• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point

    2023-02-20 13:15:04QianyuQi齊倩玉YaoweiLi李耀威TingLiu劉婷PeiqingZhang張培晴ShixunDai戴世勛andTiefengXu徐鐵峰
    Chinese Physics B 2023年1期
    關(guān)鍵詞:劉婷

    Qianyu Qi(齊倩玉), Yaowei Li(李耀威), Ting Liu(劉婷), Peiqing Zhang(張培晴),3,?,Shixun Dai(戴世勛),3, and Tiefeng Xu(徐鐵峰)

    1Laboratory of Infrared Material and Devices,Advanced Technology Research Institute,Ningbo University,Ningbo 315211,China

    2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo 315211,China

    3Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province,Ningbo University,Ningbo 315211,China

    4Ningbo Institute of Oceanography,Ningbo 315832,China

    Keywords: chalcogenide longperiod fiber grating,dual-peak resonance,phase matching turning point,refractive index sensor

    1. Introduction

    Long-period fiber gratings(LPFGs)promote optical coupling between the core mode and the cladding mode, and the peak value is easily affected by small changes in the surrounding refractive index (SRI). Thus, the refractive index sensing characteristics of a LPFG have attracted extensive attention and LPFGs have been widely used for biological and chemical sensing.[1–5]The phase matching curve (PMC) of each cladding mode of a LPFG contains a phase matching turning point (PMTP), and a LPFG working at the PMTP has the highest sensitivity to environmental disturbance.[6,7]When the actual grating period is less than the corresponding period of the PMTP,the LPFG has two resonance peaks that exhibit a dual-peak resonance effect.[8–10]At the same time, if the temperature,[11]ambient refractive index[12]and strain[13]change slightly,the bimodal resonant wavelength will change accordingly. Chen and Gu observed that a LPFG sensor based on bimodal resonance worked near the PMTP and had a high sensitivity to the SRI.[14]Shuet al.first studied the dual-peak resonance phenomenon of a LPFG and experimentally studied the response of the bimodal resonance to the SRI.[15]When the SRI increases,the two resonance summits move in the opposite direction.

    Generally, the resonant wavelength of a LPFG has high sensitivity only when the SRI is slightly lower than the cladding refractive index.[16]However, the refractive index of traditional silica fiber is relatively small, and hence such fiber sensors will not work when special high-refractive-index liquids are encountered.[17]Furthermore, due to their limited transmission range, silica fiber sensors are powerless in the mid-infrared (MIR) range, which contains many important molecular spectral fingerprints.[18]Chalcogenide glasses(ChGs) are novel infrared (IR) optical materials with excellent infrared optical properties,such as a wide IR transmission range,[19]high linear and nonlinear refractive indices[20–22]and low phonon energy,[23]and ChG fibers are thus widely used in fiber lasers and biological and chemical sensors in the MIR range.[24–27]

    However,due to the high refractive index of chalcogenide glass fiber(usually exceeding 2.0),its sensitivity is limited for conventional liquid detection. This problem can be solved by coating the fiber cladding with another thin film. Studies have found that coating a LPFG with a film having a refractive index higher than that of the cladding can expand the refractive index sensing range of the LPFG and improve its sensitivity.[28–32]Wanget al.proved that depositing a thin film at the PMTP of a LPFG can improve the sensitivity; they obtained a sensitivity of 9100 nm/RIU.[33]Nevertheless,when a high-refractive-index film is deposited on the optical fiber,the PMC will be changed,thereby leading to drifting of the PMTP.By reducing the fiber cladding radius, the PMC can also be changed.[34]Del Villaret al.proposed that reducing the fiber cladding radius and coating had opposite effects on the bimodal displacement.[35]Therefore,a LPFG can be controlled by reducing the cladding radius and coating until it works near the PMTP.Chen and Gu[36]studied the sensing characteristics of a thinly clad coated LPFG. Their results show that reduction of the cladding radius will increase the dynamic range of the high-sensitivity response of the LPFG thin film sensor.

    In this paper, we design a chalcogenide LPFG with thin film coating,and study the refractive index sensing characteristics of a chalcogenide LPFG with a high-order mode PMTP.To optimize the performance,the influence of film parameters and cladding radius on the dual-peak resonance wavelength spacing is analyzed. By combining the two methods of plating high-refractive-index film outside the fiber and reducing the fiber radius, sensitivity of the chalcogenide LPFG for refractive index sensing is improved,thereby providing practical support and reference data for the design of a high-sensitivity chalcogenide LPFG refractive index sensor structure. It is expected that such a sensor could applied to the detection of various gases and liquids in the field of biological and chemical sensing.

