• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions

    2023-02-20 13:15:32QinWang汪琴JieZhang張杰JieruiHuang黃杰瑞JinanShi時(shí)金安ShuaiZhang張帥HuiGuo郭輝LiHuang黃立HongDing丁洪WuZhou周武YanFangZhang張艷芳XiaoLin林曉ShixuanDu杜世萱andHongJunGao高鴻鈞
    Chinese Physics B 2023年1期
    關(guān)鍵詞:郭輝金安杰瑞

    Qin Wang(汪琴), Jie Zhang(張杰),Jierui Huang(黃杰瑞),Jinan Shi(時(shí)金安), Shuai Zhang(張帥),Hui Guo(郭輝), Li Huang(黃立), Hong Ding(丁洪),3,4, Wu Zhou(周武),3, Yan-Fang Zhang(張艷芳),?,Xiao Lin(林曉),3,?, Shixuan Du(杜世萱),,3,4,§, and Hong-Jun Gao(高鴻鈞),,3,4,?

    1School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    2Beijing National Center for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3CAS Center for Excellent in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: honeycomb lattices,transition-metal monochalcogenides,AuTe monolayer,two-dimensional(2D)

    1. Introduction

    Two-dimensional (2D) transition-metal chalcogenides(TMCs) have received remarkable attention in fundamental research[1–4]and practical applications,[5–9]primarily because of their simple forms,open-air stability and exceptional physicochemical properties. Up to now,2D TMCs have been revealed with various stoichiometric ratios,i.e.MX2,MX,andM2X(M:transition metal atoms,X:S,Se,and Te).Transitionmetal dichalcogenides (TMDs,MX2) have been thoroughly explored due to their unique properties[10–14]and the first transistor based on a monolayer MoS2.[15,16]Representative monolayer transition-metal monochalcogenides(TMMs,MX)are topological materials.[17–21]For example, an FeSe monolayer is a high-Tcsuperconductor,which can be used as an intrinsic Majorana platform.[21]2D transition-metal-rich TMCs(M2X)are predicted to be promising photocatalysts[22,23]and topological insulators.[24,25]Among the above TMCs, 2D TMDs can be easily derived from their parent layer-stacked bulk phases with weak van der Waal interaction, while 2D TMMs(MXandM2X)are difficult to exfoliate from 3D closepacked structures. As topological materials, 2D TMMs hold potential applications in high-speed low-dissipation nanodevices since monolayer CuSe[17]and its derivatives host topological nodal line fermions, thus attracting broad scientific interest despite the difficult synthesis.

    Inspired by the fundamental research interest,[26–28]successful preliminary attempts for potential applications,[29,30]and limited experiment-realized Dirac nodal line fermion(DNLF)systems,[31–34]people show increasing enthusiasm at search and design of DNLF systems. To date, only a few 2D cases have been reported, such as 2D covalent organic frameworks (COFs),[35]Lieb lattices[36,37]and 2D pentagonal group-IVA chalcogenide materials.[38]In addition, theoretical calculation results suggest that monolayer CuSe,[17]AgTe[19]and AgSe[20]with honeycomb lattices show DNLF features which are protected by mirror reflection symmetry. These three candidates have been successfully fabricated with honeycomb structures on metal substrates,characterized by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), angle resolved photoemission spectroscopy(ARPES)techniques and first-principles calculations.However,ARPES results of monolayer CuSe,[17]AgTe[19]and AgSe[20]show that even the gapped nodal line feature induced by the symmetry broken is not observed due to the strong coupling between the monolayers and the substrates, which prevents their investigations in view of possible applications.Even in other 2D systems, experimental realizations of 2D DNLFs are limited to monolayer Cu2Si with a honeycomb Cu lattice and a triangular Si lattice[39]and tri-atomic layer Bi(110) in a brick phase.[40]Thus, it is desirable to search and fabricate new 2D Dirac nodal line materials which have a weaker interaction with substrates.

