• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schr¨odinger equation

    2023-02-20 13:14:38XuefengZhang張雪峰TaoXu許韜MinLi李敏andYueMeng孟悅
    Chinese Physics B 2023年1期
    關(guān)鍵詞:李敏雪峰

    Xuefeng Zhang(張雪峰), Tao Xu(許韜),,?, Min Li(李敏), and Yue Meng(孟悅)

    1State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China

    2College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China

    3College of Science,China University of Petroleum,Beijing 102249,China

    4North China Electric Power University,Beijing 102206,China

    Keywords: nonlinear Schr¨odinger equation,soliton solutions,asymptotic analysis,soliton interactions

    1. Introduction

    As one of the most important and universal physical model, the nonlinear Schr¨odinger equation (NLSE) arises in many fields such as nonlinear optics,[1,2]plasma physics,[3]molecular biology,[4]Bose–Einstein condensates,[5]deep water,[6]and even finance.[7]Usually,the NLSE in the dimensionless form can be written as

    whereuis a complex-valued function,xandtrespectively represent the scaled space and time coordinates in most physical settings, buttis the normalized distance andxis the retarded time in the context of optical fibers,σ=1 andσ=-1 denote the focusing and defocusing nonlinearity types. It is known that the focusing NLSE admits the bright soliton solutions on the zero background,[8]whereas the defocusing NLSE possesses the dark soliton solutions over the plane-wave background.[9]Usually,the NLSE governs the propagation of optical solitons in the picosecond regime with the balance between group velocity dispersion(GVD)and self-phase modulation(SPM).[10,11]In 1973,Hasegawa and Tappert first theoretically predicted the soliton propagation in optical fibers with remarkable stability.[1,2]In 1980,Mollenaueret al.confirmed the experimental observation of optical solitons, which paves the way of using the optical soliton as the carrier of information bits.[12]Since then,the optical soliton has been one of the fascinating topics in applied mathematics,optics and material sciences.

    It is a remarkable property for Eq.(1)to admit the the exact multi-soliton solutions(MSSs),which describe the elastic soliton interactions in the ideal optical Kerr medium.[8,13]The‘elasticity’means that all the solitons can recover their shapes and velocities upon mutual collisions except for some shifts of the positions and phases. An multi-soliton solution is regularly associated to multiple different eigenvalues of the linear spectral problem,thus it can be regarded as the superposition of several individual solitons asymptotically ast →±∞,[8,13]and the asymptotic solitons separate from each other linearly withtand exhibit no interaction force.[8]When the eigenvalues have the same real parts but different imaginary parts,the interacting solitons enjoy the same velocities and thus form the bound state, which confines soliton motions in the stationary regions.[10,14]In such a particular case, the bounded solitons keep finite relative distance varying periodically in time, so they can display the interactions with periodic alternating attraction and repulsion. The bound state solitons were frequently referred to as soliton molecules as they exhibit molecule-like dynamics,[15]and the authors in Ref.[16]presented the velocity resonance method to generate soliton molecules.

    Moreover, if some or all the eigenvalues merge, one can obtain the multi-pole solutions (MPSs) in the terminology of inverse scattering transform.[8,17]In optical fibers, the MPSs can describe the interactions of multiple chirped pulses with the same amplitudes and group velocities when they are input with no phase difference.[18]The authors in Ref. [8] first reported the double-pole solution when at the occurrence of two eigenvalues coalescing, and the authors in Ref. [19] derived the formula for an arbitrary-order MPSs and studied the asymptotic behavior of the second- and third-order cases. It turns out that all the asymptotic solitons have the equal amplitudes and they diverge from each other logarithmically as|t|→∞. Also,the multi-pole solutions have been found to occur in the multi-component NLSE systems and exhibit some intriguing dynamical properties.[20,21]

    On the other hand, the real fiber is not homogeneous due to the variation in the lattice parameters and fluctuation of fiber geometry.[22]Thus, variable-coefficient NLSE (vc-NLSE) models were proposed when considering various inhomogeneous factors in the practical optical communication systems.[23–26]Over the past two decades, the following vc-NLSE model[26,27]

    has been widely used to describe the optical solitons propagation inside a fiber with variable dispersion and phase modulation, wheref(t) andg(t) are respectively the distributed GVD and SPM coefficient functions. Equation(2)has a great value in the pulse compression technique,[23]and soliton control and management.[24–26]The authors in Ref.[24]provided a systematic way to find the exact soliton solutions of Eq.(2)and presented the bright and dark one-soliton solutions. The authors in Ref. [28] derived a class of self-similar solutions and discussed their applications in the pulse amplification and compression. Meanwhile, the authors in Refs. [29,30] constructed the one- and two-soliton solutions for some special cases by the Darboux transformation and bilinear transformation methods, respectively. More generally, the authors in Ref. [31] obtained the transformations mapping Eq. (2) into Eq. (1) with some integrable conditions. As a result, a rich class of soliton-like solutions were obtained to describe the inhomogeneous fiber systems with different types of dispersion profiles.[32,33]