    2. Theoretical analysis

    2.1. Simulation model

    Figure 1(a) shows the transmission curve of fabricated As2S3glass. The figure shows that this ChG has an extremely wide IR transmission area, which can be transparent from 1.0 μm to 14 μm; thus, the prepared ChG can be applied in the MIR spectral region. A graph of wavelength versus refractive index was produced using an infrared-variable angle spectroscopic ellipsometer (Mark II, J. A. Woollam, USA) and is shown in Fig.1(b). This figure shows that the refractive index of As2S3glass was greater than 2.3 in the IR region.

    Figure 2 shows the structure and refractive index distribution of the coated thinly clad chalcogenide LPFG.The core and cladding are made of As2S3glass, and the difference in refractive index between the core and the cladding is realized by fine-tuning the composition. A film material with a higher refractive index, such as diamond, graphite, graphene or carbon nanotubes,should be used for the coating. The refractive indices of the core and the cladding aren1andn2, and their radii area1anda2, respectively. The refractive index of the film isn3and its thickness ish=a3-a2. The refractive index of the external environment isnsur. The optical fiber parameters used in the calculation area1=3 μm,a2=100 μm,n1=2.4211,n2=2.3952,grating lengthL=4.5 cm and the average refractive index change of the core is 1×10-2.

    Fig.1.(a)IR transmission spectra.(b)Graph of wavelength versus refractive index.

    Fig.2. Schematic of coated thinly clad chalcogenide LPFG: (a) structural model,(b)refractive index profile.

    2.2. PMTP and dual-peak resonance

    The phase matching condition of the LPFG, that is, the relationship between the grating period and resonant wavelength,is expressed as follows:

    where Δneff=-is the effective refractive index difference between the core and the cladding,λis the resonance wavelength andΛis the grating period. According to the phase matching conditions, PMCs for low- and high-order cladding modes can be obtained, as shown in Figs. 3(a) and 3(b), respectively. When the grating period is short, the resonant wavelength of the low-order cladding mode increases monotonously with the grating period, whereas the PMC for the high-order cladding mode will exhibit a conic characteristic, and two wavelength values can satisfy Eq.(1). In other words, two resonance peaks appear in the transmission spectrum; this is called the double-peak effect. The higher the cladding mode sequence number, the smaller the grating period required for resonant coupling with the core mode, and the smaller the resonant wavelength corresponding to the dual peak.

    Cladding mode LP0,19with the cladding mode numberν=19 was first selected,and the characteristics of its PMTP were carefully studied. Figure 4 shows the PMC of the cladding mode LP0,19. One PMTP is found in the PMC; the corresponding period is 110.5 μm and the slope is infinite at the PMTP.When the period is less than 110.5 μm double-peak resonance occurs(as shown in the inset in Fig.4). When the LPFG is affected by the refractive index it will cause a change in the refractive index of the cladding mode; this will then cause a change in the resonant wavelength. When the grating period approaches the PMTP,a LPFG refractive index sensor with high sensitivity will be obtained.

    Fig.3. Phase-matching curves of odd cladding modes for(a)low-order cladding and(b)high-order cladding.

    Fig.4. Phase-matching curve of LP0,19.

    3. Characteristics of LPFG refractive index sensing operating at the PMTP

    When the double peaks are located near the PMTP the slope of the PMC approaches infinity near the turning point;that is, the wavelength is most sensitive to periodic changes,thereby leading to a very high sensitivity to changes in the external environment. Figures 5(a), 6(a), and 7(a) show the tive index of the cladding mode, thus affecting the resonant wavelength of the grating.

    Fig.5. (a)Transmission spectrum of the LP0,19 mode and(b)response of LP0,3 and LP0,19 modes to the SRI for SRI=1.34–1.46.

    Fig.6.(a)Transmission spectrum of the LP0,19 mode and(b)the response of LP0,3 and LP0,19 modes to the SRI for SRI=1.64–1.76.

    Fig.7.(a)Transmission spectrum of the LP0,19 mode and(b)the response of LP0,3 and LP0,19 modes to the SRI for SRI=2.14–2.26.

