• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks

    2023-02-20 13:15:38NingjingYang楊檸境HaiYang楊海andGuojunJin金國(guó)鈞
    Chinese Physics B 2023年1期
    關(guān)鍵詞:金國(guó)

    Ningjing Yang(楊檸境), Hai Yang(楊海),?, and Guojun Jin(金國(guó)鈞),2,?

    1School of Physics Science and Technology,Kunming University,Kunming 650214,China

    2National Laboratory of Solid State Microstructures,Department of Physics,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: polyphenylene,interface,band structure,Zak phase,edge state

    1. Introduction

    Topological materials have maintained a hot topic in the last two decades. Common topological materials include topological insulators, topological superconductors, topological semimetals,topological metals,and magnetic topological insulator.[1–6]The general feature of topological materials is that they have topologically protected edge states, which are generated by non-trivial bulk bands. The earliest topological materials all have non-zero Berry curvature caused by spin–orbit coupling and are protected by time-reversal symmetry.[7]Integrating over the momentum space results in a topological invariant characterized by the Chern number.[8]Later on,new topological systems were discovered,which are protected by space inversion symmetry. In these topological systems,although the Berry curvature is zero, their topological edge states are protected by the non-zero vectored Zak phase.[9–13]The Zak phase refers to the integration of Berry connection,resulting in strongly non-trivial topological effects.[14,15]This kind of topological materials protected by space inversion symmetry regardless of spin–orbit coupling has attracted more and more attention.

    Since it was prepared in 2004, graphene has started a research upsurge in carbon-based materials. At present, various carbon allotropes are being investigated in experimental measurements and theoretical calculations.[16–19]Among them, biphenylene is a newly prepared carbon monolayer,[20]which has been confirmed to be a topological material.[21]Moreover, biphenylene exhibits polarization, that is, its topological edge states appear in one direction and trivial behavior in the other. As is well known,for graphene carbon nanotubes and nanoribbons at finite scales, it has been predicted that they have a 3p-rule.[22,23]For their topological properties,both armchair nanoribbon junction states and nanotube systems have the topological rule related to their system size.[24–27]In addition, the 3prule is also exhibited in bilayer and twodimensional carbon materials.[28–31]The origin of this rule is inseparable from the nature of graphene itself and the additional restrictions. Researches on carbon-based materials emerge in an endless stream,including Dirac fermions,nodal rings, Weyl semimetals, etc., but most of them are demonstrated by numerical calculations, and there are lacking of physical analyses.[32,33]Moreover, many of the Dirac materials with topological properties are confirmed in the type-I,in contrast to other possible types.

    In this paper, we theoretically study a series of network structures polymerized by polyphenyls, which has 3ptopological periodicity. It can be found that one third of them are topological material protected byC2space inversion symmetry and have a non-zero Zak phase. The topological rule is verified by first-principles calculations. Simultaneously, the topological phase has the Dirac point. Then, we obtain two kinds of topological phases in the band structures, one has gapless bulk dispersion and the other with gapped bulk dispersion. The gapped bulk dispersion with a non-trivial edge state is rare in space-inversion symmetric systems.[10,21,32,33]This topological property is caused by the periodic interface conditions. For a bulk gapless non-trivial phase,we construct a virtual potential in nanoribbon by doping B and N atoms,so as to open a gap in the bulk and make the system change from the gapless phase to the gapped phase.

    2. Computational method

    The electronic properties of the polyphenylene networks are calculated by the toolkit ATK’s first-principles method.[34,35]In the first-principles calculations, Perdew–Burke–Ernzerhof (PBE) functional is chosen under the generalized gradient approximation(GGA),the cut-off energy of 150 Ry and 10×10×1k-points grid are used. The lattice parameters and atomic positions are completely relaxed,and the convergence standards for energy and force are set to 10-5eV and 10-3eV/?A, respectively. The temperature is chosen at room temperature. We use a sufficiently large vacuum interval and add at least 15 ?A in the direction perpendicular to the electron transport plane to avoid interactions between layers.

