• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions

    2023-02-20 13:15:32QinWang汪琴JieZhang張杰JieruiHuang黃杰瑞JinanShi時(shí)金安ShuaiZhang張帥HuiGuo郭輝LiHuang黃立HongDing丁洪WuZhou周武YanFangZhang張艷芳XiaoLin林曉ShixuanDu杜世萱andHongJunGao高鴻鈞
    Chinese Physics B 2023年1期
    關(guān)鍵詞:郭輝金安杰瑞

    Qin Wang(汪琴), Jie Zhang(張杰),Jierui Huang(黃杰瑞),Jinan Shi(時(shí)金安), Shuai Zhang(張帥),Hui Guo(郭輝), Li Huang(黃立), Hong Ding(丁洪),3,4, Wu Zhou(周武),3, Yan-Fang Zhang(張艷芳),?,Xiao Lin(林曉),3,?, Shixuan Du(杜世萱),,3,4,§, and Hong-Jun Gao(高鴻鈞),,3,4,?

    1School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    2Beijing National Center for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3CAS Center for Excellent in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: honeycomb lattices,transition-metal monochalcogenides,AuTe monolayer,two-dimensional(2D)

    1. Introduction

    Two-dimensional (2D) transition-metal chalcogenides(TMCs) have received remarkable attention in fundamental research[1–4]and practical applications,[5–9]primarily because of their simple forms,open-air stability and exceptional physicochemical properties. Up to now,2D TMCs have been revealed with various stoichiometric ratios,i.e.MX2,MX,andM2X(M:transition metal atoms,X:S,Se,and Te).Transitionmetal dichalcogenides (TMDs,MX2) have been thoroughly explored due to their unique properties[10–14]and the first transistor based on a monolayer MoS2.[15,16]Representative monolayer transition-metal monochalcogenides(TMMs,MX)are topological materials.[17–21]For example, an FeSe monolayer is a high-Tcsuperconductor,which can be used as an intrinsic Majorana platform.[21]2D transition-metal-rich TMCs(M2X)are predicted to be promising photocatalysts[22,23]and topological insulators.[24,25]Among the above TMCs, 2D TMDs can be easily derived from their parent layer-stacked bulk phases with weak van der Waal interaction, while 2D TMMs(MXandM2X)are difficult to exfoliate from 3D closepacked structures. As topological materials, 2D TMMs hold potential applications in high-speed low-dissipation nanodevices since monolayer CuSe[17]and its derivatives host topological nodal line fermions, thus attracting broad scientific interest despite the difficult synthesis.

    Inspired by the fundamental research interest,[26–28]successful preliminary attempts for potential applications,[29,30]and limited experiment-realized Dirac nodal line fermion(DNLF)systems,[31–34]people show increasing enthusiasm at search and design of DNLF systems. To date, only a few 2D cases have been reported, such as 2D covalent organic frameworks (COFs),[35]Lieb lattices[36,37]and 2D pentagonal group-IVA chalcogenide materials.[38]In addition, theoretical calculation results suggest that monolayer CuSe,[17]AgTe[19]and AgSe[20]with honeycomb lattices show DNLF features which are protected by mirror reflection symmetry. These three candidates have been successfully fabricated with honeycomb structures on metal substrates,characterized by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), angle resolved photoemission spectroscopy(ARPES)techniques and first-principles calculations.However,ARPES results of monolayer CuSe,[17]AgTe[19]and AgSe[20]show that even the gapped nodal line feature induced by the symmetry broken is not observed due to the strong coupling between the monolayers and the substrates, which prevents their investigations in view of possible applications.Even in other 2D systems, experimental realizations of 2D DNLFs are limited to monolayer Cu2Si with a honeycomb Cu lattice and a triangular Si lattice[39]and tri-atomic layer Bi(110) in a brick phase.[40]Thus, it is desirable to search and fabricate new 2D Dirac nodal line materials which have a weaker interaction with substrates.