    Since the optical solitons are always packed as tightly as possible, the soliton interactions have been intensively studied by virtue of numerical simulations,[34,35]perturbation theory,[35,36]and exact analytical solutions.[18,37]The main results showed that two adjacent solitons with(nearly)equal amplitudes have a force that decreases exponentially with their relative distance, and the force is attractive for two solitons in phase and repulsive for two solitons out of phase.[18,35,37]Meanwhile,those properties were confirmed by some observations in optical experiment.[38]We notice that the asymptotic expressions of MSSs provide an important basis for understanding the soliton interactions in that the physical quantities of interacting solitons can be obtained exactly.[8,9,19]Specially,the soliton center trajectories allow us to derive the soliton accelerations,which can be used to characterize the two-soliton interaction force via Newton’s second law of motion.[37]By virtue of this idea,this paper will quantitatively study various soliton interaction scenarios in Eqs.(1)and(2)based on their exact two-soliton and double-pole solutions.

    The arrangement of the paper is as follows: In Section 2,we study the soliton interactions in the NLSE 1 based on its exact solutions. First, we obtain the asymptotic expressions of regular two-soliton and double-pole solutions ast →±∞,and then analyze the soliton interaction properties by deriving the physical quantities such as amplitudes,phase and position shifts, soliton accelerations, and interaction forces. Second,for the bounded two-soliton solution,we numerically calculate the center positions and accelerations of two solitons and discuss their interaction scenarios in three typical bounded cases.In Section 3,via some variable transformations we derive the exact two-soliton and double-pole solutions of the vcNLSE(2)with an integrable condition. Then, based on the asymptotic expressions, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles. In Section 4,we address the conclusions and discussions of this paper.

    2. Soliton interactions in the NLSE

    In this section, by the asymptotic analysis technique, we first give the analytical description of soliton interactions in the regular two-soliton and double-pole solutions, and then numerically characterize the soliton interactions in the twosoliton bounded states.

    2.1. Regular two-soliton solution

    As we know, the exact multi-soliton solutions of Eq. (1)were derived by many methods,such as the inverse scattering method,[8]and Darboux transformation.[39]Here, we present the regular two-soliton solution as follows:

    In the cases whenμ1/=μ2, the mutual interaction of two solitons having different velocities is shown in Fig. 1.Via the asymptotic analysis,[8,13]one can derive the expressions of two interacting solitons as|t|→∞by assuming Re(θ1)=O(1) and Re(θ2)=O(1), respectively. Note that when Re(θk)=O(1) there must be|Re(θ3-k)|=∞as|t|→∞fork= 1,2. For convenience, we assume thatν1>0,ν2<0, andμ1>μ2, and use the subscripts “R” and “I” to denote the real and imaginary parts ofθk. From the differenceν2θ1R-ν1θ2R=4ν1ν2(μ1-μ2)t+O(1), one can see that ifθ1R=O(1), thenθ2R→±∞ast →±∞, and that ifθ2R=O(1), thenθ1R→±∞ast →±∞. Thus, two pairs of asymptotic expressions are derived as follows:

    Fig.1. Density plot of solution (3) with λ1 =1+ i, λ2 =-1- i,ξ1=ξ2= ln2+i.

    The asymptotic expressions(4)and(5)suggest that solution(3)can describe the elastic two-soliton interaction,that is,the two interacting solitons retain their shapes, velocities and amplitudes upon interaction. But each soliton will experience the phase and position shifts which are respectively as follows:

    Besides, the soliton center trajectories are along the straight lines 2θkR±ln()=0(k=1,2),so the two interacting solitons diverge from each other linearly as|t|→∞and there is no interaction force.

    2.2. Double-pole solution

    We should mention that solution (3) cannot describe the interaction of two solitons having the same amplitudes and velocities, which corresponds to that the spectral parametersλ1andλ2merge into the same valueχ. By assumingλ1=χ+ε,λ2=χ-ε, the limit of solution (3) atε →0 can yield the double-pole solution:[40]

    whereμ=Re(χ),ν=Im(χ),ξands1are arbitrary constants in C. In such special case, the center trajectories of two solitons are apparently bent but they tend to be parallel as|t|→∞,as shown in Fig. 2. Next, we also use the asymptotic analysis to reveal the dynamical properties of soliton interactions in solution(7),and without loss of generality assumeν >0.

    Fig.2. Density plot of solution(7)with χ =i,ξ = ln2+i,s1= i.

    Let us use?to stand for the line directionx-ct=O(1)in thextplane. By making the differenceθR-ν(x-ct)=ν(c+4μ)t+ξR, we know that|θR|→∞withc/=-4μandθR=O(1) withc=-4μalong?as|t|→∞. However, the asymptotic limits of solution (7) along?as|t|→∞always produce 0, which means that solution (7) has no asymptotic soliton lying in any straight line. Thus, we have to discuss the possibility of asymptotic solitons located in certain curves whentand eθR meet some asymptotic balance.