    3. Results and discussion

    3.1. Structure and stability

    We first characterize the structure of a polyphenylene network,as shown in Fig.1(a),and correspondingly the first Brillouin zone(BZ)shown in Fig.1(b).It can be seen that in a unit cell there are serial benzene rings connected by two quaternary rings at their periodic interface.Of course,the possible experimental preparation of these carbon allotropes is always important.In the recent experiments,net C and net Y,corresponding toN= 1 and 2, have been successfully prepared.[20,36]Especially for net C, which has been discussed as a topological material,[21]it has a topological phase with unidirectional charge polarization. Unlike the Chern topological insulators,it is protected by the space inversion symmetry. Topological adjustability in graphene nanoribbons and graphene nanotubes has recently attracted much attention,[24,25]especially for the armchair-type boundary conditions. Therefore, the unidirectional polarized topological properties similar to net C will appear for the systems withN >1 as well. For 2D monolayer materials,the structural stability is very important in the applications of practical electronic devices. Although biphenyl(net C)and net Y have been successfully prepared,we also need to find more graphene structures. We use the formation energy to evaluate their stability,defnied asEform=,whereEtotis the total energy of an allotrope,ECis the energy of a single carbon atom,andnCis the number of carbon atoms in the system. We calculate several sets of data and compare them with graphene,as shown in Fig.1(c). Moreover,the mechanical properties of allotropes are discussed(see the supplement material III).

    Fig.1. (a) Structural diagram of a polyphenylene network, forming a four-membered ring at the splicing. (b) The first Brillouin zone in the two-dimensional reciprocal space. (c)Formation energy of polyphenylene networks.

    3.2. Origin of topological properties

    Starting from a low-energy effective model, we investigate a polyphenylene network, which consists of finite polyphenyl molecules spliced together by four-membered rings at the longitudinal interface and is periodic in the transverse direction. By choosing the length and width of the quaternary rings to be equal,we can derive its wave function(for a detailed derivation,see supplement material I)

    wherew=2N+1, which represents the number of rows of carbon atoms andais the lattice constant. The phase factor has the form

    with

    We definef(k)= e-iφ(k)as an eigenvalue of the parity operatorP,Pun(Γ)=fn(Γ)un(Γ). Taking the periodicity of the polyphenylene network in the vertical direction,kyneeds to be discretized,i.e.,

    where the subband indexn=1,2,3,...,wrepresents all the occupied states. We discuss the importance of the interface condition in the supplement material II and confirm the robustness of this topological interface condition by means of density functional theory(DFT)calculations.

    In fact, the topological property of this system is characterized by the non-zero Zak phase, which is defined as the integral of the Berry connection. The Berry connection of thenth band is defined asAn=〈unk|i?k|unk〉. When the Zak phase is non-zero, the system has charge polarization, resulting in topologically protected boundary states. The electric polarization is the quantization of the Zak phase,which is also the wave polarization given by the expression

    In a two-dimensional crystal system, the electric polarization can be viewed as a vectorP=(Pi,Pj),whose components depend on the direction of the wave vectorki(j). Since the polyphenylene network hasC2(πrotation along the out-ofplane direction)symmetry,hereki=kx,kj=ky,andPx/=Py.From the topological properties of biphenylene,it can be seen that the bulk–edge correspondence appears in the direction of the armchair boundary, while at the zigzag boundary, due to the intervention of the quaternary ring,the original bulk–edge correspondence in this direction is broken. That is to say,the charge is unidirectional polarized,and its electric polarization can be expressed as (0, 1/2). The space inversion symmetry has a strong constraint on the value ofP, which is independently determined by the parity of theΓpoint and theX(Y)point,[14]i.e.,

    whereηrepresents parity,andqyis a topological invariant,0 or 1,so the value of the Zak phase depends on the electric polarization,which depends on the parity of the high symmetry point. From Eq.(6),we calculate thePyof the polyphenylene network,and its expression is

    The above formula reveals the topological rule of theyaxis electric polarization of the polyphenylene network with a period of 3: if the number of benzene rings takes the remainder of 3 to be 1, we getPy=1/2, which is the topological phase. On the other hand,the remainder is 0 or 2,Py=0,and the system is a trivial phase. That is to say, the polyphenylene network can be further divided into topological phase and trivial phase according to the electric polarization parameters.