    The refractive index of the film in the calculation is selected asn3=2.45.First,the external environment is assumed to be air(n4=1).When the film thickness increases from 0 nm to 1000 nm,numerical simulations obtain the relationship between the effective refractive index and the film thickness of LP0,3–LP0,23odd-numbered cladding modes (Fig. 8(a)). The effective refractive index of each cladding mode gradually increases with the thickness of the film.transmission spectra of LP0,19cladding modes at a low(1.34–1.46), medium (1.64–1.76), and high (2.14–2.26) SRI when the grating period is 110.5 μm. Figures 5(b), 6(b), and 7(b)show the responses of low-order (LP0,3modes) and highorder cladding modes(LP0,19modes)to different SRIs. When the period is 110.5 μm the low-order cladding mode is unimodal and almost unresponsive to all refractive index environments, whereas the high-order cladding modes have different responses to various SRIs. As the refractive index increases,the peak separation rises continuously. High-sensitivity detection of the SRI is realized by detecting the bimodal wavelength spacing. Thus,compared with low-order cladding modes,selecting a high-order cladding mode in the structural design can produce higher sensitivity refractive index sensing.

    4. Structure optimization

    4.1. Film parameters

    A LPFG is highly sensitive to the environment because the electromagnetic field of the cladding mode penetrates into the environment in the form of an evanescent wave at the interface between the cladding and the environment and interacts with the external environment,thereby changing the effective refractive index of the cladding mode and leading to drifting of the resonant wavelength.[37]After coating the LPFG with a film whose refractive index is much higher than that of the cladding material,the core mode is unaffected by the film,and the parameters of the film mainly affect the effective refrac-

    Fig.8. Variation of effective refractive index of (a) odd-numbered cladding modes with film thickness and (b) the LP0,19 cladding mode with film parameters.

    The external environment is set to be air and the LP0,19cladding mode is selected, as shown in Fig. 8(b). When the film thickness is fixed, changing the refractive index of the film can also alter the effective refractive index of the cladding mode. In addition, the effective refractive index of the cladding mode will show abrupt changes within a specific film thickness range, and the range of abrupt changes of films with different refractive indices will vary. For example, when the film refractive index is 2.45, the effective refractive index in the corresponding cladding mode changes from 300 nm to 700 nm,and when the film refractive index is 2.55, the corresponding change in the effective refractive index of the cladding mode is from 200 nm to 600 nm. When the film increases to a certain thickness,the low-order cladding mode will enter the film layer for transmission,and the original high-order mode will replace the low-order mode step by step. At this time, the energy of the electromagnetic field is redistributed among the cladding modes, the lowest cladding mode is transferred to the thin film layer for transmission and the higher-order mode covers the energy state of its previous mode, thus affecting the effective refractive index. Villaret al.explained this from the viewpoint of mode conversion.[38]When mode conversion of a cladding mode occurs,the effective refractive index of each cladding mode changes sharply.A sudden change in the effective refractive index of the cladding mode will inevitably lead to a shift in the resonance wavelength, indicating that a suitable refractive index and thickness of the film layer must be determined so that the coated LPFG works in the region of the effective refractive index of the cladding mode. A small change will cause a large change in the cladding mode,which will cause a significant change in the resonance wavelength and improve the sensitivity of LPFG refractive index sensing.

    4.2. Cladding radius

    The design in this work adopts a film refractive indexn3=2.55 and film thicknessh=300 nm because the choice of a high-refractive-index material can help shorten the coating time and save costs. The refractive index of carbon-based materials (carbon, diamond, graphite, graphene, carbon nanotubes) isn= 2.4 ton= 2.9, which is much higher than that of the cladding material. Amorphous carbon film materials such as graphene/carbon nanotube composite material has excellent properties (high hardness, wear resistance, low friction coefficient, optical transmittance, chemical inertness)and are suitable as coating materials. Many papers have reported the use of carbon-based materials such as graphene in the field of optical fiber sensing, and a variety of coating methods have been proposed.[39–41]Among these, a method suitable for application with chalcogenide optical fibers is the combined dispersion rotary coating method. The process of preparing graphene/carbon nanotube composites by the mixed dispersion rotary coating method is as follows. First,a graphene/carbon nanotube composite dispersion with uniform dispersion is prepared. The mixed dispersion is then sonicated and deposited on different substrates by a rotary coating method.The thickness of the composite film can be controlled according to the speed and time of spin coating.

