• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Diffusive Predator-Prey Model with Spatially Heterogeneous Carrying Capacity

    2023-02-15 06:40:10CHENJiaweiandWANGBiao

    CHEN Jiawei and WANG Biao

    College of Science,Xi’an University of Science and Technology,Xi’an 710054,China.

    Abstract. We study local dynamics of a diffusive predator-prey model in a spatially heterogeneous environment,where intrinsic growth rate of the prey is spatially homogeneous,whereas carrying capacity of the habitat is spatially inhomogeneous.In comparison with the existing predator-prey models,the stability of semi-trivial steady state of this model displays distinct properties.For example,for certain intermediate ranges of the death rate of the predator,the semi-trivial steady state can change its stability at least once as the dispersal rate of the prey varies from small to large,while the stability of the semi-trivial steady state is immune from the dispersal rate of the predator.

    Key Words: Predator-prey model;carrying capacity;spatial heterogeneity;stability.

    1 Introduction

    The movement of organisms is often crucial to its persistence.The creatures are scattered to look for resources,seek breeding habitat,and avoid predation,etc.Understanding the impact of dispersal on population dynamics is still an important topic in ecology.One way to investigate how the joint action of dispersal and spatial heterogeneity influences populations and communities is by using reaction-diffusion models [1].For instance,it was shown in[2]that for a reaction-diffusion model with logistic growth term in spatially heterogeneous environments,as long as a species keeps moving randomly,the total amount of resources always supports a population strictly larger than the total carrying capacity.Recently,this model has been generalized to be a more realistic one[3],where both intrinsic growth rate and carrying capacity depend on spatial variable in the habitat.Their outcomes indicate that the total population of the species has more complicated relations with the total carrying capacity.However,when the intrinsic growth rate is constant,while the carrying capacity is spatially heterogeneous,a striking result from[4]implies that for any diffusion rate,the total amount of resources supports a population strictly smaller than the total carrying capacity.For more research concerning the effects of diffusion rate and spatial heterogeneity of the environment on dynamics of populations via reaction-diffusion models,we refer interested readers to [5-13] and reference therein.

    In this paper,we discuss a diffusive predator-prey model with spatially homogeneous intrinsic growth rate of the prey and spatially inhomogeneous carrying capacity of the habitat,and explore the effects of dispersal and spatial heterogeneity on the local dynamics of the predator and prey populations.The mathematical model can be characterized by the following reaction-diffusion system:

    whereu(x,t)andv(x,t)represent the population density of prey and predator species at locationxand timetwith corresponding diffusion ratesμandν.The initial valuesu0(x)andv0(x)are both non-negative and non-trivial.The functionK(x)denotes carrying capacity of the habitat,andd>0 is the mortality rate of the predator.is the Laplace operator in RN,which characterizes the random movement of the predator and the prey species.The habitat Ω is a bounded domain in RNwith smooth boundary?Ω.The zero Neumann boundary conditions mean that no individual can cross the boundary of the habitat.?u/?n=?u·n,wherenis the outward unit normal vector on?Ω.The constantsμ,νandkare supposed to be positive.

    To reflect spatial heterogeneity of carrying capacity of the habitat in (1.1),throughout this paper,we always assume that the carrying capacityK(x)satisfies the following condition:

    IfK(x)satisfies(1.2),then the single species equation[3,4]admits a unique positive solution for everyμ>0,denoted asθ(x,μ),andθ(x,μ)∈C2().For the sake of simplicity,we frequently writeθ(x,μ)asθ.Therefore,under the assumption(1.2),the model(1.1)has a unique semi-trivial steady state(θ,0).

    The purpose of this paper is to investigate local stability of the semi-trivial steady state(θ,0),it turns out that its stability is determined by the sign of the principal eigenvalue of an eigenvalue problem (2.12) with indefinite weights.Clearly,the principal eigenvalueλ1of(2.12)is a function of the dispersal rates of the predator and prey.Hence,it suffices to inquire about howλ1changes its sign as the dispersal rates of the predator and prey vary from small to large.To more precisely state the main results of this paper,we define some notations:

    The magnitude ofd1,d2andd3can be obtained from Lemma 2.2 in Section 2,which is given byd1<d2<d3.

    The main consequence of this paper is as follows:

    Theorem 1.1.Suppose that(1.2)holds.Then the following conclusions are true.

    (i)If d<d1,then(θ,0)is unstable for anyμ>0and ν>0.