    Specifically, we obtain that there are two pairs of asymptotic solitons in solution(7)as follows:

    whereu±krepresent the bright asymptotic solitons with their center trajectories located in the logarithmic curves:2θR±(-1)k-1ln(±16ν2t)=0(k=1,2).Since solution(7)is associated to the spectral parameterχ,both two pairs of asymptotic solitons enjoy the same amplitudes=2ν. For each pair of asymptotic solitons (,), the phase and position shifts can be,respectively,characterized by

    where the position shift shows the logarithmical growth with|t|. The velocities of asymptotic solitons(k= 1,2) are given by

    It can be seen thattend to the common limit-4μat the rateO(t-1) (see Fig. 3(a)), and the values ofv+katt >0 are equal tov-katt <0(k=1,2). Hence,the soliton interactions in the double-pole solution(7)are still elastic.

    By taking the derivatives ofaboutt, we obtain the soliton accelerations=±(1/2νt2) and=?(1/2νt2).According to Newton’s second law of motion,the two-soliton interaction force can be measured by

    wheremk=dx=4ν(k=1,2)are the soliton masses,andd= ln(16ν2|t|)/νis the relative distance between two solitons. Here,F <0 says that the interaction force is attractive and its strength decays exponentially to 0 as the relative distance increases(see Fig.3(b)),which was first obtained in Ref.[37].

    Fig.3. (a)Soliton accelerations versus t;(b)soliton interaction force versus t. The parametric choice follows that in Fig.2.

    2.3. Bounded two-soliton solution

    Ifμ1=μ2butν1/=ν2, the two solitons can form the bound state because their velocities are associated to the same parameterμ1,2.[10,14]For simplicity, we assume the two solitons have zero velocities by settingμ1,2=0.Then,solution(3)can be reduced to the bounded two-soliton solution:

    Depending on the parametersξ1andξ2,solution(15)can display different two-soliton interaction scenarios(see Figs.4(a)–4(c)).In this case,the relationshipν2θ1R-ν1θ2R=O(1)holds in solution(15),which implies thatθ1Randθ2Rhave always the same asymptotic order ast →±∞. As a result,one cannot extract the expressions of interacting solitons in the bound state. Instead,we numerically determine the center positions of the left soliton(u1)and right soliton(u2),and calculate the soliton accelerationsa1anda2. Also,the masses of two solitons can be numerically obtained bymk=dx(k=1,2),where the intervals[ak,bk]are chosen large enough to cover the whole wave packets and require[a1,b1]∩[a2,b2]=?. Next,we discuss the following three typical cases in solution(15).

    Fig.4. Density plots for three different bounded two-soliton interaction scenarios in solution(15),where the parameters are selected as follows: (a)ξ1=6.9+0.001i,ξ2=ln2+i,ν1= ,ν2= ;(b)ξ1=1+ i,ξ2= ln2+i,ν1=1.9,ν2=2;(c)ξ1=ξ2= ln2+i,ν1= ,ν2=.

    (i) If|ξ1|?|ξ2|, the two solitons are always separated and their relative distance changes very little as the time evolves (see Fig. 4(a)), so that the interaction force is quite weak. For example,whenξ1=6.9+0.001i andξ2=ln2+i, the soliton accelerationsa1,2are within the order 10-2(see Fig. 5(a)) and thus the interaction force is almost 0 (see Fig.5(b)).

    Fig.5. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(a).

    (ii) If|ξ1|≈|ξ2|, the relative distance between two solitons changes periodically but it will not decrease to 0, which means that they never collide at one point(see Fig.4(b)). For instance, by takingξ1=1+i andξ2=ln2+i, the accelerations of two solitons show the periodical behavior (see Fig. 6(a)). As a result, one can observe the periodic alternating attraction and repulsion between two solitons,which correspond toF <0 andF >0,respectively(see Fig.6(b)).

    Fig.6. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(b).

    (iii)If|ξ1|=|ξ2|,the two solitons collide periodically and form a series of transient waves with large amplitudes at interaction points,as shown in Fig.4(c). In this case,the strength of soliton interaction becomes stronger since they collide repeatedly at some moments. Except near the interaction points,we also use the second-order numerical derivatives of relative distance to calculate the soliton accelerations. By takingξ1=ξ2=ln2+i,one can see that the soliton accelerations also exhibit the periodical variation witht(see Fig.7(a)),but the interaction force is of the attractive type in the most of interaction course(see Fig.7(b)).

    Fig.7. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(c).

    3. Soliton interactions in the vcNLSE

    As we know, equation (2) is integrable under the condition

    withcas a real constant, and it can be converted into the standard NLSE iUT+UXX+2|U|2U= 0 via the variable transformations[31]

    In this section, we present the exact two-soliton and doublepole solutions of Eq. (2) with condition (16), and quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles.