    Coating the optical fiber with a high-refractive-index film will change the PMC.Figure 9(a)shows the PMC of the LP0,19cladding mode when it is uncoated, and the film thickness is 300 nm. Obviously,deposition of the film causes the curve to move to a longer period. In other words, if the period is designed to be 110.5 μm, for which the uncoated LPFG works at the turning point,when a 300 nm thick film is deposited on the optical fiber, dual-peak resonance will occur. In addition,the thicker the film,the greater the separation between the two peaks will be. To solve this problem,we propose reducing the bimodal spacing of the coated grating by reducing the fiber radius. Figure 9(b) shows that the peak separation decreases with a decrease in the cladding radius. When the cladding radius is 99.53 μm,the peak separation is 0. By optimizing the fiber radius, the bimodal grating works near the PMTP and optimal sensitivity can be achieved.

    Fig.9. (a)Effect of film thickness on phase matching curve. (b)Variation of peak separation with cladding radius.

    5. LPFG refractive index sensing characteristics of coated thinly clad fiber operating at the PMTP

    The refractive index sensing performance of the chalcogenide LPFG is optimized by a combination of high-order mode coupling characteristics of the LPFG and a reduction of the cladding radius and surface modification of the sensitive film. Figures 10(a), 11(a), and 12(a) show the transmission spectra of LP0,19cladding modes at low(1.34–1.46),medium(1.64–1.76),and high(2.14–2.26)SRIs when the film thicknessh=300 nm,the film refractive indexn3=2.55,the cladding radiusa2=99.53 μm and the periodΛ=110.5 μm.The bimodal spacing increases with the SRI.

    Figures 10(b),11(b),and 12(b)show the linear fitting relationship between peak separation and different SRIs before and after optimization. The sensitivity of peak separation to changes in the SRI can be defined as

    Fig.10. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=1.34–1.46.

    Fig.11. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=1.64–1.76.

    That is, the shift of the dual-peak resonance wavelength produced by unit change in the SRI is used to characterize the speed of the change in the double-peak spacing with the SRI. When the SRI is between 1.34 and 1.46, the unoptimized bimodal LPFG refractive index sensing sensitivity is 326 nm/RIU, whereas the optimized bimodal LPFG refractive index sensitivity is 486 nm/RIU,the sensitivity being increased by 160 nm/RIU.When the SRI changes from 1.64 to 1.76, the sensitivity of the refractive index sensor before and after optimization is 294 nm/RIU and 527 nm/RIU, respectively, the sensitivity being increased by 233 nm/RIU. When the SRI increases from 2.14 to 2.26,the wavelength spacing of the bimodal LPFG rises from 711 nm to 1003 nm. The refractive index sensitivity of the optimized bimodal LPFG reaches 2400 nm/RIU,whereas the refractive index sensing sensitivity of the unoptimized bimodal LPFG is only 701 nm/RIU; the sensitivity is increased by 1699 nm/RIU. These results show that by selecting appropriate grating parameters,film parameters and cladding radius,the refractive index sensitivity of the sensor is greatly improved compared with that of a generalized LPFG refractive index sensor. The new LPFG refractive index sensor has high sensitivity and good linearity and is expected to be applied in the fields of gas,liquid,chemistry and biological sensing.

    In order to compare the sensitivity of the sensor presented in this paper to the SRI with that of some other sensors, the average sensitivity to the SRI and detection range of several typical LPFG SRI sensors are listed in Table 1. The results show that although the sensitivity of most quartz fiber grating sensors is high,the range of refractive index in which they can work is relatively limited. Moreover, when the sensitivity of a quartz fiber grating sensor is too high, its stability will become poor. Considering the relationship between equilibrium stability and sensitivity,we chose the above structural parameters. Therefore,the structural design proposed by us not only widens the detection range but also has a certain stability.

    Fig.12. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=2.14–2.26.

    Table 1. Sensitivity of different LPFG sensors.

    6. Conclusion

    In this paper, a coated thinly clad chalcogenide LPFG refractive index sensor based on the PMTP dual-peak resonance effect is studied theoretically. The sensor is optimized by selecting appropriate film parameters and cladding radius,and the sensitivity of the chalcogenide LPFG refractive index sensor is greatly improved. The simulation results show that the sensitivity of the coated thinly clad chalcogenide LPFG at the PMTP to the SRI is 2400 nm/RIU, which is significantly higher than that of a non-optimized grating.The structure proposed in this work not only has a wider sensing range but also offers a more flexible sensing scheme. Suitable sensitive materials can be selected according to the environmental object to be detected. High sensitivity can be obtained by adjusting the parameters of the film or the grating structure and is expected to be obtained in widely used photochemical biosensors.