    Here,we successfully fabricated monolayer gold telluride(AuTe) on Au(111) substrate by using molecular beam epitaxy (MBE) method. The monolayer AuTe was obtained by direct tellurization of an Au(111) substrate. The x-ray photoelectron spectroscopy(XPS)measurement displays that the Au–Te chemical bond forms in the top layer. The LEED characterization indicates that it is(2×2)AuTe on(3×3)Au(111)substrate. The atomic structure of the monolayer AuTe is determined by a combination of STM experiments, density functional theory (DFT) calculations and scanning tunneling electron microscopy (STEM) characterizations. DFT calculations suggest that a free-standing AuTe monolayer has two DNLFs protected by mirror reflection symmetry without spin–orbit coupling (SOC), different from the monolayer AuTe in the GaS crystal structure which is a topological insulator[41]and bulk AuTe2[42]in aPma2 space group which has been classified as a high symmetry line semi-metal. When considering SOC or buckling induced by the substrate, gaps are opened at the Dirac nodal lines due to the breaking of the mirror symmetry. It is noteworthy that the gapped nodal loops induced by the symmetry breaking have been observed by using ARPES.Compared with the reported gapped DNLFs realized in 2D metal monochalcogenides,AuTe monolayer makes it more promising for real applications in future nano-devices.

    2. Results and discussion

    The AuTe monolayer was fabricated by direct tellurizing an Au(111) substrate in an ultrahigh vacuum (UHV) roomtemperature(RT)STM–MBE equipment. Figure 1(a)demonstrates the schematic of the synthesis procedure of a monolayer AuTe on Au(111)surface. The Te atoms were firstly deposited on a clean Au(111)substrate at room temperature and then the sample was annealed to 530 K.When the growth process finished,the sample was transferred from the MBE chamber to the STM chamber for preliminary characterization.Figure 1(c) is a 100 nm×100 nm large-scale STM topographic image. The sample grows continuously across the two steps on the Au(111) surface, indicating a high quality. The possible Te adatoms on the sample make it form dense parallel strips. The two directions of the parallel strips are equivalent due to the symmetry of the sample and that of the Au(111)surface. Afterwards, the XPS measurements were performed to examine the formation of gold telluride. Figure 1(b)is the XPS spectrum of the Te 3d core level for the freshly deposited Te atoms on the Au(111) surface, which shows two peaks at 573.0 eV and 583.4 eV, corresponding to the two spin–orbit splitting components Te 3d5/2and Te 3d3/2,respectively. After annealing treatment,the two peaks of Te 3d5/2and Te 3d3/2shift to 572.7 eV and 583.1 eV,respectively. Compared to the elemental Te(before annealing),the negative 0.3 eV shift suggests that the Te atoms are in oxidation states,[43–46]indicating the formation of a gold telluride alloy.

    Fig.1. Growth process and XPS differences between AuTe and tellurium.(a)Schematic of the fabrication of AuTe thin films by direct tellurization of the Au(111)substrate. Au atoms in the Au(111)substrate and tellurized Au atoms are shown in light and golden yellow,respectively. (b)XPS measurements on binding energies of AuTe synthesized on the Au(111) substrate and Te deposited on Au(111) shown as normalized green and blue intensity curves,respectively. (c)Large-scale STM topography(U=-1.7 V and I=0.1 nA)at room temperature.

    To further gain insight into the structure of the asfabricated material,we performed LEED and low temperature(4 K)STM characterization.The LEED pattern in Fig.2(a)reveals that the hexagonal diffraction spots of AuTe(red circles)have the same orientation as those of the Au(111) substrate(yellow circles), suggesting a rotational-domain-free growth.The(2×2)diffraction pattern of the monolayer AuTe,marked by white circles, corresponds to a well-defined Moir′e superstructure arising from the lattice mismatch between the AuTe monolayer and Au(111)substrate. Moreover, the same LEED patterns were observed on the entire sample surface(φ=10 mm in size),indicating a large-area and homogeneous monolayer AuTe.

    Figure 2(b) displays an STM image representing the superstructure composed of the (2×2) AuTe monolayer on(3×3) Au(111) surface, with parallel strips formed which is possibly due to the lattice mismatch,the stress release process and adatoms. The zoomed-in STM image with atomic resolution in Fig.2(d)exhibits an obvious honeycomb lattice,and the average lattice constant isa1=4.3 ?A(labelled by the red rhombus). Besides, a distinct (2×2) superstructure with respect to the AuTe lattice is also presented, with a periodicity of 8.6 ?A, about twice ofa1(labelled by the white rhombus).Combined with the LEED pattern in Fig.2(a)and the inserted FFT image in Fig.2(d), the distinct(2×2)superstructure can be explained as the Moir′e pattern of (2×2) AuTe on (3×3)Au(111)surface. Besides,DFT calculations were also carried out to clarify the atomic structure of the sample.