    3.3. DFT calculation results

    According to the above theoretical analyses, we calculate the band structures of polyphenylene networks at different cell-sizes. It is found that the electronic properties of these structures have a 3prepetition rule. When the remainder ofNto 3 is 1, the Dirac points appear near the Fermi level of the two-dimensional carbon allotropes, and along the high symmetry line ofΓ–Y, as shown in Figs. 2(a)–2(c). For other sizes,the valence or conduction bands of the two-dimensional carbon allotropes cross the Fermi level,so they are all metallic states(see the supplement material IV).All the DFT calculation results are consistent with the results in Refs.[21,37]. It is interesting to note that the Dirac cone undergoes a transition from type-II to type-III and then to type-I as the unit cell size increases,shown by the enlarged views at the Dirac point in Figs. 2(j)–2(l). Actually, this property is derived from the square rings,which brings the anisotropy to the whole system.As the size increases, the proportion of the projected density states of the quaternary ring gradually decreases,as shown in Figs.2(d)–2(f).The trend of the bond angles of the central carbon atom shows that the anisotropy of the system reduces with the increase of the cell size,as shown in Figs.2(g)–2(i).Therefore,the Dirac cone shifts toward isotropy. In fact,the 3p-rule has also been found in other similar 2D materials.[30,31]It can be understood that the key element of this topological 3p-rule is the periodic interface condition.

    In order to verify its real topological properties, for the topological phase with unidirectional polarization in theyaxis, there must be a bulk–edge correspondence in the onedimensional nanoribbon system. We calculate the dispersion relations of nanoribbons for the two topological phase systemsN=1 and 4,as shown in Figs.3(a)and 3(b). The Bloch wave functions at the two pointsD1andD2are shown in Figs.3(c)and 3(d). It can be seen that they are non-trivial edge states near the Fermi level. But one is bulk gapless and the other is bulk gapped, the latter band gapEgis about 125 meV.This gapped phase ofN= 4 is a very good result and discovery,because such a large band gap is rare for space inversion symmetry-protected topological systems,which are usually bulk gapless.[10,21,32,33,38,39]An ideal quantum Hall device is internally non-conductive, but when a topological phase is bulk gapless,the interior will conduct electrically,and will inevitably affect the quantized conductance. This is unfavorable for observation and applications. It is also the difference between this system and a Chern topological insulator, which can open the bulk band gap through the spin–orbit coupling,thereby realizing edge states for a gapped bulk. For topological materials protected by space inversion symmetry,it is difficult for edge states to appear with a gapped bulk dispersion.

    Fig.2. Band structures corresponding to N =1, 4, 7 polyphenylene networks are shown in (a), (b) and (c); (d), (e) and (f) correspond to the PDOSs of the left systems, where the blue lines represent the carbon atoms in the quaternary ring, the red lines represent the remaining six-membered ring carbon atoms, and the black lines represent the whole; (g), (h) and (i) correspond to the three bond angles of the carbon atoms at their central positions,respectively. The enlarged views of the Dirac points in the energy band structures are shown in(j),(k)and(l).

    Fig.3. (a),(b)Dispersion relations of two nanoribbons for N=1 and N=4,respectively. Bulk(edge)states are indicated by solid black(red)lines. The gap between the upper and lower bands is labeled as Eg. (c),(d)The Bloch waves corresponding to D1 and D2 points,respectively.