    Acknowledgments

    Project supported by the Natural Science Foundation of China (Grant Nos. 62075107, 61935006, 62090064, and 62090065) and K. C. Wong Magna Fund in Ningbo University.

    猜你喜歡
    劉婷
    清水變小球
    溝通的力量
    逼宮原配撞上真金主:傷害性不大,侮辱性極強(qiáng)
    初中生同伴關(guān)系與攻擊性行為關(guān)系的研究
    叢林,叢林
    解答直線與圓錐曲線問題的兩種思路
    一條三八線
    劉婷作品
    溫柔一刀
    极品教师在线视频| 亚洲自拍偷在线| 在线观看av片永久免费下载| 国产午夜精品久久久久久一区二区三区 | 国产精品一区www在线观看| 欧美成人一区二区免费高清观看| 午夜亚洲福利在线播放| 嫩草影院新地址| 偷拍熟女少妇极品色| 我要看日韩黄色一级片| 久久综合国产亚洲精品| а√天堂www在线а√下载| 深爱激情五月婷婷| 校园人妻丝袜中文字幕| av在线播放精品| 丝袜美腿在线中文| 亚洲精品国产av成人精品 | 两个人的视频大全免费| 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 国产精品永久免费网站| 国产老妇女一区| 一区福利在线观看| 国产成人a∨麻豆精品| 亚洲欧美精品综合久久99| 赤兔流量卡办理| 日韩欧美 国产精品| 97超视频在线观看视频| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 精品人妻视频免费看| 亚洲性夜色夜夜综合| 三级毛片av免费| 联通29元200g的流量卡| 日韩精品青青久久久久久| 久久精品综合一区二区三区| 在线看三级毛片| 真人做人爱边吃奶动态| 欧美日韩在线观看h| av在线天堂中文字幕| 99热6这里只有精品| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 国产av不卡久久| 国内精品宾馆在线| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 最近中文字幕高清免费大全6| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 国产 一区精品| 一级毛片久久久久久久久女| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 国产精品一及| 久久久久国内视频| 天堂网av新在线| 成人亚洲欧美一区二区av| 日日啪夜夜撸| 欧美+日韩+精品| 中文字幕精品亚洲无线码一区| 麻豆乱淫一区二区| 亚洲不卡免费看| 97热精品久久久久久| 免费搜索国产男女视频| 欧美激情在线99| 男插女下体视频免费在线播放| 一本一本综合久久| 1024手机看黄色片| 色视频www国产| 日本三级黄在线观看| 可以在线观看毛片的网站| 国产成人freesex在线 | 久久精品综合一区二区三区| 欧美zozozo另类| 日韩高清综合在线| 美女 人体艺术 gogo| 91精品国产九色| 两个人视频免费观看高清| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 国产高清三级在线| 亚洲欧美日韩高清在线视频| 日韩成人伦理影院| 欧美最新免费一区二区三区| ponron亚洲| 久久人人精品亚洲av| 国产蜜桃级精品一区二区三区| 一进一出好大好爽视频| 国产成人福利小说| 成人午夜高清在线视频| 久久午夜亚洲精品久久| 一卡2卡三卡四卡精品乱码亚洲| 成人综合一区亚洲| 国内精品一区二区在线观看| 国产爱豆传媒在线观看| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 国产精品一区二区三区四区免费观看 | 免费看美女性在线毛片视频| 在线播放国产精品三级| 午夜福利高清视频| 国产黄色小视频在线观看| 精品日产1卡2卡| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 97超碰精品成人国产| 免费观看在线日韩| 亚洲成人久久性| 赤兔流量卡办理| 免费av不卡在线播放| 日韩精品有码人妻一区| 国产成人a∨麻豆精品| 美女高潮的动态| 欧美最黄视频在线播放免费| 欧美区成人在线视频| 美女大奶头视频| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 真人做人爱边吃奶动态| 22中文网久久字幕| 精品午夜福利在线看| 亚洲精品国产av成人精品 | 国产精品久久久久久久电影| 亚洲美女黄片视频| 天堂动漫精品| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 日本五十路高清| 国产高清有码在线观看视频| 精品久久久噜噜| 中文字幕av成人在线电影| 综合色丁香网| 