    Fig.2. LEED patten and atomic configuration of AuTe monolayer on Au(111)substrate. (a)LEED patten. The yellow,red and white dashed circles indicate the diffraction spots from the Au(111)lattice,AuTe monolayer and(2×2)superstructure with respect to AuTe,respectively.(b)STM image(U =-1.5 V and I=0.15 nA)at 4 K shows the Moir′e pattern and domains of the AuTe monolayer on Au(111). The blue square marks the size of the close-up image in (d). (c) Atomic resolution STM image, simulated STM image, and the structure model of (2×2) superlattice (indicated by white rhombi) match each other. (d) High-resolution STM image (U = -1 V,I=0.1 nA)of AuTe monolayer, shows the honeycomb lattice of Te atoms in the topmost sublayer of the AuTe structure. The red and white rhombi denote the unit cell of the AuTe lattice and(2×2)superlattice,respectively.The inset displays the FFT pattern corresponding to AuTe and the superstructure in(a). The inset line profile along the blue dashed arrow shows a lattice periodicity of 4.3 ?A.

    Six possible atomic structures of AuxTeymonolayer have been considered,with their lattice information summarized in Fig.S1 and Table S1. Among all the possible structures,only AuTe structure is consistent with the STM results and the following STEM result. Since the simulated STM image corresponds to an ideal model(the bottom panel in Fig.2(c)),there is a tiny difference between the simulated STM image with the experimental ones. The well-reproduced Moir′e pattern,together with the lattice information in Fig.S1 and Table S1,demonstrate that the overlayer on the Au(111)surface is AuTe monolayer.

    In order to further verify the structure of the monolayer AuTe on Au(111),cross-section high-angle-annular-dark-field(HAADF) STEM measurements were performed. The left panel of Fig. 3(a) is aZ-contrast atomically resolved STEM image of the AuTe/Au(111) interface, which manifests a monoatomic layer of the AuTe structure. The distances between neighboring atoms in the first layer and the second layer are 2.16 ?A and 1.44 ?A,respectively,in accordance with(2×2)monolayer AuTe on (3×3) Au(111) substrate. The relaxed model in the right panel of Fig.3(a)also matches well with the STEM image. The electron energy loss spectroscopy(EELS)mappings for the sample were also carried out(Figs.3(c)and 3(d)). It is obvious that Au and Te signals exist at the same layer, corresponding to the AuTe layer in the HAADF image in Fig. 3(b). By analyzing the EELS spectral intensity from Au element in Fig. S3, we exclude the delocalization effects of Au(111)substrates,which proves that monolayer AuTe has been fabricated on Au(111)surface.

    Since monolayer CuSe, AgTe, and AgSe show DNLFs features, monolayer AuTe (Fig. S6a) is expected to also host mirror-symmetry-protected DNLFs(Fig.S6b). To further validate the mirror-symmetry-protected nodal loops, we investigate the AuTe monolayer with a buckled structure(Fig.4(a))which is relaxed on an Au(111)substrate.The side view shows that the substrate-induced buckling height is 0.39 ?A.It should be noted that the Au(111)substrate is not taken into consideration for the band structure calculation. The green and red lines in Fig.4(b)describe the contribution from in-plane(Te px/pyand Au dxy/dx2-y2)and out-of-plane(Te pzand Au dxz/dyz)orbitals, respectively. These results clarify that the nodal loops are protected by mirror symmetry.

    Fig.4. Calculated band structures and ARPES results. (a)Geometric structure of the(2×2)AuTe monolayer which is obtained after relaxation on an Au(111) surface. The side view shows the buckling height is 0.39 ?A. (b) The calculated band structure of (a) with green and red curves illustrating contributions from in-plane and out-of-plane orbitals. (c) ARPES data obtained from the monolayer AuTe on Au(111) surface, superimposed with calculated band structure in(b). (d)The ARPES constant-energy contour at E=EF of a selected BZ(red hexagon). (e)and(f)ARPES intensity plots of cut 4(along K–Γ–K)and cut 7,which are indicated in(d)as dashed lines,respectively. For comparison,we overlay the calculated bands along K–Γ–K as blue lines on top of (e). The GDP indicates a gapped Dirac cone. (g) Energy distribution curves (EDCs) corresponding to the region indicated by black dashed rectangle in(e),with triangle marks highlighting the lower half of the Dirac cone.