    Here,we successfully fabricated monolayer gold telluride(AuTe) on Au(111) substrate by using molecular beam epitaxy (MBE) method. The monolayer AuTe was obtained by direct tellurization of an Au(111) substrate. The x-ray photoelectron spectroscopy(XPS)measurement displays that the Au–Te chemical bond forms in the top layer. The LEED characterization indicates that it is(2×2)AuTe on(3×3)Au(111)substrate. The atomic structure of the monolayer AuTe is determined by a combination of STM experiments, density functional theory (DFT) calculations and scanning tunneling electron microscopy (STEM) characterizations. DFT calculations suggest that a free-standing AuTe monolayer has two DNLFs protected by mirror reflection symmetry without spin–orbit coupling (SOC), different from the monolayer AuTe in the GaS crystal structure which is a topological insulator[41]and bulk AuTe2[42]in aPma2 space group which has been classified as a high symmetry line semi-metal. When considering SOC or buckling induced by the substrate, gaps are opened at the Dirac nodal lines due to the breaking of the mirror symmetry. It is noteworthy that the gapped nodal loops induced by the symmetry breaking have been observed by using ARPES.Compared with the reported gapped DNLFs realized in 2D metal monochalcogenides,AuTe monolayer makes it more promising for real applications in future nano-devices.

    2. Results and discussion

    The AuTe monolayer was fabricated by direct tellurizing an Au(111) substrate in an ultrahigh vacuum (UHV) roomtemperature(RT)STM–MBE equipment. Figure 1(a)demonstrates the schematic of the synthesis procedure of a monolayer AuTe on Au(111)surface. The Te atoms were firstly deposited on a clean Au(111)substrate at room temperature and then the sample was annealed to 530 K.When the growth process finished,the sample was transferred from the MBE chamber to the STM chamber for preliminary characterization.Figure 1(c) is a 100 nm×100 nm large-scale STM topographic image. The sample grows continuously across the two steps on the Au(111) surface, indicating a high quality. The possible Te adatoms on the sample make it form dense parallel strips. The two directions of the parallel strips are equivalent due to the symmetry of the sample and that of the Au(111)surface. Afterwards, the XPS measurements were performed to examine the formation of gold telluride. Figure 1(b)is the XPS spectrum of the Te 3d core level for the freshly deposited Te atoms on the Au(111) surface, which shows two peaks at 573.0 eV and 583.4 eV, corresponding to the two spin–orbit splitting components Te 3d5/2and Te 3d3/2,respectively. After annealing treatment,the two peaks of Te 3d5/2and Te 3d3/2shift to 572.7 eV and 583.1 eV,respectively. Compared to the elemental Te(before annealing),the negative 0.3 eV shift suggests that the Te atoms are in oxidation states,[43–46]indicating the formation of a gold telluride alloy.

    Fig.1. Growth process and XPS differences between AuTe and tellurium.(a)Schematic of the fabrication of AuTe thin films by direct tellurization of the Au(111)substrate. Au atoms in the Au(111)substrate and tellurized Au atoms are shown in light and golden yellow,respectively. (b)XPS measurements on binding energies of AuTe synthesized on the Au(111) substrate and Te deposited on Au(111) shown as normalized green and blue intensity curves,respectively. (c)Large-scale STM topography(U=-1.7 V and I=0.1 nA)at room temperature.

    To further gain insight into the structure of the asfabricated material,we performed LEED and low temperature(4 K)STM characterization.The LEED pattern in Fig.2(a)reveals that the hexagonal diffraction spots of AuTe(red circles)have the same orientation as those of the Au(111) substrate(yellow circles), suggesting a rotational-domain-free growth.The(2×2)diffraction pattern of the monolayer AuTe,marked by white circles, corresponds to a well-defined Moir′e superstructure arising from the lattice mismatch between the AuTe monolayer and Au(111)substrate. Moreover, the same LEED patterns were observed on the entire sample surface(φ=10 mm in size),indicating a large-area and homogeneous monolayer AuTe.

    Figure 2(b) displays an STM image representing the superstructure composed of the (2×2) AuTe monolayer on(3×3) Au(111) surface, with parallel strips formed which is possibly due to the lattice mismatch,the stress release process and adatoms. The zoomed-in STM image with atomic resolution in Fig.2(d)exhibits an obvious honeycomb lattice,and the average lattice constant isa1=4.3 ?A(labelled by the red rhombus). Besides, a distinct (2×2) superstructure with respect to the AuTe lattice is also presented, with a periodicity of 8.6 ?A, about twice ofa1(labelled by the white rhombus).Combined with the LEED pattern in Fig.2(a)and the inserted FFT image in Fig.2(d), the distinct(2×2)superstructure can be explained as the Moir′e pattern of (2×2) AuTe on (3×3)Au(111)surface. Besides,DFT calculations were also carried out to clarify the atomic structure of the sample.