    (ii)If d1<d<d2,and K(x)also satisfies(2.7),then for every ν>0,(θ,0)changes its stability at least once asμvaries from0to+∞.

    (iii)If d2<d<d3,and K(x)also satisfies(2.7),then there exists a unique=(d,K,Ω)>0such that for any ν>,(θ,0)is stable for everyμ>0;whereas for any ν<,(θ,0)changes its stability at least once asμvaries from0to+∞.

    (iv)If d>d3,then(θ,0)is stable for everyμ>0and ν>0.

    Remark 1.1.If the carrying capacity of the habitat is a positive constant,thend1=d2=d3>0.The results of Theorem 1.1 reduces to (i) and (ii).In sharp contrast to spatially homogeneous carrying capacity,Theorem 1.1 reveals the process how the stability of(θ,0) changes from unstable to stable stepwise as the death rate of the predator varies from small to large,but not just simple from unstable to stable.

    Figure 1: This picture illustrates Theorem 1.1 (i) for the parameter range d∈(0,d1).The red region is a place where(θ,0) is unstable,that is,the predator can invade when the predator is relatively rare.From the biological point of view,it implies that as long as the death rate of the predator is less than some constant,the predator will successfully invade when scarce,which is independent of the dispersal rates of the predator and prey.

    Remark 1.2.The case when intrinsic growth rate of the prey is spatially heterogeneous and carrying capacity of the habitat is spatially homogeneous has been considered in[14].To compare the outcomes of Theorem 1.1 with that of[14,Theorem 1.1],we assume thatK(x)=m(x),wherem(x) is the intrinsic growth rate of the prey in [14].Part (iv) is the similar to [14,Theorem 1.1 (i)].However,asθhas opposite property with that of[14,Theorem 1.1],Parts(ii)and(iii)exhibit tremendous differences.Though the result of Part(i)is similar to that of[14,Theorem 1.1(iv)],the critical death rate of the predator is less than that of [14,Theorem 1.1 (iv)].Biologically,the predator with smaller death rate can invade when rare,which is independent of the dispersal rates of the predator and prey.

    We shall apply the following four figures to explain the outcomes of Theorem 1.1.Figs.2 and 3 are drawn for illustrative purposes only,because the real curves separating the invasive and non-invasive regions should be more complicated.

    The rest of this paper is arranged as follows: In Section 2,we give some qualitative properties ofθ,and establish a criteria for the stability of(θ,0).Section 3 is devoted to the proof of Theorem 1.1.In Section 4,we present some discussions for further investigation.

    2 Preliminary

    In this section,we firstly introduce several consequences ofθ,and then give a criteria for the local stability of(θ,0)and related properties.

    Lemma 2.1.Suppose that K(x)satisfies(1.2).Then

    (i)(x,μ)is a smooth mapping fromR+to C2().In addition,

    uniformly on.

    (ii)For every μ>0,<K andθ >K.In particular,‖θ‖L∞(Ω)<‖K‖L∞(Ω).

    Proof.The smooth dependence ofθonμcan be obtained from the implicit function theorem[1].The limiting behaviors ofθasμapproaches zero or infinity can be found in[3].Part(ii)can be derived by the maximum principle(see,e.g.,[15]).

    Lemma 2.2.For everyμ>0,we have

    Figure 3: This possible figure manifests Theorem 1.1 (iii) for the death rate of the predator d∈(d2,d3).Herein, is the unique positive root of kmaxθ-d=0,and is the unique positive root of λ1(μ,ν)=0 when μ is sufficiently small.There is a curve such that μ-ν plane can be separated by the curve into two different areas.The red area is the location where (θ,0) is unstable,whereas the blue region is the location where (θ,0) is stable.From the biological point of view,if the dispersal rate is less than some critical constant,the predator can invade when the dispersal rate of the prey is less than some constant,while cannot invade when the the dispersal rate of the prey is larger than some constant; whereas if the dispersal rate of the predator is larger than the critical constant,as long as the prey keeps moving randomly,no matter how slow or fast,the predator cannot invade when rare.

