| 校园人妻丝袜中文字幕| av专区在线播放| 色婷婷av一区二区三区视频| 亚洲人成网站在线播| 久久久亚洲精品成人影院| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 观看美女的网站| 99久久人妻综合| 成人免费观看视频高清| 国产 一区精品| 多毛熟女@视频| 国产精品久久久久成人av| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 国产精品欧美亚洲77777| 美女国产高潮福利片在线看| 久久久久久久久久成人| 亚洲av男天堂| 久久 成人 亚洲| 一本一本综合久久| 亚洲国产精品成人久久小说| 国产片特级美女逼逼视频| 欧美 亚洲 国产 日韩一| 精品一区二区三区视频在线| 久久狼人影院| 大话2 男鬼变身卡| 欧美性感艳星| 99久久人妻综合| 国产在线免费精品| 免费观看av网站的网址| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区三区久久久樱花| 久久久久久久久久人人人人人人| 日日摸夜夜添夜夜添av毛片| 国产av精品麻豆| 日韩制服骚丝袜av| 日韩亚洲欧美综合| 亚洲,欧美,日韩| 色网站视频免费| 在线看a的网站| 日本-黄色视频高清免费观看| 寂寞人妻少妇视频99o| 热re99久久精品国产66热6| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 久久婷婷青草| 亚洲激情五月婷婷啪啪| 午夜久久久在线观看| 亚洲精品国产av成人精品| tube8黄色片| 国产女主播在线喷水免费视频网站| 免费大片18禁| 两个人免费观看高清视频| 一本色道久久久久久精品综合| 免费黄网站久久成人精品| 午夜av观看不卡| 久久人人爽人人片av| 亚洲精品aⅴ在线观看| 99久久综合免费| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看| 777米奇影视久久| 插阴视频在线观看视频| 一级毛片aaaaaa免费看小| 2022亚洲国产成人精品| 午夜激情福利司机影院| 亚洲av中文av极速乱| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 狠狠婷婷综合久久久久久88av| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 亚洲美女视频黄频| 美女内射精品一级片tv| 国产深夜福利视频在线观看| 亚洲成人av在线免费| 日日撸夜夜添| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 亚洲四区av| 国产有黄有色有爽视频| 一本大道久久a久久精品| 老司机影院毛片| 男男h啪啪无遮挡| 国产在线免费精品| 国产精品女同一区二区软件| av黄色大香蕉| 全区人妻精品视频| 精品久久蜜臀av无| 久久久精品区二区三区| 欧美精品高潮呻吟av久久| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频| 日本午夜av视频| 999精品在线视频| 亚洲美女黄色视频免费看| 青春草国产在线视频| 亚洲av中文av极速乱| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 国产片内射在线| 999精品在线视频| 国产免费现黄频在线看| 成人国语在线视频| 亚洲五月色婷婷综合| 国产女主播在线喷水免费视频网站| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 一本大道久久a久久精品| 99视频精品全部免费 在线| 午夜91福利影院| 久久久久久久久久人人人人人人| 亚洲成人手机| 在线播放无遮挡| 精品久久久久久电影网| 亚洲精品日本国产第一区| 97超碰精品成人国产| 午夜日本视频在线| 国产成人a∨麻豆精品| 欧美老熟妇乱子伦牲交| 视频中文字幕在线观看| 国产成人精品福利久久| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 国产在视频线精品| 大话2 男鬼变身卡| 最近2019中文字幕mv第一页| 天天操日日干夜夜撸| videossex国产| 两个人免费观看高清视频| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 国产亚洲一区二区精品| 欧美日韩精品成人综合77777| 性色av一级| 中文天堂在线官网| 亚洲一级一片aⅴ在线观看| 极品人妻少妇av视频| 99热这里只有是精品在线观看| 91精品三级在线观看| 精品久久久久久电影网| 最后的刺客免费高清国语| 在线播放无遮挡| 久久久久久伊人网av| 国产精品国产三级国产专区5o| 日本91视频免费播放| 母亲3免费完整高清在线观看 | 丝瓜视频免费看黄片| 亚洲高清免费不卡视频| 中文字幕久久专区| 亚洲天堂av无毛| 在现免费观看毛片| 久久久久久久久久人人人人人人| 久久久久久久精品精品| 精品一品国产午夜福利视频| 男人操女人黄网站| 国产精品熟女久久久久浪| 久久久久国产网址| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 一级,二级,三级黄色视频| 麻豆乱淫一区二区| 99热国产这里只有精品6| 十八禁高潮呻吟视频| av又黄又爽大尺度在线免费看| av专区在线播放| 国产日韩一区二区三区精品不卡 | 一本—道久久a久久精品蜜桃钙片| 亚洲av成人精品一区久久| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 