    Fig.2. LEED patten and atomic configuration of AuTe monolayer on Au(111)substrate. (a)LEED patten. The yellow,red and white dashed circles indicate the diffraction spots from the Au(111)lattice,AuTe monolayer and(2×2)superstructure with respect to AuTe,respectively.(b)STM image(U =-1.5 V and I=0.15 nA)at 4 K shows the Moir′e pattern and domains of the AuTe monolayer on Au(111). The blue square marks the size of the close-up image in (d). (c) Atomic resolution STM image, simulated STM image, and the structure model of (2×2) superlattice (indicated by white rhombi) match each other. (d) High-resolution STM image (U = -1 V,I=0.1 nA)of AuTe monolayer, shows the honeycomb lattice of Te atoms in the topmost sublayer of the AuTe structure. The red and white rhombi denote the unit cell of the AuTe lattice and(2×2)superlattice,respectively.The inset displays the FFT pattern corresponding to AuTe and the superstructure in(a). The inset line profile along the blue dashed arrow shows a lattice periodicity of 4.3 ?A.

    Six possible atomic structures of AuxTeymonolayer have been considered,with their lattice information summarized in Fig.S1 and Table S1. Among all the possible structures,only AuTe structure is consistent with the STM results and the following STEM result. Since the simulated STM image corresponds to an ideal model(the bottom panel in Fig.2(c)),there is a tiny difference between the simulated STM image with the experimental ones. The well-reproduced Moir′e pattern,together with the lattice information in Fig.S1 and Table S1,demonstrate that the overlayer on the Au(111)surface is AuTe monolayer.

    In order to further verify the structure of the monolayer AuTe on Au(111),cross-section high-angle-annular-dark-field(HAADF) STEM measurements were performed. The left panel of Fig. 3(a) is aZ-contrast atomically resolved STEM image of the AuTe/Au(111) interface, which manifests a monoatomic layer of the AuTe structure. The distances between neighboring atoms in the first layer and the second layer are 2.16 ?A and 1.44 ?A,respectively,in accordance with(2×2)monolayer AuTe on (3×3) Au(111) substrate. The relaxed model in the right panel of Fig.3(a)also matches well with the STEM image. The electron energy loss spectroscopy(EELS)mappings for the sample were also carried out(Figs.3(c)and 3(d)). It is obvious that Au and Te signals exist at the same layer, corresponding to the AuTe layer in the HAADF image in Fig. 3(b). By analyzing the EELS spectral intensity from Au element in Fig. S3, we exclude the delocalization effects of Au(111)substrates,which proves that monolayer AuTe has been fabricated on Au(111)surface.

    Since monolayer CuSe, AgTe, and AgSe show DNLFs features, monolayer AuTe (Fig. S6a) is expected to also host mirror-symmetry-protected DNLFs(Fig.S6b). To further validate the mirror-symmetry-protected nodal loops, we investigate the AuTe monolayer with a buckled structure(Fig.4(a))which is relaxed on an Au(111)substrate.The side view shows that the substrate-induced buckling height is 0.39 ?A.It should be noted that the Au(111)substrate is not taken into consideration for the band structure calculation. The green and red lines in Fig.4(b)describe the contribution from in-plane(Te px/pyand Au dxy/dx2-y2)and out-of-plane(Te pzand Au dxz/dyz)orbitals, respectively. These results clarify that the nodal loops are protected by mirror symmetry.

    Fig.4. Calculated band structures and ARPES results. (a)Geometric structure of the(2×2)AuTe monolayer which is obtained after relaxation on an Au(111) surface. The side view shows the buckling height is 0.39 ?A. (b) The calculated band structure of (a) with green and red curves illustrating contributions from in-plane and out-of-plane orbitals. (c) ARPES data obtained from the monolayer AuTe on Au(111) surface, superimposed with calculated band structure in(b). (d)The ARPES constant-energy contour at E=EF of a selected BZ(red hexagon). (e)and(f)ARPES intensity plots of cut 4(along K–Γ–K)and cut 7,which are indicated in(d)as dashed lines,respectively. For comparison,we overlay the calculated bands along K–Γ–K as blue lines on top of (e). The GDP indicates a gapped Dirac cone. (g) Energy distribution curves (EDCs) corresponding to the region indicated by black dashed rectangle in(e),with triangle marks highlighting the lower half of the Dirac cone.