久久久久久久亚洲中文字幕| 亚洲美女黄片视频| 18禁在线无遮挡免费观看视频 | 亚洲最大成人av| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 亚洲无线在线观看| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 一级av片app| 在线a可以看的网站| 五月玫瑰六月丁香| 在线看三级毛片| 国产精品一区二区三区四区免费观看 | 国产精品一二三区在线看| 国内精品一区二区在线观看| 哪里可以看免费的av片| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区色噜噜| 露出奶头的视频| 午夜精品国产一区二区电影 | 国产av在哪里看| 欧美zozozo另类| 国产精品一区二区免费欧美| 欧美日韩在线观看h| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 久久精品国产自在天天线| 春色校园在线视频观看| 久久久久免费精品人妻一区二区| 亚洲自偷自拍三级| 午夜精品国产一区二区电影 | 午夜影院日韩av| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 观看美女的网站| 精品人妻一区二区三区麻豆 | 春色校园在线视频观看| 亚洲国产日韩欧美精品在线观看| 亚洲一级一片aⅴ在线观看| 一进一出抽搐动态| 亚洲成人av在线免费| 国产高清视频在线观看网站| 欧美另类亚洲清纯唯美| 中文字幕av成人在线电影| 久久6这里有精品| 成人美女网站在线观看视频| 精品久久久久久久久亚洲| 男插女下体视频免费在线播放| 日韩欧美在线乱码| 亚州av有码| 国产亚洲欧美98| 日本成人三级电影网站| 超碰av人人做人人爽久久| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 俺也久久电影网| 日韩在线高清观看一区二区三区| 亚州av有码| 国产精品一二三区在线看| 日本成人三级电影网站| 嫩草影院精品99| 97超级碰碰碰精品色视频在线观看| 国产乱人偷精品视频| 男女视频在线观看网站免费| 国产精品久久视频播放| 少妇熟女欧美另类| av黄色大香蕉| 色噜噜av男人的天堂激情| 深爱激情五月婷婷| 三级毛片av免费| 老司机影院成人| 欧洲精品卡2卡3卡4卡5卡区| 日韩在线高清观看一区二区三区| 在线天堂最新版资源| 最新中文字幕久久久久| 日本免费a在线| 乱系列少妇在线播放| 人妻丰满熟妇av一区二区三区| 亚洲成人av在线免费| 日韩制服骚丝袜av| 乱人视频在线观看| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 成人亚洲欧美一区二区av| 欧美日韩精品成人综合77777| 亚洲欧美日韩高清专用| 欧美最新免费一区二区三区| 日本a在线网址| 亚洲三级黄色毛片| www.色视频.com| 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 一夜夜www| 久久久精品大字幕| 嫩草影视91久久| 18禁在线播放成人免费| 免费人成在线观看视频色| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 国产在视频线在精品| 日产精品乱码卡一卡2卡三| 午夜福利视频1000在线观看| 99久久九九国产精品国产免费| 国国产精品蜜臀av免费| 色尼玛亚洲综合影院| 最好的美女福利视频网| 国产黄色视频一区二区在线观看 | 久久久久久久亚洲中文字幕| 国产蜜桃级精品一区二区三区| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 欧美人与善性xxx| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播| 久久精品人妻少妇| 麻豆国产av国片精品| 色综合色国产| 精品免费久久久久久久清纯| 18+在线观看网站| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 亚洲成人中文字幕在线播放| 能在线免费观看的黄片| 永久网站在线| videossex国产| 欧美日韩国产亚洲二区| 99在线人妻在线中文字幕| 欧美高清性xxxxhd video| 国产男靠女视频免费网站| 国产精华一区二区三区| 免费av不卡在线播放| 我要搜黄色片| 尾随美女入室| 露出奶头的视频| 久久久久久久亚洲中文字幕| 高清日韩中文字幕在线| 日本在线视频免费播放| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 日韩人妻高清精品专区| 亚洲国产精品成人久久小说 | 国产视频一区二区在线看| 菩萨蛮人人尽说江南好唐韦庄 | 精品少妇黑人巨大在线播放 | 欧美极品一区二区三区四区| 少妇高潮的动态图| 国产一区二区亚洲精品在线观看| 青春草视频在线免费观看| 亚洲美女视频黄频| 色av中文字幕| 日韩中字成人| 麻豆乱淫一区二区| 