    ARPES is used to directly investigate the electronic properties of monolayer AuTe. The samples were transferred from the MBE chamber to the ARPES facility by a highvacuum suitcase. Figure 4(c) expresses the ARPES data of AuTe/Au(111) measured along the high symmetry directionM–K–Γ–Min the hexagonal Brillouin zone(BZ)with a photon energy of 40.8 eV. The ARPES spectrum is a mixture of monolayer AuTe and substrate-related signals resulting from the large penetration depth. The calculated band structure(shaded area in Fig. 4(b)) is embedded in Fig. 4(c) after an upward-shift by 1.46 eV. The upward-shift of 1.46 eV originates from the hole-doping effect of the AuTe monolayer(Fig.S4). The main features show good consistence with the ARPES experiment results.

    The ARPES constant-energy contour atE=EFin Fig. 4(d) exhibits a ring-like feature with sixfold symmetry.However, the spectral intensity in the horizontal direction is suppressed due to the matrix element effect.[47,48]We selected two representative band cuts (black dash lines in Fig. 4(d))to demonstrate the distribution of Dirac nodal loop in the BZ (Figs. 4(e) and 4(f)). It shows clearly that the band dispersion is consistent with the calculated electronic structure(Fig.4(e)).Especially,the lower half of the gapped Dirac cone can be clearly seen from both the raw ARPES spectrum and energy distribution curves series plot in Fig. 4(g). The missing spectrum intensity of the upper half of Dirac cone may be due to the matrix element effect in ARPES experiment.[47,48]One can expect getting access to this part of band structure when a light source with different polarization or photon energy is used. In addition, the gapped Dirac point (GDP) is visible in all the ARPES intensity spectrums near the center of BZ(Fig.S5). The systematic ARPES results provide substantial evidence for the existence of the Dirac nodal loop in monolayer AuTe/Au(111). The gapped DNLF locates around 0.32 eV below the Fermi level,which is the first one observed by using ARPES technique in 2D metal monochalcogenides(CuSe,[17]AgTe[19]and AgSe[20]). Our realization of AuTe makes a step forward for real applications of 2D DNLFs.

    3. Conclusions

    By combining XPS, LEED, STM, STEM, ARPES techniques and DFT calculations, we confirm that AuTe monolayer with a honeycomb lattice has been successfully synthesized by directly tellurizing an Au(111) substrate. The nodal line character of monolayer AuTe has been revealed both experimentally and theoretically. Interestingly, the symmetrybroken-induced gapped nodal loops are experimentally observed which is absent for other reported 2D transition-metal monochalcogenides with DNL characters. Thus, we propose that monolayer AuTe exhibits appealing interest for future transport measurement and nano device applications.

    4. Methods

    Sample preparation and characterizations Monolayer AuTe films were grown in an ultrahigh vacuum(UHV)chamber, with a base pressure of 1×10-9mbar, equipped with standard MBE capabilities. First, the Au(111) substrate was cleaned by several cycles of Ar+ions sputtering followed by annealing until sharp diffraction spots in the LEED pattern and clean surface terraces with a herringbone reconstruction in the STM images were obtained. Then, tellurium atoms (Sigma 99.999%)were evaporated from a Knudsen cell and deposited onto the substrate at room temperature. Subsequently, the sample was annealed up to 530 K to achieved tellurization and crystallization. The growth process was monitored by LEED.After growth,the sample was transferred to an STM chamber(2×10-10mbar) for imaging and to an ARPES chamber for characterizing the electronic properties.

    ARPES measurement The ARPES measurements were performed at the Institute of Physics,Chinese Academy of Sciences, using a R4000 analyzer and a helium discharge lamp,under ultrahigh vacuum better than 3×10-11Torr. The data were recorded with He IIαphotons at 15 K. The energy and angular resolutions were set to 10 meV and 0.1°,respectively.The Fermi level of the samples was determined from a polycrystalline gold reference in electronical contact with the sample.

    STEM characterization The sample was transferred from the UHV chamber to the atmosphere, and then covered with graphite.