    Proof.Though the proof can be obtained from[4,Theorem 1.1],we here give a different approach.Recall thatθsatisfies

    Dividing(2.2)byθ2and applying integration by parts,we have

    Hence,for everyμ>0,

    Figure 4: This portrait exhibits Theorem 1.1 (iv) for the death rate of the predator d∈(d3,+∞).The whole blue domain is the location where (θ,0) is stable.That is,if the death rate of the predator is larger than certain constant,the predator cannot invade when rare,which is irrelevant to the dispersal rates of the predator and prey.

    asθis a strictly positive function ofxandμ.By Cauchy-Schwarz inequality,we derive

    Then

    Integrating Eq.(2.2)over Ω and applying the boundary condition,we find

    It follows from Cauchy-Schwarz inequality again that

    The strict inequality of(2.6)holds sinceθis a function ofxandμ.The right inequality of(2.1)immediately follows from(2.5)and(2.6).

    Lemma 2.3.Assume that(1.2)holds.Moreover,if K(x)satisfies

    thenmaxθ is strictly decreasing with respect toμ.

    Proof.We adopt the similar argument to that of [16,Theorem 1.2].Denote?θ/?μbyθ′.

    Differentiating(1.2)with regard toμ,we obtain

    Let

    Through direct calculation,we see thatwsatisfies

    It follows from(2.7)and Lemma 2.1 that

    for anyμ>0,which implies that

    Hence,

    It follows from the maximum principle thatw ≤0.To establish the conclusion of this Lemma,we firstly show that

    Now it suffices to exclude the casew(x0)=0 for somex0∈.We argue by contradiction.Ifx0∈Ω,i.e.,wreaches its maximum atx0∈Ω.Applying the maximum principle to(2.9),we see thatw ≡0 on.It follows from(2.9)thatθ ≡maxθ.This is impossible asθis a non-constant function.Hencex0∈?Ω.However,Hopf boundary point Lemma implies that>0.This contradicts with the boundary condition of (2.9).Therefore,w<0 on.Then the inequality(2.10)follows.

    For any fixed ?μ>0,letx*be the global maximum point of maxθ.By(2.10),we can conclude

    By the continuity ofθ′,there exits someη >0 such that

    Hence

    In particular,

    The stability properties of(θ,0)is crucial for analyzing whether the predator can invade the prey.To this end,we firstly establish a criteria for the stability of(θ,0).Consider the associated linearized eigenvalue problem:

    In the following lemma,we shall show that the second equation of (2.11) is decoupled from the first.By applying the similar arguments to that of[17,Lemma 5.5]or[18,Lemma 6],we can conclude

    Lemma 2.4.The semi-trivial steady state(θ,0)of(1.1)is stable/unstable if and only if the following eigenvalue problem,for(λ,ψ)∈R×C2(),admits a positive/negative principal eigenvalue(denoted by λ1):

    Clearly,the smallest eigenvalueλ1of(2.12)is a function of bothμandν.To investigate how the stability of(θ,0)changes,it suffices to inquire howλ1changes its sign asμandνvary.The following Lemma 2.5 characterizes the monotonicity ofλ1with respect toνand the limiting behaviors ofλ1asνtends to zero and infinity,respectively.The proof of Lemma 2.5 is standard,see,e.g.,[15],we skip it here.

    Lemma 2.5.The principal eigenvalue λ1of(2.12)smoothly depends on ν>0.Furthermore,

    (i)λ1is strictly increasing in ν.

    (ii)It has the following limiting behaviors:

    3 Proof of Theorem 1.1

    3.1 Proofs of Theorem 1.1(i)and(iv)

    Theorem 1.1(i)and(iv)follows from the following lemma 3.1.

    Lemma 3.1.Assume that K(x)satisfies(1.2).Then the following outcomes hold.

    (i)If d<d1,then(θ,0)is unstable for anyμ>0and ν>0.

    (ii)If d>d3,then(θ,0)is stable for everyμ>0and ν>0.

    Proof.(i) By Lemma 2.4,the stability of (θ,0) is determined by the sign of the smallest eigenvalueλ1of

    Dividing the above equation byψ,applying integration by parts and reorganizing the result,we find

    Recall thatd1=kH(K).It follows from Lemma 2.2 that

    for everyμ>0.Therefore,λ1<0 for everyμ,ν>0.

    (ii)For this case,by Lemmas 2.1,2.2 and 2.5,we obtain

    for everyμ>0.Becauseλ1is strictly increasing inν,λ1>0 for anyμ,ν>0.This finishes the proof.