神马国产精品三级电影在线观看| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 国产成人一区二区在线| 成年女人永久免费观看视频| 国产欧美日韩精品一区二区| 亚洲av成人av| 亚洲三级黄色毛片| 免费高清视频大片| 久久久精品大字幕| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 热99在线观看视频| 最近在线观看免费完整版| 欧美激情国产日韩精品一区| 国产激情偷乱视频一区二区| 啦啦啦观看免费观看视频高清| 久久精品国产自在天天线| 99在线视频只有这里精品首页| 国产精品国产高清国产av| 亚洲内射少妇av| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 桃色一区二区三区在线观看| 内射极品少妇av片p| 久久亚洲精品不卡| 美女内射精品一级片tv| 精品一区二区三区av网在线观看| 1000部很黄的大片| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 色综合色国产| 久久久久久久久大av| 国产精品一区www在线观看| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 久久久午夜欧美精品| 一个人免费在线观看电影| 精品久久久久久久久久久久久| 看非洲黑人一级黄片| 久久精品国产99精品国产亚洲性色| av中文乱码字幕在线| 三级毛片av免费| 国产爱豆传媒在线观看| 午夜激情欧美在线| 亚洲精品一区av在线观看| 国产黄色视频一区二区在线观看 | 欧美区成人在线视频| av卡一久久| 久久久久国产网址| 69av精品久久久久久| 伊人久久精品亚洲午夜| 欧美zozozo另类| 国内精品一区二区在线观看| 又爽又黄无遮挡网站| 国内少妇人妻偷人精品xxx网站| 1024手机看黄色片| 久久热精品热| 麻豆精品久久久久久蜜桃| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 欧美日韩在线观看h| 欧美3d第一页| 精品久久久久久久久亚洲| 国产精品久久久久久久久免| 一级a爱片免费观看的视频| 又爽又黄无遮挡网站| 精品人妻视频免费看| 国产单亲对白刺激| 久久精品国产自在天天线| 成熟少妇高潮喷水视频| 日本 av在线| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 99久久成人亚洲精品观看| 香蕉av资源在线| 最近最新中文字幕大全电影3| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 久久精品综合一区二区三区| 久久亚洲国产成人精品v| 亚洲性夜色夜夜综合| av在线亚洲专区| 18禁在线播放成人免费| 亚洲国产精品合色在线| 一区二区三区免费毛片| 不卡一级毛片| 少妇人妻精品综合一区二区 | 成人国产麻豆网| 高清毛片免费看| 草草在线视频免费看| 国产av一区在线观看免费| 香蕉av资源在线| 国产高清三级在线| 国产精品三级大全| 97超碰精品成人国产| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 18禁在线无遮挡免费观看视频 | 久久久久性生活片| 国产午夜精品久久久久久一区二区三区 | 尾随美女入室| 女人十人毛片免费观看3o分钟| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 一级黄色大片毛片| 欧美色视频一区免费| ponron亚洲| 免费在线观看成人毛片| 国产 一区精品| 中文字幕免费在线视频6| 一a级毛片在线观看| 国产久久久一区二区三区| 亚洲av.av天堂| 精品久久久久久久久久免费视频| 国产一区二区亚洲精品在线观看| 久久久久免费精品人妻一区二区| 日日摸夜夜添夜夜爱| 亚洲专区国产一区二区| 最近在线观看免费完整版| 中文字幕av成人在线电影| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 校园春色视频在线观看| 久久久久久久久久黄片| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 亚洲经典国产精华液单| 精品欧美国产一区二区三| 国产高潮美女av| 韩国av在线不卡| 搡老岳熟女国产| 日本在线视频免费播放| 天堂√8在线中文| 久久久久久久久中文| 国产精品女同一区二区软件| 国语自产精品视频在线第100页| 日韩欧美精品免费久久| 91久久精品电影网| 桃色一区二区三区在线观看| 久久这里只有精品中国| 免费观看精品视频网站| 偷拍熟女少妇极品色| 少妇高潮的动态图| 久久午夜亚洲精品久久| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 99久久精品热视频| 联通29元200g的流量卡| 我要搜黄色片| 日本成人三级电影网站| 精品人妻熟女av久视频| 欧美极品一区二区三区四区| 