    ARPES is used to directly investigate the electronic properties of monolayer AuTe. The samples were transferred from the MBE chamber to the ARPES facility by a highvacuum suitcase. Figure 4(c) expresses the ARPES data of AuTe/Au(111) measured along the high symmetry directionM–K–Γ–Min the hexagonal Brillouin zone(BZ)with a photon energy of 40.8 eV. The ARPES spectrum is a mixture of monolayer AuTe and substrate-related signals resulting from the large penetration depth. The calculated band structure(shaded area in Fig. 4(b)) is embedded in Fig. 4(c) after an upward-shift by 1.46 eV. The upward-shift of 1.46 eV originates from the hole-doping effect of the AuTe monolayer(Fig.S4). The main features show good consistence with the ARPES experiment results.

    The ARPES constant-energy contour atE=EFin Fig. 4(d) exhibits a ring-like feature with sixfold symmetry.However, the spectral intensity in the horizontal direction is suppressed due to the matrix element effect.[47,48]We selected two representative band cuts (black dash lines in Fig. 4(d))to demonstrate the distribution of Dirac nodal loop in the BZ (Figs. 4(e) and 4(f)). It shows clearly that the band dispersion is consistent with the calculated electronic structure(Fig.4(e)).Especially,the lower half of the gapped Dirac cone can be clearly seen from both the raw ARPES spectrum and energy distribution curves series plot in Fig. 4(g). The missing spectrum intensity of the upper half of Dirac cone may be due to the matrix element effect in ARPES experiment.[47,48]One can expect getting access to this part of band structure when a light source with different polarization or photon energy is used. In addition, the gapped Dirac point (GDP) is visible in all the ARPES intensity spectrums near the center of BZ(Fig.S5). The systematic ARPES results provide substantial evidence for the existence of the Dirac nodal loop in monolayer AuTe/Au(111). The gapped DNLF locates around 0.32 eV below the Fermi level,which is the first one observed by using ARPES technique in 2D metal monochalcogenides(CuSe,[17]AgTe[19]and AgSe[20]). Our realization of AuTe makes a step forward for real applications of 2D DNLFs.

    3. Conclusions

    By combining XPS, LEED, STM, STEM, ARPES techniques and DFT calculations, we confirm that AuTe monolayer with a honeycomb lattice has been successfully synthesized by directly tellurizing an Au(111) substrate. The nodal line character of monolayer AuTe has been revealed both experimentally and theoretically. Interestingly, the symmetrybroken-induced gapped nodal loops are experimentally observed which is absent for other reported 2D transition-metal monochalcogenides with DNL characters. Thus, we propose that monolayer AuTe exhibits appealing interest for future transport measurement and nano device applications.

    4. Methods

    Sample preparation and characterizations Monolayer AuTe films were grown in an ultrahigh vacuum(UHV)chamber, with a base pressure of 1×10-9mbar, equipped with standard MBE capabilities. First, the Au(111) substrate was cleaned by several cycles of Ar+ions sputtering followed by annealing until sharp diffraction spots in the LEED pattern and clean surface terraces with a herringbone reconstruction in the STM images were obtained. Then, tellurium atoms (Sigma 99.999%)were evaporated from a Knudsen cell and deposited onto the substrate at room temperature. Subsequently, the sample was annealed up to 530 K to achieved tellurization and crystallization. The growth process was monitored by LEED.After growth,the sample was transferred to an STM chamber(2×10-10mbar) for imaging and to an ARPES chamber for characterizing the electronic properties.

    ARPES measurement The ARPES measurements were performed at the Institute of Physics,Chinese Academy of Sciences, using a R4000 analyzer and a helium discharge lamp,under ultrahigh vacuum better than 3×10-11Torr. The data were recorded with He IIαphotons at 15 K. The energy and angular resolutions were set to 10 meV and 0.1°,respectively.The Fermi level of the samples was determined from a polycrystalline gold reference in electronical contact with the sample.

    STEM characterization The sample was transferred from the UHV chamber to the atmosphere, and then covered with graphite.