    3.4. Regulation of the build-in electric field

    Although we obtain a very nice topological phase forN=4, it is still desirable to investigate the caseN=1, i.e.,a biphenylene nanoribbon as well. In favor of experimental observation,we consider to open the gapless bulk band by introducing a potential difference. For simplicity, we utilize a tight-binding model to perform the calculations for the dispersion relation. The Hamiltonian is

    The first term is the transition term,andEiin the second term is the on-site energy. For this two-dimensional periodic system,we can see that the linearly intersecting bands are opened when an electric field is applied in theydirection with the strength of 0.2 V/?A, as shown in Fig. 4(a). But such a theoretical model is very difficult to realize in practice, so we can apply a virtual electric field by doping B and N atoms within the cell. This is easy to achieve experimentally.[40]At this time,Eiis expressed as the on-site-potential energy at the grid point position. With the help of the previous DFT calculation results,[41]we takeEB=3.34 eV,EN=-1.4 eV,tCN=2.6 eV,tCB=2.89 eV.At the same time,in order to well characterize the edge polarization scale of the wave function at each wave vector position,we refer to the inverse participation ratio(IPR),[42]which is defined as

    whereMis the total number of lattice points in the nanoribbon. Its value ranges from-1 to 0,and the more closer to 0,the more polarized wave function,as shown in Fig.4(c).When we only dope B and N atoms at the two ends of the biphenylene nanoribbon, we can open a small band gap, and the previously merged edge states are separated from each other, as shown in Fig.4(b). When the built-in electric field increases,we find that the bulk states are compressed, and the original dispersion relation of edge modes becomes a linear intersection, as shown in Fig.4(c). The wave-function moduli of the two selected points are shown in Fig. 4(d), which are indeed polarized at the boundaries. Besides,we reproduce the results very well by first-principles calculations for doping, see supplement material V.

    From the response of the biphenylene nanoribbon to the built-in electric field,we can see that the voltage strength has a powerful and effective effect on the system. We then return to a more systematic discussion about the 2D graphene nanoribbon withN=4. We integrate over a unit cell to obtain the potential by accumulating the built-in electric field,guaranteed not to be canceled. It is worth noting that here each unit cell of the nanoribbon is doped, which is different from the form of constructing an electric field at both ends of a nanoribbon. We can move the position of the B atoms to adjust the distribution and magnitude of the built-in electric field,and obtain their band structures shown Figs.5(a)and 5(b). As the field is changed, the concurrence of the dispersion curves of the two edge modes decreases and becomes linear at the intersection. Under the built-in electric field,the original space inversion symmetry is broken,and the intrinsic topological polarization property will not be protected. The built-in electric field caused by doping modifies the original bulk polarization.From this, we can make the edge localized states disappear or degenerate by setting the form of the built-in electric field,as shown in Fig. 5(c). With intrinsic polarization, the edge modes of the nanoribbon will be regulated by the built-in electric field. For the discussion of the built-in electric field, rich energy spectrum and polarization properties are exhibited. A more detailed discussion will be provided in supplement material V.

    Fig.4. (a)The band structures of the biphenyl network under transverse electric fields of 0 and 0.2 V/?A. (b)The dispersion relation of doping B and N atoms at both ends of the nanoribbon. (c)Band structure at high doping rate. (d)Wave-function moduli corresponding to D3 and D4 in panel(c).

    Fig.5. (a),(b)Band structures under two different built-in electric fields,where the doping positions of B and N atoms are shown in the upper left corners. (c)Band structure with the total potential of per unit cell being zero.

    4. Conclusions

    In summary,through the theoretical researches above,we have constructed a series of two-dimensional materials in the form of polyphenylene networks. The 3prule for these topological polyphenylene networks has been found: when the remainder of 3 for the number of benzene rings in each unit cell is 1, the system is a topological phase protected byC2space symmetry, accompanied by the Dirac point. The reliability and robustness of the 3prule have been verified by firstprinciples calculations. For the bulk–edge correspondence of the quasi one-dimensional nanoribbons of the topological 2D graphenes,we have further analyzed the two kinds of topological edge states. Meanwhile,through the tight-binding model,we have predicted that the bulk bandgap can be opened by doping B and N atoms, which is also verified by first-principles calculations. By adjusting the strength of the built-in electric field, the dispersion relations of the boundary modes become linearly intersecting Dirac shape. Our results suggest a strategy for searching carbon allotropes with topological properties, and an efficient approach for the experimental modulation and observation of space-inversion symmetry-induced edge states.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12074156 and 12164023)and the Yunnan Local College Applied Basic Research Projects(Grant No.2021Y710).