    Calculations In this work,all calculations are performed using the Viennaab initiosimulation package (VASP)[49,50]based on density functional theory (DFT) with the projector augmented-wave (PAW)[51]method and the local density approximation (LDA)[52,53]for the exchange–correlation functional. The energy cutoff of the plane wave basis set is 400 eV.The monolayer AuTe is fully relaxed until the forces on the ions are less than 0.001 eV/?A and the energy difference is less than 10-6eV. For the AuTe/Au(111) system, the criteria for force and energy convergence are 0.05 eV/?A and 10-4eV,respectively. The vacuum distance between two adjacent supercells inzdirection is larger than 15 ?A.Thek-points samplings are (21×21×1) for the monolayer AuTe and (11×11×1) for that on Au(111) with the Gamma scheme, respectively. The van der Waals interaction is described by the optB86b-vdw functional[54–56]for the AuTe/Au(111) system. The simulated STM image is obtained based on the Tersoff-Hamann approximation.[56]

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61925111,61888102, and 52102193), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    郭輝金安杰瑞
    連云港杰瑞電子有限公司
    玩水
    Full color ghost imaging by using both time and code division multiplexing technologies
    Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
    著名詩(shī)人郭輝
    鴨綠江(2021年17期)2021-10-13 07:05:22
    深圳市金安物流有限公司
    《晨曦》
    作品賞析
    貪吃的杰瑞
    作品賞析3
    国产精品人妻久久久影院| 色网站视频免费| 欧美激情国产日韩精品一区| 欧美高清成人免费视频www| 亚洲无线观看免费| 亚洲国产日韩一区二区| 国产欧美亚洲国产| 欧美激情极品国产一区二区三区 | 一级毛片黄色毛片免费观看视频| 大又大粗又爽又黄少妇毛片口| 国产高清三级在线| 另类亚洲欧美激情| 亚洲色图av天堂| 永久免费av网站大全| 国产精品偷伦视频观看了| 人妻夜夜爽99麻豆av| 亚洲中文av在线| 麻豆成人av视频| 日韩精品有码人妻一区| 国产一区二区在线观看日韩| 欧美亚洲 丝袜 人妻 在线| 久久精品人妻少妇| 亚洲精品久久久久久婷婷小说| 亚洲av中文av极速乱| 永久免费av网站大全| 交换朋友夫妻互换小说| 身体一侧抽搐| 成人毛片60女人毛片免费| 在线看a的网站| 欧美精品一区二区免费开放| 亚洲国产高清在线一区二区三| 永久免费av网站大全| 高清午夜精品一区二区三区| 99国产精品免费福利视频| 免费大片黄手机在线观看| 久久国产精品大桥未久av | 国产精品麻豆人妻色哟哟久久| 亚洲三级黄色毛片| 91精品一卡2卡3卡4卡| 伦理电影大哥的女人| 不卡视频在线观看欧美| 黑丝袜美女国产一区| 国产精品人妻久久久久久| 国产精品一区二区三区四区免费观看| 永久网站在线| 欧美精品一区二区大全| 男人舔奶头视频| 国产黄色免费在线视频| 国产免费一级a男人的天堂| 一级毛片黄色毛片免费观看视频| 亚洲国产高清在线一区二区三| 亚洲欧美精品自产自拍| 欧美精品人与动牲交sv欧美| 在线观看免费日韩欧美大片 | 国产亚洲一区二区精品| 99热这里只有是精品在线观看| 国产精品国产三级国产专区5o| 久久99热6这里只有精品| 99热这里只有精品一区| 又爽又黄a免费视频| 日本欧美视频一区| kizo精华| 黄色配什么色好看| 高清午夜精品一区二区三区| 欧美xxⅹ黑人| 国产乱人视频| 亚洲欧美精品专区久久| 免费人妻精品一区二区三区视频| 国产一区二区三区av在线| 一区在线观看完整版| 搡女人真爽免费视频火全软件| 久久精品国产自在天天线| 高清av免费在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲aⅴ乱码一区二区在线播放| 国产无遮挡羞羞视频在线观看| 一级毛片aaaaaa免费看小| 亚洲,欧美,日韩| 久久人妻熟女aⅴ| 亚洲精品久久久久久婷婷小说| 国产 一区精品| 午夜激情久久久久久久| 高清av免费在线| 