    Calculations In this work,all calculations are performed using the Viennaab initiosimulation package (VASP)[49,50]based on density functional theory (DFT) with the projector augmented-wave (PAW)[51]method and the local density approximation (LDA)[52,53]for the exchange–correlation functional. The energy cutoff of the plane wave basis set is 400 eV.The monolayer AuTe is fully relaxed until the forces on the ions are less than 0.001 eV/?A and the energy difference is less than 10-6eV. For the AuTe/Au(111) system, the criteria for force and energy convergence are 0.05 eV/?A and 10-4eV,respectively. The vacuum distance between two adjacent supercells inzdirection is larger than 15 ?A.Thek-points samplings are (21×21×1) for the monolayer AuTe and (11×11×1) for that on Au(111) with the Gamma scheme, respectively. The van der Waals interaction is described by the optB86b-vdw functional[54–56]for the AuTe/Au(111) system. The simulated STM image is obtained based on the Tersoff-Hamann approximation.[56]

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61925111,61888102, and 52102193), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    郭輝金安杰瑞
    連云港杰瑞電子有限公司
    玩水
    Full color ghost imaging by using both time and code division multiplexing technologies
    Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
    著名詩(shī)人郭輝
    鴨綠江(2021年17期)2021-10-13 07:05:22
    深圳市金安物流有限公司
    《晨曦》
    作品賞析
    貪吃的杰瑞
    作品賞析3
    青春草国产在线视频| 国产av在哪里看| 久久精品夜夜夜夜夜久久蜜豆| 色综合站精品国产| av女优亚洲男人天堂| 高清毛片免费看| 内射极品少妇av片p| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 偷拍熟女少妇极品色| 一本一本综合久久| 99热精品在线国产| 国内精品美女久久久久久| 亚洲av男天堂| 亚洲国产精品成人综合色| 少妇熟女欧美另类| 91狼人影院| 波多野结衣高清无吗| 国产亚洲91精品色在线| 日韩亚洲欧美综合| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 色吧在线观看| 久久久色成人| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 国产一区二区亚洲精品在线观看| 热99re8久久精品国产| 亚洲丝袜综合中文字幕| 午夜日本视频在线| 久久久精品欧美日韩精品| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 色吧在线观看| 国产一区有黄有色的免费视频 | 欧美日韩国产亚洲二区| eeuss影院久久| 视频中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 亚州av有码| 国产精品久久视频播放| 久久人妻av系列| 成人亚洲欧美一区二区av| 日韩精品有码人妻一区| 亚洲va在线va天堂va国产| 老女人水多毛片| 国产黄片美女视频| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生 | 人妻夜夜爽99麻豆av| 国产一区亚洲一区在线观看| 2021少妇久久久久久久久久久| 国产在视频线在精品| 欧美区成人在线视频| 久久99热这里只有精品18| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 精品国产一区二区三区久久久樱花 | 少妇的逼好多水| 老司机影院成人| 国产一区有黄有色的免费视频 | 亚洲自拍偷在线| av在线天堂中文字幕| 国产乱来视频区| 91精品一卡2卡3卡4卡| 欧美又色又爽又黄视频| 一夜夜www| 91精品国产九色| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久av| 成年免费大片在线观看| 伦理电影大哥的女人| 最新中文字幕久久久久| 