    猜你喜歡
    金國(guó)
    岳元帥看馬識(shí)敵情
    心力衰竭患者白細(xì)胞介素6、CRP表達(dá)水平與預(yù)后的相關(guān)性探討
    MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NONLOCAL ELLIPTIC PROBLEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES *
    淺析金國(guó)少數(shù)民族包裝設(shè)計(jì)的特點(diǎn)
    幼兒教育·父母孩子版(2017年7期)2017-10-12 00:16:33
    趙金國(guó) 挑戰(zhàn)自我擔(dān)重任
    北方人(2017年10期)2017-07-03 14:07:20
    洪邁的“擺頭”
    鋒刃
    龍舟賽
    海峽影藝(2012年1期)2012-11-30 08:17:02
    云南金國(guó)農(nóng)資開(kāi)進(jìn)嵩明縣
    丁香六月欧美| 又黄又粗又硬又大视频| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 欧美日韩乱码在线| aaaaa片日本免费| 高清在线国产一区| 欧美性长视频在线观看| 国产野战对白在线观看| 成人免费观看视频高清| 日韩有码中文字幕| 成人精品一区二区免费| 乱人伦中国视频| 亚洲精品美女久久久久99蜜臀| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 国产精品乱码一区二三区的特点 | 国产一区二区三区视频了| 欧美黑人精品巨大| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩一区二区三| 久久中文字幕一级| 精品欧美一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线观看二区| 国产三级黄色录像| 日韩有码中文字幕| 91九色精品人成在线观看| 精品电影一区二区在线| 视频区欧美日本亚洲| 制服诱惑二区| 一级毛片精品| 神马国产精品三级电影在线观看 | 免费在线观看完整版高清| 国产成人精品无人区| 狂野欧美激情性xxxx| 亚洲色图综合在线观看| 不卡一级毛片| 亚洲精品国产精品久久久不卡| 青草久久国产| 亚洲情色 制服丝袜| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 国产成人精品久久二区二区91| 十分钟在线观看高清视频www| 99国产精品99久久久久| 亚洲精品一区av在线观看| 日本精品一区二区三区蜜桃| 中文字幕人妻熟女乱码| 色综合婷婷激情| 成人av一区二区三区在线看| 19禁男女啪啪无遮挡网站| 真人一进一出gif抽搐免费| 久久人妻av系列| 在线观看免费视频日本深夜| 国产精品国产av在线观看| 电影成人av| 午夜久久久在线观看| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| av在线天堂中文字幕 | 亚洲精品国产区一区二| 天堂动漫精品| bbb黄色大片| 国产精品野战在线观看 | 成人国语在线视频| 91九色精品人成在线观看| 午夜影院日韩av| 99国产综合亚洲精品| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 亚洲国产精品sss在线观看 | 不卡av一区二区三区| 午夜影院日韩av| 黄频高清免费视频| 久久伊人香网站| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 在线观看午夜福利视频| av国产精品久久久久影院| 少妇粗大呻吟视频| 黑丝袜美女国产一区| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 日本 av在线| 国产精品 国内视频| 日本三级黄在线观看| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影 | 黑人操中国人逼视频| 国产精品影院久久| 国产成人精品无人区| 午夜久久久在线观看| 一级a爱视频在线免费观看| 欧美黑人精品巨大| 一级作爱视频免费观看| 成人永久免费在线观看视频| 一区二区日韩欧美中文字幕| 日韩大码丰满熟妇| 亚洲午夜理论影院| av欧美777| 亚洲精华国产精华精| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 精品国产一区二区久久| 老司机亚洲免费影院| 一a级毛片在线观看| 一级片免费观看大全| 欧洲精品卡2卡3卡4卡5卡区| 搡老熟女国产l中国老女人| 夜夜看夜夜爽夜夜摸 | 露出奶头的视频| 91国产中文字幕| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁人妻一区二区| 中文字幕色久视频| 夜夜躁狠狠躁天天躁| 亚洲一区中文字幕在线| 亚洲av成人不卡在线观看播放网| 丰满的人妻完整版| 99国产综合亚洲精品| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 亚洲av片天天在线观看| 精品国产亚洲在线| 丁香欧美五月| 黄色视频,在线免费观看| 波多野结衣一区麻豆| 国产精品野战在线观看 | av天堂久久9| 不卡一级毛片| 午夜福利在线免费观看网站| 国产av一区在线观看免费| 午夜两性在线视频| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕| 亚洲专区中文字幕在线| 人成视频在线观看免费观看| 国产日韩一区二区三区精品不卡| 日本免费一区二区三区高清不卡 | 一进一出抽搐动态| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 国产精品偷伦视频观看了| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 久久中文字幕一级| 黄色怎么调成土黄色| 丝袜美腿诱惑在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 天堂中文最新版在线下载| 久久伊人香网站| 黄色成人免费大全| 一个人免费在线观看的高清视频| 最近最新中文字幕大全电影3 | 丁香六月欧美| 另类亚洲欧美激情| 在线av久久热| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 欧美中文综合在线视频| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 欧美日韩亚洲国产一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产有黄有色有爽视频| 欧美久久黑人一区二区| 久久欧美精品欧美久久欧美| 满18在线观看网站| 国产1区2区3区精品| 亚洲国产看品久久| 久久九九热精品免费| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 日韩一卡2卡3卡4卡2021年| 国产精品98久久久久久宅男小说| 国产免费现黄频在线看| 国产精品永久免费网站| 久久人人精品亚洲av| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三| 国产成人一区二区三区免费视频网站| 国产熟女xx| av中文乱码字幕在线| 啦啦啦 在线观看视频| av福利片在线| 亚洲情色 制服丝袜| 亚洲精品在线观看二区| 欧美精品一区二区免费开放| 美国免费a级毛片| av视频免费观看在线观看| 99在线视频只有这里精品首页| 国产亚洲精品一区二区www| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 黄色视频不卡| 男女高潮啪啪啪动态图| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 超碰成人久久| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 久久狼人影院| aaaaa片日本免费| 黑人巨大精品欧美一区二区mp4| av有码第一页| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 国产精品久久久久久人妻精品电影| 黄色怎么调成土黄色| 国产真人三级小视频在线观看| 久久久国产成人免费| 久久精品亚洲熟妇少妇任你| 国产一区二区激情短视频| 日本三级黄在线观看| 乱人伦中国视频| 中国美女看黄片| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 国产深夜福利视频在线观看| 国产精华一区二区三区| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 一级毛片精品| 亚洲熟妇中文字幕五十中出 | 久久精品国产清高在天天线| 亚洲欧美精品综合久久99| 国产成人欧美| 久久久久国内视频| 欧美人与性动交α欧美软件| av有码第一页| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 精品欧美一区二区三区在线| 精品人妻1区二区| 午夜免费激情av| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 国产一区在线观看成人免费| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 免费看a级黄色片| 成人手机av| 欧美不卡视频在线免费观看 | 亚洲色图av天堂| 啦啦啦 在线观看视频| 男女高潮啪啪啪动态图| 天天影视国产精品| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 国产一区二区三区在线臀色熟女 | 19禁男女啪啪无遮挡网站| 日本三级黄在线观看| 久久久国产欧美日韩av| 日韩一卡2卡3卡4卡2021年| 超碰97精品在线观看| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 变态另类成人亚洲欧美熟女 | 两人在一起打扑克的视频| 午夜两性在线视频| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 国产不卡一卡二| 日本wwww免费看| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 欧美性长视频在线观看| 午夜福利免费观看在线| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 