    3.2 Proof of Theorem 1.1(ii)

    In this subsection,we discuss how the stability of(θ,0)changes asμandνvary when the death rate of the predator lies in the range:

    By Lemma 2.1,we have

    Lemma 2.3 tells us thatkmaxθ-dis strictly decreasing with respect toμ.Hence,kmaxθd=0 has a unique positive root,denoted as.Moreover,

    In other words,for anyμ∈(0,),kθ-dis positive somewhere in Ω,whilekθ-d<0 for everyμ∈(,+∞).

    For the caseμ∈(,+∞),integrating(2.12)over Ω and applying the boundary condition,we derive

    askθ-d<0 andψ>0 on.Consequently,(θ,0)is stable forμ>andν>0.

    For the other caseμ∈(0,),by our assumption ofd,we see that=dhas at least one positive root,denoted byμ*.Hence,there exists someδ>0 such that

    From the above inequalities,it is not difficult to see

    For everyμ∈(μ*,),we have

    Then the following eigenvalue problem[1]

    admits a positive principal eigenvalue,denoted asσ1=σ1(μ).In addition,

    and its corresponding eigenfunction?can be chosen positive on.By(2.12)and(3.2),λ1=0 atν=1/σ1.Sinceλ1is a strictly increasing function ofν,we haveλ1>0 ifν>1/σ1,λ1<0 ifν<1/σ1.

    Claim 3.1.

    We first argue by contradiction to show thatPassing to a subsequence if necessary,we may assume thatσ1(μ)0 as.By (3.3),σ1(μ) is uniformly bounded from the above in(μ*,).Therefore,there exits some constantC*>0 such that 0.By elliptic regularity theory and Sobolev embedding theorem,we can conclude0 inC2()as.Moreover,?*satisfies

    Dividing(3.5)by?*,applying integration by parts and the boundary condition,we obtain

    This together with the boundary condition implies that?*≡c,wherecis a positive constant.Substituting?*≡cinto(3.5),we havekθ(x,μ*)=d.Clearly,we arrive at a contradiction.

    We shall consider the following two different cases:

    (i)σ1*>0.Integrating(3.6)over Ω and applying the boundary condition yields

    Because

    and?*>0,this is impossible.

    (ii)σ1*=0.Then?*fulfills

    Hence?*≡c*,wherec*is some positive constant.

    Dividing(3.2)byσ1,integrating the result over Ω and applying the boundary condition,we get

    By letting-,we have

    Sincekθ(x,)-d ≤kmax-d=0 and?*>0,we also reach a contradiction.The assertion follows immediately.

    3.3 Proof of Theorem 1.1(iii)

    In this subsection,we investigate the case when the death rate of the predator belongs to the region:

    In this case,we have

    for everyμ>0.By Lemma 2.1,we derive

    That is,for everyμ∈(0,),kθ-dis positive somewhere in Ω,whereaskθ-d<0 for anyμ∈(,+∞).Hence,for everyμ∈(0,),the eigenvalue problem(3.2)has a positive principal eigenvalue,denoted asσ*=σ*(μ).Sinceλ1is strictly increasing inν,we obtainλ1>0 ifν>1/σ*,λ1=0 atν=1/σ*andλ1<0 ifν<1/σ*.In addition,we can show thatλ1>0 for anyμ>andν>0.Set

    By the similarly argument as in Theorem 1.1(ii),we can prove that limμσ*(μ)=+∞and limμ0+σ*(μ)=,where0 is a finite and positive constant.Moreover,it follows from(3.3)thatσ*(μ)is a smooth function ofμ.Hence,is finite and positive.

    We shall split into two cases to finish the proof of this part.

    (i)ν<.For this case,we have 1/ν >inf0<μ<σ*(μ)for eachμ∈(0,).On the other hand,limμ-σ*(μ)=+∞.Thus 1/ν-σ*(μ) changes sign as least once asμvaries in(0,).That is,λ1changes its sign as least once asμvaries in(0,).Moreover,λ1>0 for anyμ>andν >0.Therefore,λ1changes its sign (from negative to positive) as least once asμvaries from zero to infinity.

    (ii)ν>.For this case,we obtainν>1/σ*(μ)for everyμ∈(0,).Thusλ1>0 for everyμ∈(0,).This fact together with the above discussions indicates thatλ1>0 for everyμ>0.