亚洲国产最新在线播放| 99热精品在线国产| 国产极品天堂在线| 超碰av人人做人人爽久久| 超碰97精品在线观看| 欧美+日韩+精品| av免费观看日本| 久久99热这里只频精品6学生 | 国产三级在线视频| 嫩草影院入口| 精品久久久噜噜| 精品一区二区三区人妻视频| 麻豆国产97在线/欧美| 国产成人aa在线观看| 人人妻人人看人人澡| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 免费av不卡在线播放| 美女黄网站色视频| 99在线视频只有这里精品首页| 久久精品熟女亚洲av麻豆精品 | 草草在线视频免费看| 午夜福利在线观看吧| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 国产v大片淫在线免费观看| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 一本久久精品| 天堂av国产一区二区熟女人妻| 亚洲精品自拍成人| av视频在线观看入口| 亚洲精品乱码久久久v下载方式| 国语自产精品视频在线第100页| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 欧美日本视频| 亚洲欧美成人综合另类久久久 | 汤姆久久久久久久影院中文字幕 | 成人无遮挡网站| 十八禁国产超污无遮挡网站| 男的添女的下面高潮视频| 91久久精品国产一区二区三区| 欧美丝袜亚洲另类| 九草在线视频观看| 五月玫瑰六月丁香| 女人被狂操c到高潮| 国产精品国产高清国产av| 久久久成人免费电影| 大香蕉97超碰在线| 国产精品不卡视频一区二区| 久久这里只有精品中国| 久久久国产成人免费| 在线播放无遮挡| av国产免费在线观看| 一区二区三区免费毛片| 看片在线看免费视频| av在线观看视频网站免费| 岛国在线免费视频观看| 黄色欧美视频在线观看| 亚洲国产精品sss在线观看| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区人妻视频| 69人妻影院| 久久精品国产鲁丝片午夜精品| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 直男gayav资源| 人妻夜夜爽99麻豆av| 嫩草影院精品99| 久久久久久久国产电影| 欧美精品一区二区大全| 免费观看性生交大片5| 色尼玛亚洲综合影院| 永久网站在线| 免费观看性生交大片5| 国产综合懂色| 欧美日本亚洲视频在线播放| 性色avwww在线观看| 成人欧美大片| 久久这里只有精品中国| 精品一区二区三区视频在线| 岛国毛片在线播放| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 中文亚洲av片在线观看爽| 波野结衣二区三区在线| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影 | 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 精品不卡国产一区二区三区| 青春草亚洲视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲第一区二区三区不卡| 99九九线精品视频在线观看视频| 别揉我奶头 嗯啊视频| 国产精品一区二区性色av| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 22中文网久久字幕| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 一区二区三区高清视频在线| 国产精品,欧美在线| 美女国产视频在线观看| 老女人水多毛片| 日日摸夜夜添夜夜添av毛片| av在线蜜桃| 亚洲精品,欧美精品| 国产精品一区二区三区四区久久| 久久精品久久精品一区二区三区| 午夜激情欧美在线| 黄色欧美视频在线观看| .国产精品久久| 黄片无遮挡物在线观看| 国产一区二区在线av高清观看| 一级毛片我不卡| 午夜精品国产一区二区电影 | 哪个播放器可以免费观看大片| 一级毛片电影观看 | 精品久久久噜噜| 老司机影院毛片| 免费播放大片免费观看视频在线观看 | 亚洲av熟女| av在线老鸭窝| 成人三级黄色视频| 老司机影院成人| 中文资源天堂在线| 亚洲18禁久久av| 女的被弄到高潮叫床怎么办| 日本免费一区二区三区高清不卡| 偷拍熟女少妇极品色| 级片在线观看| 久久精品国产自在天天线| 男人的好看免费观看在线视频| 国产伦在线观看视频一区| 97超视频在线观看视频| 国产乱来视频区| 亚洲国产高清在线一区二区三| 久久久精品94久久精品| 亚洲国产精品国产精品| 日韩中字成人| 日韩一区二区三区影片| 国产免费一级a男人的天堂| 免费观看性生交大片5| 黄色欧美视频在线观看| 亚洲av.av天堂| 99热全是精品| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 18+在线观看网站| 99热网站在线观看| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| 免费看日本二区| 中文天堂在线官网| 亚洲av免费高清在线观看| kizo精华| 久久精品综合一区二区三区| 精品人妻一区二区三区麻豆| 色噜噜av男人的天堂激情| 简卡轻食公司| 国产av码专区亚洲av| 搡老妇女老女人老熟妇| 看片在线看免费视频| 国产精品一及| 久久精品国产鲁丝片午夜精品| 国产三级在线视频| 国产淫片久久久久久久久| 波野结衣二区三区在线| 狠狠狠狠99中文字幕| 看片在线看免费视频| 国产精品无大码| 少妇裸体淫交视频免费看高清| 亚洲在线观看片| 