    3.1. Inhomogeneous regular two-soliton solution

    Based on solution (3) and transformation (17), we can obtain the inhomogeneous regular two-soliton solution of Eq.(2):

    where(k=1,2) is defined in Eq. (5), and the signs “±”correspond toT →±∞. However,considering that some specificf(t)restricts the sign ofT,one may just obtain one pair of asymptotic solitons asT →∞orT →-∞(see cases(i)and(ii)below).

    Interestingly, the soliton velocities and accelerations are dependent onf(t)in the form

    and the two-soliton interaction force can be measured by

    Fig.8.Density plots of inhomogeneous regular two-soliton solution(18)with(a) f(t)=1-t/8,(b) f(t)= e-t/20,(c) f(t)=0.28-0.48sin(0.25t).Other parameters follows those in Fig.1.

    Fig.9. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(a).

    (ii) For the exponentially dispersion-decreasing profile,we setf(t)= e-(1/20)tand haveT=-20e-(1/20)t. In such a case,Ttends to 0 and-∞r(nóng)espectively ast →±∞, and also there appear just one pair of asymptotic solitons()ast →-∞. The two solitons move along the exponential curves but do not encounter each other becauseTis always smaller than 0 (see Fig. 8(b)). To be specific, the two solitons have the accelerations=(1/10)e-(1/20)tand=-(3/10)e-(1/20)t(see Fig.10(a)).Their interaction force is of the repulsive type and given by=(4/5)e-(1/20)t, which displays the exponential decay whentranges from 0 to-∞(see Fig.10(b)).

    Fig.10. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(b).

    (iii) For the trigonometric dispersion-decreasing profile,we setf(t) = 0.28-0.48sin(0.25t) and haveT= 0.28t+1.92cos(0.25t). In this case,Tgoes to ∞and-∞r(nóng)espectively ast →±∞,so there are two pairs of asymptotic solitons() and () which appear respectively ast →±∞.The asymptotic solitons propagate along the trigonometric periodic curves and experience just one interaction (as shown in Fig. 8(c)). Here, the soliton accelerations can be obtained by= 0.24cos(0.25t) and=-0.72cos(0.25t)(as shown in Fig. 11(a)), and the interaction force is described by expressions=-1.92cos(0.25t) fort >0 and=1.92cos(0.25t)fort <0,which show the periodical alternation between the attractive and repulsive types(as shown in Fig.11(b)).

    Fig.11. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(c).

    3.2. Inhomogeneous double-pole solution

    Similarly, by using solution (7) and transformation (17),we obtain the inhomogeneous double-pole solution of Eq.(2)as follows:

    where the signs “±” correspond toT →±∞(Again, one should note that some specificf(t) may cause just one pair of asymptotic solitons appear asT →∞orT →-∞).

    where the latter shows the dependence onf(t). Moreover,the soliton velocities and accelerations are respectively obtained by

    Thus,the two-soliton interaction can be measured by

    where

    are the soliton masses,andd=ln(16ν2(t)dt)/νis the relative distance between two solitons.Also,the force strength exhibits the exponential decay with the relative distance,whereas the force type is related to the sign off′(t)(t)dt-f2(t).

    Next, by fixingχ= i/2 and choosingf(t) respectively as a linear function and trigonometric function, we discuss the double-pole soliton interactions with two different types of dispersion profiles.

    (i) For the linearly dispersion-decreasing profilef(t)=1-(t/8), the two solitons interact twice at aboutt ≈0 andt ≈16(see Fig.12(a)). BecauseT=t-(t2/16)goes to-∞as botht →∞andt →-∞, the asymptotic solitons ()approach solution(23)well for the intervalst <0 andt >16.On the other hand,Tis positive in the interval 0<t <16,the asymptotic solitons()can also be used to approximate solution (23) althoughTis not very large. Thus, the soliton accelerations(see Fig.13(a))can be given by

    fort <0 ort >16,

    for 0<t <16. Meanwhile, the soliton interaction force is obtained by

    which is of the attractive type in the whole propagation process,as shown in Fig.13(b).

    Fig.12. Density plots of solution (18) with (a) f(t)=1-t/8, (b) f(t)=0.28-0.48sin(0.25t). Other parameters are χ = i/2, s1 = 1-(i/2),ξ =(1/2)ln2+(π/4)i and c=1.

    Fig.13. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.12(a).

    (ii) For the trigonometric dispersion-decreasing profilef(t)=0.28-0.48sin(0.25t),the two solitons move in the periodic trajectories and interact once at aboutt ≈0. In view thatT →±∞corresponds tot →±∞,the two pairs of asymptotic solitons()and()can approach solution(23)respectively ast →∞andt →-∞. Hence,the soliton accelerations(see Fig.14(a))can be given by

    fort >0,

    fort <0,and the soliton interaction force is obtained by

    which periodically alternates between the attractive and repulsive types during the propagation process, as illustrated in Fig.14(b).

    Fig.14. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.12(b).

    4. Conclusions and discussion

    In this paper, we have made a quantitative study on the soliton interactions in the NLS equation (1) and its variablecoefficient counterpart(2)based on their exact solutions.