可以免费在线观看a视频的电影网站| 999久久久国产精品视频| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 在线看a的网站| 欧美乱码精品一区二区三区| 日韩视频一区二区在线观看| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| 国产野战对白在线观看| 亚洲免费av在线视频| 老熟妇仑乱视频hdxx| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| 国产av精品麻豆| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 国产av一区在线观看免费| 国产xxxxx性猛交| 亚洲欧美激情综合另类| 亚洲精品在线观看二区| 极品人妻少妇av视频| 亚洲一区二区三区色噜噜 | 久久精品亚洲精品国产色婷小说| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 在线国产一区二区在线| 女性生殖器流出的白浆| 国产1区2区3区精品| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| x7x7x7水蜜桃| 波多野结衣高清无吗| 中文字幕人妻熟女乱码| 久久久久久人人人人人| 免费在线观看黄色视频的| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人久久性| 午夜免费激情av| 在线观看66精品国产| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 人人妻人人爽人人添夜夜欢视频| 淫妇啪啪啪对白视频| 国产高清激情床上av| 中出人妻视频一区二区| 美女午夜性视频免费| 国产成人欧美在线观看| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 国产成人精品无人区| www日本在线高清视频| 精品久久久久久久毛片微露脸| 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久久久99蜜臀| 91大片在线观看| 午夜免费观看网址| 亚洲欧洲精品一区二区精品久久久| 亚洲国产看品久久| 黑人猛操日本美女一级片| 天天影视国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 丁香欧美五月| 老司机午夜福利在线观看视频| 精品久久久久久,| 99久久精品国产亚洲精品| 精品人妻1区二区| 操美女的视频在线观看| 国产男靠女视频免费网站| 免费不卡黄色视频| 搡老岳熟女国产| 99久久综合精品五月天人人| 国产精品香港三级国产av潘金莲| 亚洲精品国产一区二区精华液| av欧美777| 熟女少妇亚洲综合色aaa.| 精品一区二区三卡| 国产精品 欧美亚洲| 国产高清激情床上av| 国产亚洲欧美精品永久| 久久亚洲精品不卡| 在线播放国产精品三级| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 成人免费观看视频高清| 国产亚洲精品一区二区www| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久成人av| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 国产精品一区二区免费欧美| 啦啦啦 在线观看视频| 国产1区2区3区精品| 久久久久久大精品| 咕卡用的链子| 男女下面插进去视频免费观看| 不卡av一区二区三区| 99国产精品一区二区蜜桃av| 九色亚洲精品在线播放| 国产色视频综合| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区蜜桃| 成人国语在线视频| 婷婷六月久久综合丁香| 国产高清国产精品国产三级| 亚洲久久久国产精品| 怎么达到女性高潮| 久久久精品欧美日韩精品| 精品国产国语对白av| 大陆偷拍与自拍| 亚洲va日本ⅴa欧美va伊人久久| 高清黄色对白视频在线免费看| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 777久久人妻少妇嫩草av网站| 1024视频免费在线观看| 亚洲人成网站在线播放欧美日韩| 99香蕉大伊视频| 波多野结衣高清无吗| 性欧美人与动物交配| 国产又色又爽无遮挡免费看| 久久午夜综合久久蜜桃| 国产一区二区激情短视频| 亚洲午夜理论影院| 69av精品久久久久久| 美女国产高潮福利片在线看| 男人的好看免费观看在线视频 | 日韩一卡2卡3卡4卡2021年| 精品久久久久久,| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 国产一区二区激情短视频| 国产成人免费无遮挡视频| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 母亲3免费完整高清在线观看| 又紧又爽又黄一区二区| 久久香蕉激情| 国产成人欧美| 夜夜夜夜夜久久久久| 老司机靠b影院| 精品一区二区三区四区五区乱码| 国产一区在线观看成人免费| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 色播在线永久视频| 