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 可以在线观看毛片的网站| 七月丁香在线播放| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕 | 免费黄色在线免费观看| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 亚洲国产精品合色在线| 免费大片18禁| 欧美高清成人免费视频www| 日韩欧美三级三区| videos熟女内射| 亚洲精品成人久久久久久| 久99久视频精品免费| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 最近最新中文字幕大全电影3| 日本色播在线视频| 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 一区二区三区免费毛片| 波野结衣二区三区在线| 嫩草影院新地址| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 久久久精品大字幕| 热99在线观看视频| 婷婷色av中文字幕| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 九九在线视频观看精品| 国产精品久久视频播放| .国产精品久久| 最近中文字幕高清免费大全6| 国产在线男女| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 免费播放大片免费观看视频在线观看 | 欧美变态另类bdsm刘玥| 久久久久久久久久黄片| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| 久久久a久久爽久久v久久| www日本黄色视频网| 国产精品一二三区在线看| 日韩欧美 国产精品| 性色avwww在线观看| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| 日本免费a在线| 91精品一卡2卡3卡4卡| 成年女人永久免费观看视频| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| 啦啦啦啦在线视频资源| 人人妻人人澡欧美一区二区| 国产视频内射| 亚洲真实伦在线观看| 三级毛片av免费| 欧美精品一区二区大全| 久久久久网色| 我的老师免费观看完整版| 免费观看的影片在线观看| 黄色日韩在线| 欧美成人一区二区免费高清观看| 黄色配什么色好看| 成人午夜高清在线视频| 亚洲色图av天堂| 久久6这里有精品| 国产免费男女视频| 免费大片18禁| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| 久久久精品大字幕| 有码 亚洲区| 精品国内亚洲2022精品成人| 亚洲欧洲日产国产| 可以在线观看毛片的网站| 久久精品影院6| 国产精品麻豆人妻色哟哟久久 | 亚洲av免费高清在线观看| 日本免费在线观看一区| 禁无遮挡网站| 网址你懂的国产日韩在线| 亚洲国产欧洲综合997久久,| 日本一本二区三区精品| 久久精品影院6| 国产色爽女视频免费观看| 色吧在线观看| 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 国国产精品蜜臀av免费| 久久人妻av系列| 色吧在线观看| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 中文字幕久久专区| 九色成人免费人妻av| 啦啦啦韩国在线观看视频| 又粗又硬又长又爽又黄的视频| 又爽又黄a免费视频| 国产成人91sexporn| 欧美成人午夜免费资源| 国产成人免费观看mmmm| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 国产精品野战在线观看| 日韩强制内射视频| av在线亚洲专区| 免费观看人在逋| 伊人久久精品亚洲午夜| 天天躁日日操中文字幕| 美女脱内裤让男人舔精品视频| 美女内射精品一级片tv| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 三级男女做爰猛烈吃奶摸视频| 一边摸一边抽搐一进一小说| 熟女电影av网| 亚洲av免费高清在线观看| 成人毛片60女人毛片免费| 久久久国产成人免费| 午夜福利高清视频| 韩国高清视频一区二区三区| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 国产成人91sexporn| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| av专区在线播放| 丰满乱子伦码专区| 熟妇人妻久久中文字幕3abv| 少妇猛男粗大的猛烈进出视频 | 亚洲,欧美,日韩| 久久99热这里只频精品6学生 | 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜 | 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 免费看日本二区| 最新中文字幕久久久久| 久久久a久久爽久久v久久| 亚洲熟妇中文字幕五十中出| 天堂av国产一区二区熟女人妻| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 日日摸夜夜添夜夜爱| 精品酒店卫生间| av卡一久久| 人人妻人人澡人人爽人人夜夜 | 久久人人爽人人片av| 91aial.com中文字幕在线观看| 久久精品国产99精品国产亚洲性色| 五月伊人婷婷丁香| 午夜久久久久精精品| 国产高清视频在线观看网站| 久久久久久久久中文| 日本免费a在线| 