    (i) For the regular two-soliton and double-pole solutions (3) and (7) of the NLS equation, we have obtained the expressions of asymptotic solitons ast →±∞via the asymptotic analysis method. Then,we have analyzed the soliton interaction properties by deriving the physical quantities such as amplitudes,phase and position shifts,soliton accelerations,and interaction force. It turns out that the asymptotic solitons in solution(3)exhibit no interaction force,whereas the soliton interaction in solution(7)is attractive and its strength decays exponentially to 0 as the relative distance increases. In addition, for the bounded two-soliton solution, we have numerically calculated the soliton center positions and accelerations,and discussed their interaction scenarios when two solitons are separated with different distances. It shows that the bounded two solitons display the periodic alternating attraction and repulsion,and the interaction strength grows as the relative distance decreases.

    (ii)For the vcNLSE(2)with an integrable condition(18),we have obtained the inhomogeneous regular two-soliton and double-pole solutions via the variable transformations (17).Then,we have also derived the expressions of asymptotic solitons, and have quantitatively studied the two-soliton interactions with some inhomogeneous dispersion profiles.Quite differently,we have revealed that the variable dispersion functionf(t)significantly influences the soliton interaction dynamics.On one side,some specificf(t)may cause that only one pair of asymptotic solitons appear asT →∞orT →-∞(see Figs. 8(a), 8(b), 12(a)). On the other side, the functionf(t)plays a major role in determining the soliton interaction types,for example, the regular two-soliton solution may exhibit the repulsive interaction (see Fig. 10(b)), while the double-pole solution may display the periodical alternation between the attractive and repulsive types(see Fig.14(b)).

    Acknowledgments

    Project supported by the Natural Science Foundation of Beijing Municipality(Grant No.1212007),the National Natural Science Foundation of China (Grant No. 11705284),and the Open Project Program of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Grant No.PRP/DX-2211).