免费大片18禁| 免费高清在线观看日韩| 2021少妇久久久久久久久久久| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 日韩伦理黄色片| 精品亚洲成a人片在线观看| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 黄色毛片三级朝国网站| 永久网站在线| 亚洲精品第二区| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 一级片'在线观看视频| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 久久久久久久久久人人人人人人| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 波野结衣二区三区在线| a级毛片黄视频| 免费人妻精品一区二区三区视频| 亚洲精品乱码久久久v下载方式| 黑人高潮一二区| 国产午夜精品一二区理论片| 精品少妇久久久久久888优播| 老司机影院毛片| 一本久久精品| 久久久午夜欧美精品| 国产精品久久久久久久久免| 最近最新中文字幕免费大全7| 精品视频人人做人人爽| 观看美女的网站| 黑丝袜美女国产一区| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 九九爱精品视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美成人精品一区二区| 丝袜美足系列| 母亲3免费完整高清在线观看 | 日日撸夜夜添| 精品人妻在线不人妻| 黄片播放在线免费| 免费高清在线观看日韩| 熟女人妻精品中文字幕| 最黄视频免费看| 久久久久久久亚洲中文字幕| 一级二级三级毛片免费看| 久久女婷五月综合色啪小说| 亚洲国产色片| av免费观看日本| 亚洲国产毛片av蜜桃av| 9色porny在线观看| 插逼视频在线观看| 麻豆乱淫一区二区| 精品一区二区免费观看| 成年女人在线观看亚洲视频| 久久99热这里只频精品6学生| 日本免费在线观看一区| 亚洲五月色婷婷综合| 亚洲欧洲国产日韩| 一区二区日韩欧美中文字幕 | 春色校园在线视频观看| 一区二区三区精品91| 国产乱人偷精品视频| √禁漫天堂资源中文www| 看免费成人av毛片| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 91成人精品电影| 狂野欧美激情性xxxx在线观看| 久久精品人人爽人人爽视色| 九色亚洲精品在线播放| 亚洲欧美成人综合另类久久久| 久久精品熟女亚洲av麻豆精品| xxxhd国产人妻xxx| 亚洲av日韩在线播放| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 在线播放无遮挡| 免费大片18禁| 亚洲成色77777| 最近2019中文字幕mv第一页| 搡女人真爽免费视频火全软件| 国产色婷婷99| 国产av国产精品国产| 三级国产精品欧美在线观看| 亚洲精品456在线播放app| 日本与韩国留学比较| 免费看av在线观看网站| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 亚洲精品第二区| 亚洲精品视频女| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 曰老女人黄片| 男的添女的下面高潮视频| 51国产日韩欧美| 免费高清在线观看视频在线观看| 韩国av在线不卡| 男女啪啪激烈高潮av片| 欧美 亚洲 国产 日韩一| 欧美三级亚洲精品| 在线 av 中文字幕| 人妻夜夜爽99麻豆av| 国产精品99久久99久久久不卡 | 性色av一级| 久久久久视频综合| 91精品三级在线观看| 日韩亚洲欧美综合| 精品国产乱码久久久久久小说| h视频一区二区三区| 91精品伊人久久大香线蕉| 免费观看在线日韩| 亚洲国产色片| 日韩一本色道免费dvd| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| a级毛片黄视频| 亚洲精品亚洲一区二区| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 欧美97在线视频| 国产免费视频播放在线视频| 伊人亚洲综合成人网| 久久久久久久久久久丰满| 成人18禁高潮啪啪吃奶动态图 | 中文字幕av电影在线播放| 久久久久久久久久久久大奶| 久久精品国产鲁丝片午夜精品| 久久影院123| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 亚洲精品国产av蜜桃| 亚洲美女视频黄频| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| 亚洲第一av免费看| av一本久久久久| 久久鲁丝午夜福利片| 日韩欧美精品免费久久| 老熟女久久久| 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 少妇丰满av| av在线老鸭窝| 亚洲内射少妇av| 日韩一区二区视频免费看| 9色porny在线观看| 黄色一级大片看看| 欧美日韩国产mv在线观看视频| 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 一级,二级,三级黄色视频| 最近的中文字幕免费完整| 国产极品天堂在线| 国产精品蜜桃在线观看| 亚洲综合色惰| 亚洲人成网站在线观看播放| 国产成人免费无遮挡视频| 熟女电影av网| 丝袜脚勾引网站| 天天操日日干夜夜撸| 老司机亚洲免费影院| 久久热精品热|