看十八女毛片水多多多| 亚洲最大成人手机在线| 永久免费av网站大全| 最近的中文字幕免费完整| 免费看a级黄色片| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| videos熟女内射| 久久精品影院6| 亚洲av中文字字幕乱码综合| 欧美一区二区亚洲| 夫妻性生交免费视频一级片| 99久国产av精品国产电影| 一区二区三区高清视频在线| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 一级爰片在线观看| 国产成人福利小说| 亚洲在久久综合| 久久99热这里只频精品6学生 | ponron亚洲| 好男人视频免费观看在线| 高清午夜精品一区二区三区| 国产人妻一区二区三区在| 亚洲精品自拍成人| 久久精品久久久久久久性| 国产一区二区在线观看日韩| 十八禁国产超污无遮挡网站| 久久久久久久午夜电影| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频 | 久久亚洲国产成人精品v| 99九九线精品视频在线观看视频| 亚洲经典国产精华液单| av女优亚洲男人天堂| 免费看a级黄色片| 99热这里只有精品一区| 黑人高潮一二区| 免费一级毛片在线播放高清视频| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久av不卡| 精品一区二区三区人妻视频| 美女高潮的动态| 99久久精品热视频| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 日韩,欧美,国产一区二区三区 | 麻豆久久精品国产亚洲av| a级毛色黄片| 热99在线观看视频| 可以在线观看毛片的网站| 免费观看人在逋| 一级黄色大片毛片| 三级毛片av免费| 26uuu在线亚洲综合色| 真实男女啪啪啪动态图| 成年女人永久免费观看视频| 九草在线视频观看| 精品欧美国产一区二区三| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 国产成人精品婷婷| 亚洲性久久影院| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 特大巨黑吊av在线直播| 亚洲av福利一区| 高清视频免费观看一区二区 | 老女人水多毛片| 亚洲精品国产成人久久av| 精品酒店卫生间| 国产老妇伦熟女老妇高清| 亚洲乱码一区二区免费版| 级片在线观看| 日韩强制内射视频| av福利片在线观看| 少妇人妻精品综合一区二区| 色综合亚洲欧美另类图片| 国产综合懂色| a级毛片免费高清观看在线播放| 国内精品一区二区在线观看| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡免费网站照片| 成人毛片a级毛片在线播放| 日韩一区二区三区影片| 国产成人91sexporn| 午夜免费男女啪啪视频观看| 精品久久久久久久末码| 国产乱人视频| 精品久久久久久成人av| 国产精品日韩av在线免费观看| 天天一区二区日本电影三级| 久久国内精品自在自线图片| 亚洲国产精品sss在线观看| 久久久久久久亚洲中文字幕| 日本免费a在线| 国产极品精品免费视频能看的| 国产视频内射| 97超视频在线观看视频| 亚洲在久久综合| 国产精品熟女久久久久浪| 久久99蜜桃精品久久| 久久久a久久爽久久v久久| 免费看美女性在线毛片视频| 成年女人看的毛片在线观看| 女人被狂操c到高潮| 日韩三级伦理在线观看| 日韩国内少妇激情av| 亚洲欧美日韩高清专用| 哪个播放器可以免费观看大片| 天堂网av新在线| 两个人视频免费观看高清| av在线蜜桃| 欧美另类亚洲清纯唯美| 丰满乱子伦码专区| 人体艺术视频欧美日本| 日韩一区二区三区影片| 97超视频在线观看视频| 日本熟妇午夜| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 久久久久九九精品影院| 插逼视频在线观看| 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 精品酒店卫生间| 两个人视频免费观看高清| 国产精品.久久久| 插阴视频在线观看视频| 亚洲乱码一区二区免费版| 国产一区有黄有色的免费视频 | 久久久久九九精品影院| 久久国产乱子免费精品| 国产精品电影一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产免费一级a男人的天堂| 欧美另类亚洲清纯唯美| 国产亚洲最大av| 精品国产一区二区三区久久久樱花 | 看黄色毛片网站| 97热精品久久久久久| 只有这里有精品99| 国产成人a区在线观看| 国产黄片视频在线免费观看| 22中文网久久字幕| 国产在视频线在精品| 国产黄色小视频在线观看| 国产精品综合久久久久久久免费| 中文字幕亚洲精品专区| 91久久精品国产一区二区三区| 九九在线视频观看精品| 91精品国产九色| 久久久久久国产a免费观看| 波野结衣二区三区在线| 青春草国产在线视频| 亚洲国产欧洲综合997久久,| 亚洲色图av天堂| 国产视频内射| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 亚洲一区高清亚洲精品| 国产成人精品婷婷| 国产精品一区二区在线观看99 | 直男gayav资源| 国产欧美另类精品又又久久亚洲欧美| 色视频www国产| 欧美97在线视频| 噜噜噜噜噜久久久久久91| 搞女人的毛片| 一区二区三区免费毛片| 男的添女的下面高潮视频| 极品教师在线视频| 国内揄拍国产精品人妻在线| 国产一区有黄有色的免费视频 | 欧美日韩在线观看h| 观看免费一级毛片| 深爱激情五月婷婷| 国产老妇女一区| 青春草国产在线视频|