    猜你喜歡
    李敏雪峰
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks?
    看山是山?看山非山?
    雪峰下的草場
    中國三峽(2016年5期)2017-01-15 13:58:43
    Discussion on James Joyce’s The Dead
    西江文藝(2016年6期)2016-05-30 23:28:20
    The Influence of Missionary School on China’s Foreign LanguageEducation
    西江文藝(2016年6期)2016-05-30 07:53:17
    張碧晨 演繹新一代GIRL POWER
    Coco薇(2016年4期)2016-04-06 16:57:38
    王雪峰國畫
    歌海(2016年1期)2016-03-28 10:08:55
    韓雪峰的“臺賬”
    小幽默二則
    九九在线视频观看精品| 又爽又黄无遮挡网站| 午夜精品在线福利| 亚洲av免费高清在线观看| 国产黄色视频一区二区在线观看 | 三级国产精品片| 男人的好看免费观看在线视频| 简卡轻食公司| 精品无人区乱码1区二区| av黄色大香蕉| 国产免费又黄又爽又色| 久久精品国产鲁丝片午夜精品| 国产久久久一区二区三区| 久久久久久久久久黄片| 日本-黄色视频高清免费观看| 亚洲精品国产av成人精品| 狠狠狠狠99中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 精品一区二区免费观看| 美女大奶头视频| 国产一区二区在线观看日韩| 五月伊人婷婷丁香| 99国产精品一区二区蜜桃av| 国产亚洲一区二区精品| 久久这里有精品视频免费| 永久网站在线| 国产亚洲91精品色在线| 男女国产视频网站| 淫秽高清视频在线观看| www.色视频.com| 蜜臀久久99精品久久宅男| 亚洲精品aⅴ在线观看| 在线天堂最新版资源| 寂寞人妻少妇视频99o| 熟女电影av网| 国内精品美女久久久久久| 成人国产麻豆网| 免费大片18禁| 大香蕉97超碰在线| 亚洲精品国产av成人精品| 久久韩国三级中文字幕| 美女xxoo啪啪120秒动态图| 高清av免费在线| 日韩大片免费观看网站 | 热99在线观看视频| 久久精品久久精品一区二区三区| 亚洲美女搞黄在线观看| 99视频精品全部免费 在线| 日韩欧美精品v在线| 色综合亚洲欧美另类图片| 七月丁香在线播放| 只有这里有精品99| 日本免费在线观看一区| 欧美精品一区二区大全| 久久国产乱子免费精品| 菩萨蛮人人尽说江南好唐韦庄 | 成人国产麻豆网| 国产精品,欧美在线| 欧美成人a在线观看| 亚洲一区高清亚洲精品| 色综合色国产| 美女黄网站色视频| 欧美zozozo另类| 水蜜桃什么品种好| 麻豆精品久久久久久蜜桃| 少妇人妻精品综合一区二区| 国产亚洲精品久久久com| 能在线免费观看的黄片| 嘟嘟电影网在线观看| 欧美成人精品欧美一级黄| 尤物成人国产欧美一区二区三区| 少妇的逼水好多| .国产精品久久| 日韩欧美精品v在线| 中文精品一卡2卡3卡4更新| 久久人人爽人人爽人人片va| 一个人观看的视频www高清免费观看| 成年免费大片在线观看| 美女内射精品一级片tv| av视频在线观看入口| 一级黄片播放器| 看片在线看免费视频| 国产精品一区二区在线观看99 | 午夜激情福利司机影院| 国产精品永久免费网站| 伦精品一区二区三区| 久久精品人妻少妇| 国产女主播在线喷水免费视频网站 | 亚洲人成网站在线观看播放| 国产在线男女| 黄色欧美视频在线观看| 九九热线精品视视频播放| av在线天堂中文字幕| 久久99热这里只频精品6学生 | 国国产精品蜜臀av免费| 亚洲av一区综合| 欧美性感艳星| 一边摸一边抽搐一进一小说| 精品久久久久久久末码| 国产亚洲精品久久久com| 国产精品伦人一区二区| 日本一本二区三区精品| 91精品一卡2卡3卡4卡| 欧美+日韩+精品| 国产黄片美女视频| 男女啪啪激烈高潮av片| 久久这里只有精品中国| 国国产精品蜜臀av免费| 桃色一区二区三区在线观看| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 亚洲综合精品二区| 亚洲av不卡在线观看| 欧美成人一区二区免费高清观看| 一区二区三区四区激情视频| 亚洲在久久综合| 美女脱内裤让男人舔精品视频| 午夜福利在线在线| 婷婷六月久久综合丁香| 国产男人的电影天堂91| 婷婷色麻豆天堂久久 | 在线观看美女被高潮喷水网站| 噜噜噜噜噜久久久久久91| 亚洲精品国产成人久久av| 免费大片18禁| 亚洲va在线va天堂va国产| 丰满少妇做爰视频| 少妇的逼水好多| 成人三级黄色视频| 天天躁日日操中文字幕| 国产单亲对白刺激| 国产亚洲av片在线观看秒播厂 | 午夜福利在线在线| 久久国产乱子免费精品| 国产精品三级大全| 久热久热在线精品观看| 永久网站在线| 精品免费久久久久久久清纯| 一级爰片在线观看| 高清视频免费观看一区二区 | 91精品国产九色| 亚洲美女搞黄在线观看| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 国产精品综合久久久久久久免费| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 只有这里有精品99| 嫩草影院入口| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 久久久久网色| 久久草成人影院| 午夜久久久久精精品| 成人午夜精彩视频在线观看| 国产伦在线观看视频一区| 伊人久久精品亚洲午夜| 又粗又爽又猛毛片免费看| 国产一级毛片七仙女欲春2| 日韩欧美 国产精品| 婷婷色麻豆天堂久久 | 国产精品蜜桃在线观看| 欧美区成人在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 免费观看性生交大片5| 亚洲婷婷狠狠爱综合网| 国产亚洲精品久久久com| 精品一区二区三区视频在线| 三级国产精品片| 午夜久久久久精精品| 亚洲av日韩在线播放| 国产成人福利小说| 男插女下体视频免费在线播放| 国产视频内射| 久久99热6这里只有精品| 亚洲国产成人一精品久久久| 精品无人区乱码1区二区| 直男gayav资源| 免费一级毛片在线播放高清视频| 久久久a久久爽久久v久久| 嘟嘟电影网在线观看| 国产精品久久电影中文字幕| 伊人久久精品亚洲午夜| 日韩av在线免费看完整版不卡| 久久婷婷人人爽人人干人人爱| 国产精品人妻久久久影院| 少妇的逼好多水| 亚洲aⅴ乱码一区二区在线播放| 