免费av毛片视频| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 欧美+日韩+精品| 美女内射精品一级片tv| 91久久精品电影网| 91精品国产九色| 免费av毛片视频| 啦啦啦韩国在线观看视频| 黄色视频,在线免费观看| 国产精品一区二区三区四区免费观看 | 看黄色毛片网站| 国产一区二区亚洲精品在线观看| 岛国在线免费视频观看| 性色avwww在线观看| 亚洲成av人片在线播放无| 国产高清激情床上av| 女人被狂操c到高潮| 亚洲av中文av极速乱| 一级毛片我不卡| 黄色日韩在线| 欧美成人a在线观看| 少妇熟女aⅴ在线视频| 久久精品综合一区二区三区| 欧美极品一区二区三区四区| 最好的美女福利视频网| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 毛片女人毛片| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 久久久久国产网址| 男女之事视频高清在线观看| 91狼人影院| 国产精品爽爽va在线观看网站| a级一级毛片免费在线观看| 国产av不卡久久| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 男女那种视频在线观看| 国产成人91sexporn| 国产久久久一区二区三区| 午夜a级毛片| 亚洲人成网站在线播| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| www日本黄色视频网| 国产v大片淫在线免费观看| 国产精品无大码| 级片在线观看| 我要看日韩黄色一级片| 欧美日韩综合久久久久久| 狂野欧美白嫩少妇大欣赏| 91av网一区二区| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清| 欧美区成人在线视频| 中文字幕精品亚洲无线码一区| 男女下面进入的视频免费午夜| 天堂网av新在线| 欧美日韩乱码在线| 永久网站在线| 蜜桃亚洲精品一区二区三区| 天堂动漫精品| 亚洲欧美日韩东京热| 亚洲av免费高清在线观看| 久久人人精品亚洲av| 国产aⅴ精品一区二区三区波| 中文字幕熟女人妻在线| av福利片在线观看| 99热全是精品| www.色视频.com| 午夜日韩欧美国产| 在线观看午夜福利视频| 国产三级中文精品| 国产久久久一区二区三区| 色综合站精品国产| 国产黄片美女视频| 少妇人妻精品综合一区二区 | 婷婷色综合大香蕉| 精品国内亚洲2022精品成人| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 国产精品久久久久久久久免| 免费高清视频大片| 大香蕉久久网| 国产麻豆成人av免费视频| 男女做爰动态图高潮gif福利片| 成人精品一区二区免费| 六月丁香七月| 日产精品乱码卡一卡2卡三| 午夜久久久久精精品| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影| 国产乱人偷精品视频| 色吧在线观看| videossex国产| 国产av麻豆久久久久久久| 国产一区二区三区在线臀色熟女| 日本爱情动作片www.在线观看 | 亚洲av.av天堂| 老女人水多毛片| 国产精品免费一区二区三区在线| 最近最新中文字幕大全电影3| 天堂√8在线中文| 国产精品国产高清国产av| 一进一出抽搐动态| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 99久久精品国产国产毛片| 一级a爱片免费观看的视频| 欧美最黄视频在线播放免费| 夜夜爽天天搞| 午夜福利在线在线| 欧美国产日韩亚洲一区| 听说在线观看完整版免费高清| 亚洲人成网站在线播放欧美日韩| 久久久国产成人精品二区| 国产av不卡久久| 网址你懂的国产日韩在线| 99热6这里只有精品| 国产精品国产三级国产av玫瑰| 内射极品少妇av片p| 成人性生交大片免费视频hd| 国内揄拍国产精品人妻在线| 免费av观看视频| 日本一二三区视频观看| www日本黄色视频网| 波多野结衣巨乳人妻| 精品久久久久久久末码| 欧美日本亚洲视频在线播放| 啦啦啦观看免费观看视频高清| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 久久综合国产亚洲精品| 12—13女人毛片做爰片一| 欧美高清性xxxxhd video| 黄色视频,在线免费观看| 身体一侧抽搐| 日本三级黄在线观看| 免费看美女性在线毛片视频| 99久久久亚洲精品蜜臀av| 国内久久婷婷六月综合欲色啪| 美女xxoo啪啪120秒动态图| 两个人的视频大全免费| 在线播放国产精品三级| 天美传媒精品一区二区| 日韩一本色道免费dvd| 国产aⅴ精品一区二区三区波| 亚洲七黄色美女视频| 亚洲av中文av极速乱| 淫妇啪啪啪对白视频| 免费搜索国产男女视频| 久久人人精品亚洲av| 国产av麻豆久久久久久久| 国产成人影院久久av| 看非洲黑人一级黄片| 国产亚洲精品av在线| 亚洲国产精品成人久久小说 | 午夜福利视频1000在线观看|