亚洲国产精品一区二区三区在线| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| av片东京热男人的天堂| 国产又色又爽无遮挡免费看| 人人澡人人妻人| 国产免费现黄频在线看| 国产精品国产高清国产av| 日韩大码丰满熟妇| 欧美+亚洲+日韩+国产| 欧美丝袜亚洲另类 | av在线天堂中文字幕 | 亚洲狠狠婷婷综合久久图片| 美女国产高潮福利片在线看| 两性夫妻黄色片| 波多野结衣高清无吗| 99久久精品国产亚洲精品| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 国产成人精品在线电影| 岛国在线观看网站| 久久午夜亚洲精品久久| 免费看a级黄色片| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 99国产精品99久久久久| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 99久久国产精品久久久| 一级a爱片免费观看的视频| 搡老乐熟女国产| av有码第一页| 亚洲国产精品合色在线| 中文欧美无线码| 日韩成人在线观看一区二区三区| 成人影院久久| videosex国产| 欧美日韩av久久| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 黄色丝袜av网址大全| av有码第一页| 欧美日韩av久久| 69精品国产乱码久久久| 国产又爽黄色视频| 精品国产乱子伦一区二区三区| 欧美日韩亚洲综合一区二区三区_| a级毛片黄视频| 如日韩欧美国产精品一区二区三区| 午夜免费成人在线视频| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 99国产精品一区二区三区| 91国产中文字幕| 亚洲精品一区av在线观看| 法律面前人人平等表现在哪些方面| 老汉色av国产亚洲站长工具| 成人永久免费在线观看视频| 超色免费av| 国产男靠女视频免费网站| 成人18禁在线播放| 国产成人精品在线电影| 一边摸一边抽搐一进一出视频| 后天国语完整版免费观看| 色在线成人网| 亚洲男人的天堂狠狠| 19禁男女啪啪无遮挡网站| 国产精品乱码一区二三区的特点 | 丰满迷人的少妇在线观看| 午夜福利在线免费观看网站| 亚洲专区国产一区二区| x7x7x7水蜜桃| 免费av毛片视频| 91精品国产国语对白视频| 51午夜福利影视在线观看| 国产亚洲精品久久久久久毛片| 极品人妻少妇av视频| 国产主播在线观看一区二区| 真人做人爱边吃奶动态| 中亚洲国语对白在线视频| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频| 国产一卡二卡三卡精品| 国产亚洲精品综合一区在线观看 | 99久久人妻综合| svipshipincom国产片| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 国产精品美女特级片免费视频播放器 | 午夜福利一区二区在线看| 夜夜躁狠狠躁天天躁| 性色av乱码一区二区三区2| 欧美日韩黄片免| 亚洲一区高清亚洲精品| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美软件| 久9热在线精品视频| 日韩 欧美 亚洲 中文字幕| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av高清一级| 久久久久久免费高清国产稀缺| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出 | 后天国语完整版免费观看| 免费少妇av软件| 久久青草综合色| 免费搜索国产男女视频| 日韩欧美国产一区二区入口| 国产人伦9x9x在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区二区三区色噜噜 | 女人高潮潮喷娇喘18禁视频| 国产日韩一区二区三区精品不卡| 免费观看人在逋| 超碰97精品在线观看| 欧美成人免费av一区二区三区| www.999成人在线观看| 超碰成人久久| 欧美日韩一级在线毛片| 黄色女人牲交| 91在线观看av| 这个男人来自地球电影免费观看| 国产亚洲精品第一综合不卡| 级片在线观看| 中文字幕人妻丝袜制服| 亚洲精品国产区一区二| 欧美成人免费av一区二区三区| 美女高潮到喷水免费观看| 麻豆成人av在线观看| 很黄的视频免费| 亚洲激情在线av| 一本大道久久a久久精品| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 亚洲在线自拍视频| 亚洲七黄色美女视频| 日本免费一区二区三区高清不卡 | 亚洲熟女毛片儿| 亚洲一区高清亚洲精品| 日韩三级视频一区二区三区| 手机成人av网站| 97超级碰碰碰精品色视频在线观看| 亚洲男人天堂网一区| 欧美国产精品va在线观看不卡| 99热国产这里只有精品6| 久久精品国产亚洲av香蕉五月| 91精品国产国语对白视频| www.www免费av| 免费少妇av软件| 成人精品一区二区免费| 一区二区三区精品91| 国产一区在线观看成人免费| 国产成人精品久久二区二区免费| 久久精品成人免费网站| 色在线成人网| 中文字幕av电影在线播放| 这个男人来自地球电影免费观看| 亚洲第一av免费看| 国产99久久九九免费精品| 久久久久国内视频| 啦啦啦免费观看视频1| 丝袜美足系列| 在线观看免费日韩欧美大片|