99久久精品国产国产毛片| 久久久国产成人免费| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 亚洲四区av| 中文资源天堂在线| 国产成年人精品一区二区| 韩国高清视频一区二区三区| 尾随美女入室| 汤姆久久久久久久影院中文字幕 | 插阴视频在线观看视频| 国产精品伦人一区二区| 欧美97在线视频| 99视频精品全部免费 在线| 久久久久久久久久黄片| 亚洲国产最新在线播放| 午夜爱爱视频在线播放| 精品久久久久久久久久久久久| 久久这里有精品视频免费| 波野结衣二区三区在线| 色综合色国产| 久久欧美精品欧美久久欧美| 亚洲欧美日韩无卡精品| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 看片在线看免费视频| 国产一区二区在线观看日韩| 日韩一区二区三区影片| 两个人的视频大全免费| 毛片一级片免费看久久久久| 女的被弄到高潮叫床怎么办| 国产伦一二天堂av在线观看| 久久99热这里只有精品18| 尾随美女入室| 寂寞人妻少妇视频99o| 亚洲乱码一区二区免费版| av免费在线看不卡| 乱人视频在线观看| 最后的刺客免费高清国语| 欧美xxxx黑人xx丫x性爽| 欧美xxxx性猛交bbbb| av黄色大香蕉| 欧美区成人在线视频| 国产乱人视频| 91av网一区二区| 一边亲一边摸免费视频| 久久国内精品自在自线图片| 特大巨黑吊av在线直播| 精品久久久久久成人av| 尾随美女入室| 国产精品福利在线免费观看| 国产精品日韩av在线免费观看| 亚洲五月天丁香| 建设人人有责人人尽责人人享有的 | 亚洲一区高清亚洲精品| 国产精品野战在线观看| 在线天堂最新版资源| 中文字幕熟女人妻在线| 亚洲三级黄色毛片| 日韩中字成人| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| www.av在线官网国产| 中文精品一卡2卡3卡4更新| 日本欧美国产在线视频| 精品久久久久久成人av| 亚洲最大成人中文| 午夜福利高清视频| 亚洲av免费在线观看| 深爱激情五月婷婷| 国产高清有码在线观看视频| 日韩一区二区三区影片| 日韩成人伦理影院| 日本免费一区二区三区高清不卡| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 久久精品夜色国产| 成人午夜精彩视频在线观看| 国产精品久久久久久久电影| 久久精品国产自在天天线| 一个人免费在线观看电影| 少妇人妻精品综合一区二区| 中文字幕av在线有码专区| 国产精品一区二区性色av| 床上黄色一级片| 精品人妻一区二区三区麻豆| 日本wwww免费看| 国产视频内射| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 毛片一级片免费看久久久久| 国产精品一区二区三区四区免费观看| 乱人视频在线观看| 国产精品人妻久久久久久| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 国产精品,欧美在线| 午夜精品国产一区二区电影 | 久久精品国产99精品国产亚洲性色| 高清午夜精品一区二区三区| 国产成人精品婷婷| 亚洲国产欧洲综合997久久,| 91久久精品国产一区二区成人| 国产精品不卡视频一区二区| 精品久久国产蜜桃| 成人欧美大片| 日本猛色少妇xxxxx猛交久久| 国产综合懂色| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 蜜臀久久99精品久久宅男| 18禁在线无遮挡免费观看视频| 啦啦啦韩国在线观看视频| 全区人妻精品视频| 国产成人精品婷婷| 欧美成人一区二区免费高清观看| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| 永久免费av网站大全| 亚洲综合精品二区| 你懂的网址亚洲精品在线观看 | 免费av观看视频| 99热网站在线观看| 国产人妻一区二区三区在| 亚洲无线观看免费| 99久久精品热视频| 国产精品久久久久久av不卡| 直男gayav资源| 精品国产一区二区三区久久久樱花 | 超碰av人人做人人爽久久| 极品教师在线视频| 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看 | 你懂的网址亚洲精品在线观看 | 久久久久性生活片| 国产精品永久免费网站| 人体艺术视频欧美日本| 精品久久久久久电影网 | 欧美人与善性xxx| 成年女人永久免费观看视频| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 国产色婷婷99| 少妇的逼好多水| 国产免费又黄又爽又色| 高清av免费在线| 黄色欧美视频在线观看| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 日韩一区二区视频免费看| 久久久午夜欧美精品| 69人妻影院| 成人鲁丝片一二三区免费| 国产白丝娇喘喷水9色精品| 精品国产三级普通话版| 青春草亚洲视频在线观看| 热99re8久久精品国产| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 你懂的网址亚洲精品在线观看 | 欧美+日韩+精品| 偷拍熟女少妇极品色| 亚洲欧美成人精品一区二区| 乱人视频在线观看| 国产在视频线在精品| 国产av在哪里看| 搡老妇女老女人老熟妇| 久久人妻av系列| 亚洲精品久久久久久婷婷小说 | 亚洲欧美清纯卡通| 麻豆一二三区av精品| 色噜噜av男人的天堂激情| 最近手机中文字幕大全| 波多野结衣巨乳人妻| 99久久精品热视频| 午夜久久久久精精品| 高清日韩中文字幕在线| 日韩欧美国产在线观看| 七月丁香在线播放| 欧美一级a爱片免费观看看| 国产精品人妻久久久影院| 亚洲在线自拍视频| 久久精品影院6| av在线老鸭窝| 97人妻精品一区二区三区麻豆| 最近2019中文字幕mv第一页| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 国产精华一区二区三区| 在线播放无遮挡| 搡女人真爽免费视频火全软件| 一本久久精品| 小蜜桃在线观看免费完整版高清| 国产极品天堂在线| 美女内射精品一级片tv| 少妇的逼水好多| 男人舔女人下体高潮全视频| 精品一区二区三区视频在线| 麻豆久久精品国产亚洲av| 中文乱码字字幕精品一区二区三区 | 秋霞在线观看毛片| 国产精品1区2区在线观看.