久久综合国产亚洲精品| 精品一区二区三区视频在线| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合| 午夜免费观看性视频| 欧美激情极品国产一区二区三区 | 亚洲欧美日韩东京热| 美女脱内裤让男人舔精品视频| 欧美xxⅹ黑人| 国产精品国产三级专区第一集| 国产精品成人在线| 久久人人爽人人爽人人片va| 嫩草影院新地址| 国产在视频线精品| 亚洲精品国产av成人精品| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 免费黄频网站在线观看国产| 亚洲国产日韩一区二区| 亚洲精品自拍成人| 搡女人真爽免费视频火全软件| 日韩av免费高清视频| 久久久久人妻精品一区果冻| 亚洲精品国产成人久久av| 91精品国产国语对白视频| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 国产欧美日韩精品一区二区| 人人妻人人爽人人添夜夜欢视频 | 国产成人午夜福利电影在线观看| 亚洲精品aⅴ在线观看| 亚洲真实伦在线观看| 国产亚洲最大av| 毛片女人毛片| 国产亚洲一区二区精品| 久久久精品94久久精品| 好男人视频免费观看在线| 内地一区二区视频在线| 三级经典国产精品| 日韩不卡一区二区三区视频在线| av卡一久久| 久久久久久人妻| 伦理电影大哥的女人| 九九久久精品国产亚洲av麻豆| 亚洲成人手机| 欧美极品一区二区三区四区| 国产爽快片一区二区三区| 乱码一卡2卡4卡精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 深爱激情五月婷婷| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 国产色婷婷99| 亚洲av二区三区四区| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 午夜福利影视在线免费观看| 99热这里只有是精品在线观看| 久热这里只有精品99| 成人亚洲欧美一区二区av| 欧美精品一区二区免费开放| 国产精品三级大全| 校园人妻丝袜中文字幕| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 蜜桃在线观看..| 在线看a的网站| 亚洲内射少妇av| 在现免费观看毛片| 精品亚洲成a人片在线观看 | 日韩av免费高清视频| 久久97久久精品| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验| 寂寞人妻少妇视频99o| 色婷婷av一区二区三区视频| 男女边吃奶边做爰视频| 国语对白做爰xxxⅹ性视频网站| 人妻系列 视频| 一级爰片在线观看| 亚洲久久久国产精品| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 精品久久久久久久久av| 一区二区三区免费毛片| 在线免费观看不下载黄p国产| 久久久久久人妻| av视频免费观看在线观看| 一级毛片黄色毛片免费观看视频| 日韩人妻高清精品专区| 中国三级夫妇交换| 一级毛片我不卡| 男人爽女人下面视频在线观看| 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| 久久99蜜桃精品久久| 一级片'在线观看视频| 性色avwww在线观看| 99热这里只有精品一区| 久久亚洲国产成人精品v| 日日啪夜夜撸| 久久久国产一区二区| 婷婷色综合www| 国产中年淑女户外野战色| 妹子高潮喷水视频| 国产在线男女| 亚洲电影在线观看av| www.色视频.com| 97热精品久久久久久| 在线亚洲精品国产二区图片欧美 | 各种免费的搞黄视频| 噜噜噜噜噜久久久久久91| 建设人人有责人人尽责人人享有的 | 久久精品久久久久久久性| 亚洲,欧美,日韩| 高清黄色对白视频在线免费看 | 国产精品无大码| a级毛片免费高清观看在线播放| 下体分泌物呈黄色| 美女高潮的动态| 欧美高清成人免费视频www| 亚洲欧美一区二区三区黑人 | 国产成人精品一,二区| 身体一侧抽搐| 啦啦啦在线观看免费高清www| 亚洲精品久久午夜乱码| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 永久网站在线| 成人国产av品久久久| 亚洲av.av天堂| 亚洲欧美日韩卡通动漫| 男人爽女人下面视频在线观看| 女的被弄到高潮叫床怎么办| 蜜桃在线观看..| 婷婷色麻豆天堂久久| 精品久久久久久久久av| av在线播放精品| 啦啦啦啦在线视频资源| 80岁老熟妇乱子伦牲交| 午夜福利在线观看免费完整高清在| 国产成人免费观看mmmm| 青青草视频在线视频观看| 韩国av在线不卡| 国产69精品久久久久777片| 久久这里有精品视频免费| 国产女主播在线喷水免费视频网站| 啦啦啦在线观看免费高清www| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 观看av在线不卡| 五月天丁香电影| 亚洲欧美日韩东京热| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| av在线老鸭窝| 色婷婷av一区二区三区视频| 嘟嘟电影网在线观看| 成年美女黄网站色视频大全免费 | 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 亚洲中文av在线| 亚洲精品国产成人久久av| 精品亚洲成国产av| 最新中文字幕久久久久| 热re99久久精品国产66热6| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 亚洲欧美日韩东京热| 成人特级av手机在线观看| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 久久热精品热| 在线免费十八禁| 亚洲成色77777| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 一区二区av电影网| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品专区久久| 国产乱来视频区| 人妻夜夜爽99麻豆av| 久久午夜福利片| 欧美激情国产日韩精品一区| 青春草亚洲视频在线观看| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 少妇 在线观看| 午夜福利在线观看免费完整高清在| 亚洲aⅴ乱码一区二区在线播放| 蜜桃在线观看..| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 亚洲精品成人av观看孕妇| 国产精品一区二区性色av| 好男人视频免费观看在线| 伊人久久精品亚洲午夜| 成人漫画全彩无遮挡| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| tube8黄色片| 又大又黄又爽视频免费| 国产精品久久久久久精品古装| 日韩人妻高清精品专区| 乱系列少妇在线播放| av.在线天堂| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 久久青草综合色| 午夜免费男女啪啪视频观看| 国产精品三级大全| 日韩欧美一区视频在线观看 | 免费观看的影片在线观看| h日本视频在线播放| 嫩草影院新地址| 中文资源天堂在线| 我要看日韩黄色一级片| 赤兔流量卡办理| 国产亚洲91精品色在线| 精品一区二区三卡| 久久久国产一区二区| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 国产欧美日韩一区二区三区在线 | 国产永久视频网站| a 毛片基地| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 黄色日韩在线| 欧美xxxx黑人xx丫x性爽| 国产在线免费精品| 在线观看免费高清a一片| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品国产成人久久av| 久久精品熟女亚洲av麻豆精品| 亚州av有码| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 亚洲精品国产av蜜桃| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 国产一区二区三区av在线| 久久99热6这里只有精品| 久久久午夜欧美精品| 国产淫片久久久久久久久| 国产成人精品久久久久久| 高清不卡的av网站| 亚洲av二区三区四区| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av涩爱| 舔av片在线| 成人一区二区视频在线观看| 97在线视频观看| 日韩电影二区| 欧美另类一区| 蜜桃在线观看..| 精品一区在线观看国产| 18+在线观看网站| 色哟哟·www| 在线观看免费视频网站a站| 久久久国产一区二区| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 国产在线男女| 成人漫画全彩无遮挡| 在线播放无遮挡| 精品一区在线观看国产| 亚洲无线观看免费| 国产黄片视频在线免费观看| 成人免费观看视频高清| 99久久综合免费| 看十八女毛片水多多多| 能在线免费看毛片的网站| 最近中文字幕2019免费版| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久人人人人人人| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 人妻夜夜爽99麻豆av| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 日日啪夜夜撸| 香蕉精品网在线| 久久精品国产自在天天线| 国产爽快片一区二区三区| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆| av线在线观看网站| 亚洲一级一片aⅴ在线观看| tube8黄色片| 亚洲av福利一区| 精品久久久噜噜| 大片电影免费在线观看免费| a级一级毛片免费在线观看| 少妇的逼好多水| 日韩一区二区视频免费看| 久久久精品94久久精品| 在线精品无人区一区二区三 | 国产成人精品久久久久久| 五月天丁香电影| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 亚洲一区二区三区欧美精品| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 亚洲精品日韩av片在线观看| 婷婷色av中文字幕| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| 亚洲怡红院男人天堂| 亚洲精品一区蜜桃| 亚洲综合色惰| 免费黄频网站在线观看国产| 色哟哟·www| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 成人免费观看视频高清| 高清欧美精品videossex| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 国产 一区精品| 亚洲精品国产av蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 