| 国产高清国产精品国产三级 | 乱系列少妇在线播放| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 91精品国产九色| 日韩欧美 国产精品| 一本久久精品| 岛国毛片在线播放| АⅤ资源中文在线天堂| 女人被狂操c到高潮| av福利片在线观看| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| av国产免费在线观看| 久久精品夜色国产| 久久99蜜桃精品久久| 99久国产av精品| 22中文网久久字幕| 亚洲精品影视一区二区三区av| 97超碰精品成人国产| 美女国产视频在线观看| 毛片女人毛片| 可以在线观看毛片的网站| 午夜a级毛片| 欧美zozozo另类| 99热精品在线国产| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 99在线人妻在线中文字幕| 国产午夜精品一二区理论片| 久久久久久久午夜电影| 久久久精品大字幕| 99热网站在线观看| 秋霞在线观看毛片| av福利片在线观看| 成人特级av手机在线观看| 美女高潮的动态| 国内精品美女久久久久久| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 亚洲欧美精品专区久久| av卡一久久| 日韩成人伦理影院| 国产高清视频在线观看网站| 老司机福利观看| 欧美日韩精品成人综合77777| 免费黄网站久久成人精品| 日韩大片免费观看网站 | 久久久午夜欧美精品| 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| 亚洲欧美清纯卡通| 日韩一区二区三区影片| 中文天堂在线官网| 久久久色成人| 午夜福利高清视频| av女优亚洲男人天堂| av.在线天堂| 亚洲av一区综合| 日韩一区二区视频免费看| 午夜a级毛片| 免费黄色在线免费观看| 99久久九九国产精品国产免费| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 久热久热在线精品观看| 久久久久久伊人网av| 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看 | 国产高清三级在线| 精品人妻视频免费看| 亚洲欧美清纯卡通| 在线a可以看的网站| 成人午夜高清在线视频| 夜夜爽夜夜爽视频| 亚洲国产精品专区欧美| 国产麻豆成人av免费视频| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 激情 狠狠 欧美| 99热精品在线国产| 视频中文字幕在线观看| 中文亚洲av片在线观看爽| 成人av在线播放网站| 蜜臀久久99精品久久宅男| 极品教师在线视频| 黄片wwwwww| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 免费观看a级毛片全部| 非洲黑人性xxxx精品又粗又长| 亚洲av中文av极速乱| 国产精品一二三区在线看| 午夜日本视频在线| 男人的好看免费观看在线视频| 你懂的网址亚洲精品在线观看 | 不卡视频在线观看欧美| 观看美女的网站| 国产免费男女视频| 岛国在线免费视频观看| 内射极品少妇av片p| 噜噜噜噜噜久久久久久91| 久久这里有精品视频免费| 久久久久久久久久黄片| 内地一区二区视频在线| 亚洲精品,欧美精品| av女优亚洲男人天堂| 1000部很黄的大片| 成人无遮挡网站| 黄色配什么色好看| 欧美性感艳星| 国产免费男女视频| 国产黄色小视频在线观看| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 国产探花在线观看一区二区| 久久99热这里只频精品6学生 | 村上凉子中文字幕在线| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 韩国av在线不卡| 亚洲精品亚洲一区二区| 日韩 亚洲 欧美在线| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 精品不卡国产一区二区三区| 美女内射精品一级片tv| 女人久久www免费人成看片 | 精品国内亚洲2022精品成人| 成人国产麻豆网| 韩国高清视频一区二区三区| 村上凉子中文字幕在线| 日韩一区二区三区影片| 国产三级中文精品| 亚洲成人久久爱视频| av天堂中文字幕网| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| 亚洲av熟女| 国产女主播在线喷水免费视频网站 | 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 老司机福利观看| 精品国产三级普通话版| 亚洲人成网站在线播| 亚洲真实伦在线观看| 少妇熟女欧美另类| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 蜜臀久久99精品久久宅男| 秋霞在线观看毛片| 国产午夜精品久久久久久一区二区三区| 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 麻豆精品久久久久久蜜桃| 亚洲国产精品sss在线观看| 国产91av在线免费观看| 国产一区二区在线av高清观看| 国产精品不卡视频一区二区| 一夜夜www| 国语自产精品视频在线第100页| 六月丁香七月| 一级黄色大片毛片| 午夜福利在线观看吧| 亚洲av二区三区四区| 丝袜美腿在线中文| 精品酒店卫生间| 亚洲精品国产av成人精品| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 大话2 男鬼变身卡| 久久久久性生活片| 在线观看av片永久免费下载| 秋霞在线观看毛片| 国产午夜精品久久久久久一区二区三区| 午夜精品国产一区二区电影 | 精品一区二区免费观看| 亚洲三级黄色毛片| 成人特级av手机在线观看| 大香蕉久久网| 国产麻豆成人av免费视频| 亚洲成人精品中文字幕电影| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| 国产精品无大码| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 国产高清三级在线| 成人特级av手机在线观看| 老司机福利观看| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品 | 插逼视频在线观看| 日日干狠狠操夜夜爽| 免费观看在线日韩| 中文字幕精品亚洲无线码一区| 久久99精品国语久久久| 亚洲欧美精品综合久久99| 国产成人免费观看mmmm| 日韩一区二区视频免费看| 69人妻影院| 欧美区成人在线视频| 少妇人妻精品综合一区二区| av国产免费在线观看|