国产 一区 欧美 日韩| 爱豆传媒免费全集在线观看| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图| 国产成人freesex在线| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 青春草视频在线免费观看| 精品午夜福利在线看| 成人午夜精彩视频在线观看| 嫩草影院新地址| 免费av不卡在线播放| 亚洲综合精品二区| 91久久精品电影网| 亚洲精品中文字幕在线视频 | 国产亚洲91精品色在线| 欧美日本视频| 久久6这里有精品| av天堂中文字幕网| 五月天丁香电影| 婷婷色麻豆天堂久久| 嘟嘟电影网在线观看| 在线亚洲精品国产二区图片欧美 | 国产爱豆传媒在线观看| 婷婷色av中文字幕| 99热网站在线观看| 日韩一区二区视频免费看| 丰满乱子伦码专区| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站 | 99热国产这里只有精品6| 韩国高清视频一区二区三区| 日日啪夜夜撸| 在线免费十八禁| av.在线天堂| 欧美日韩视频高清一区二区三区二| 免费看日本二区| 国产爱豆传媒在线观看| 日韩亚洲欧美综合| 一级毛片黄色毛片免费观看视频| 美女内射精品一级片tv| 免费看不卡的av| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲一区二区三区欧美精品| 欧美成人a在线观看| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 少妇丰满av| 免费看日本二区| 日日啪夜夜撸| 国产美女午夜福利| 精品熟女少妇av免费看| 丝袜脚勾引网站| 欧美日韩视频精品一区| av在线app专区| 国产男女内射视频| 成人高潮视频无遮挡免费网站| 亚洲综合精品二区| 午夜福利在线在线| 免费黄网站久久成人精品| 久久久久视频综合| 小蜜桃在线观看免费完整版高清| 久久99热这里只频精品6学生| 九九在线视频观看精品| 在线免费观看不下载黄p国产| 黄片wwwwww| 免费少妇av软件| 欧美一区二区亚洲| 亚洲av二区三区四区| av女优亚洲男人天堂| 日本与韩国留学比较| 尤物成人国产欧美一区二区三区| 一级a做视频免费观看| 日本黄色日本黄色录像| 99久国产av精品国产电影| 汤姆久久久久久久影院中文字幕| 欧美高清性xxxxhd video| 777米奇影视久久| 人人妻人人爽人人添夜夜欢视频 | 老司机影院成人| 久久99精品国语久久久| 亚洲图色成人| 精品一区在线观看国产| 黄色日韩在线| 在线免费观看不下载黄p国产| 免费播放大片免费观看视频在线观看| 国产色婷婷99| 一区二区三区四区激情视频| 免费观看在线日韩| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 91狼人影院| 亚洲综合精品二区| 国产精品福利在线免费观看| 观看免费一级毛片| 国产精品精品国产色婷婷| 亚洲成人av在线免费| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 国产av一区二区精品久久 | 欧美+日韩+精品| 春色校园在线视频观看| 国产精品国产三级专区第一集| 伊人久久国产一区二区| 舔av片在线| 99视频精品全部免费 在线| 99热6这里只有精品| www.色视频.com| 欧美高清成人免费视频www| videossex国产| 日产精品乱码卡一卡2卡三| av线在线观看网站| 搡老乐熟女国产| 人体艺术视频欧美日本| 三级国产精品片| 亚洲综合色惰| 91狼人影院| 亚洲四区av| 美女主播在线视频| 日韩一区二区视频免费看| 卡戴珊不雅视频在线播放| 在线观看av片永久免费下载| 直男gayav资源| 麻豆国产97在线/欧美| 黄色配什么色好看| 国产成人aa在线观看| 国产伦精品一区二区三区视频9| 小蜜桃在线观看免费完整版高清| videossex国产| 国产精品偷伦视频观看了| 少妇精品久久久久久久| 超碰av人人做人人爽久久| 亚洲国产高清在线一区二区三| 婷婷色av中文字幕| 高清av免费在线| 国产白丝娇喘喷水9色精品| 少妇 在线观看| 亚洲av.av天堂| 欧美+日韩+精品| 在线 av 中文字幕| 日韩不卡一区二区三区视频在线| 国产又色又爽无遮挡免| av国产久精品久网站免费入址| 亚洲av国产av综合av卡| 久久久a久久爽久久v久久| 精品少妇久久久久久888优播| 亚洲精品aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 成人影院久久| 免费观看在线日韩| 久久久久久久大尺度免费视频| 欧美国产精品一级二级三级 | 丰满人妻一区二区三区视频av| 99re6热这里在线精品视频| 国产老妇伦熟女老妇高清| 亚洲欧洲国产日韩| 久久亚洲国产成人精品v| 亚洲av免费高清在线观看| 观看av在线不卡| 国产av一区二区精品久久 | 国产在线免费精品| 午夜激情福利司机影院| 爱豆传媒免费全集在线观看| www.av在线官网国产| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 高清av免费在线| 老司机影院毛片| 国产中年淑女户外野战色| 99热国产这里只有精品6| 亚洲人成网站高清观看| 一级毛片久久久久久久久女| 男女免费视频国产| 欧美 日韩 精品 国产| 激情五月婷婷亚洲| 精品国产露脸久久av麻豆| 欧美成人精品欧美一级黄| 亚洲精品国产成人久久av| 免费观看在线日韩| 成年av动漫网址| 久久久久人妻精品一区果冻| 日本黄大片高清| 直男gayav资源| 亚洲精品久久午夜乱码| 男人舔奶头视频|