    Figure 5

    4 Discussions

    In this paper,we investigated a diffusive predator-prey model in spatially inhomogeneous environments subject to zero Neumann boundary conditions.In contrast to spatially homogeneous environments,the local dynamics of the model in spatially inhomogeneous environments is more complicated.It turns out that for some ranges of the death rate of the predator,the semi-trivial steady state of this model in spatially heterogeneous environments can change its stability at least once as the dispersal rates of the predator and prey vary,whereas in spatially homogeneous environments,the stability of the semi-trivial steady state of this model is irrelevant to the dispersal rates of the predator and prey.These results have significant implication in ecology.A change in dispersal rates of the predator and prey can alter the influences and consequences of interactions of different organisms.

    For a more generalized predator-prey model in spatially heterogeneous environments:

    wherer(x)is the intrinsic growth rate of the prey and depends upon the spatial variablex.It is of importance to inquire the stability of the semi-trivial steady state (u*,0) of(4.1) as it determines whether the predator can successfully invade when rare,whereu*=u*(x,μ)is the unique positive solution of

    The stability of(u*,0)has been examined in[14,Theorem 1.1]withr(x)=c1K(x)and in Theorem 1.1 withr(x)=c2for some constantsc1,c2>0,respectively.However,due to the limitations of current mathematical methods,it is difficult to acquire the stability of(u*,0)for the general model(4.1).One of the key ingredients is that the structure of

    is unclear.

    The limiting behaviors ofF(μ) asμtends to zero and infinity have been obtained in [3],however,the diagram ofF(μ) is still vague.To further understand the structure ofF(μ),we shall adopt numerical simulation to predict howF(μ) changes asμvaries from small to large.In the following figures,the vertical coordinate denotesF(μ)and the horizontal coordinate representsμ.Since the graphic ofF(μ) enormously depends onrandK,we consider the following three cases:

    (i)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,andh/Kis strictly decreasing inK.

    In this case,we chooseK(x)=x+9 andr(x)=forx∈Ω=(0,1).By some simple computations,we derive

    From Fig.5(a)and(b),we see that there exist several maximum and minimum ofF(μ).Moreover,the diagram ofF(μ)oscillates wildly around 9.5 nearμ=0.In comparison with the casesr(x)=c1K(x)andr(x)=c2forc1,c2>0,the shape ofF(μ)is more complicated.

    (ii)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,andh/Kis strictly increasing inK.In Fig.6,we selectK(x)=x+9 andr(x)=(x+9)(x+10)forx∈Ω=(0,1).It is easy to show

    Fig.6 (a) and (b) can be used to characterize the change rule ofF(μ) asμvaries from smaller and bigger scale,respectively.

    (iii)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,buth/Kis nonmonotone with respect toK.In this case,it turns out that the image ofF(μ) is more complicated.In Fig.7,we chooseK(x)=x+9 andr(x)=(x+9)forx∈Ω=(0,1).Some calculations yield

    Figure 6

    Figure 7

    In Fig.8,we selectK(x)=x+9 andr(x)=(x+9){sin[2π(x+9)]+1}forx∈Ω=(0,1).In addition,For this case,the quantitative relation between limiting values ofF(μ)asμtend to zero and infinity is uncertain.Furthermore,there are multiply maximum and minimum ofF(μ)forμ∈[0,∞].To more precisely investigate how(u*,0)of(4.1)changes its stability asμandνvary,the death ratedof the predator should be classified into several cases according to the maximum and minimum ofF(μ).

    Figure 8

    We applied numerical simulation to predict the shape ofF(μ),which is closely related to the stability of (u*,0).Hence,appropriate assumptions onr(x) andK(x) should be explored.On the other hand,other topics concerning such as existence and multiplicity of positive steady states of(4.1)will be considered in the future.

    Acknowledgement

    This work was supported by the National Science Foundation of China(No.11801436).

    日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 免费看a级黄色片| 一进一出好大好爽视频| 国产伦人伦偷精品视频| 精品一区二区三区四区五区乱码| 最新美女视频免费是黄的| 国产成人免费无遮挡视频| 亚洲精品一卡2卡三卡4卡5卡| 国产日韩欧美亚洲二区| 老司机影院毛片| 嫁个100分男人电影在线观看| 一级片'在线观看视频| 99久久99久久久精品蜜桃| 国产亚洲一区二区精品| 亚洲男人天堂网一区| 国产精品.久久久| 久久久久国内视频| 欧美精品av麻豆av| 久热爱精品视频在线9| 一个人免费看片子| 狠狠婷婷综合久久久久久88av| 操出白浆在线播放| 91老司机精品| 美女视频免费永久观看网站| 久久久久精品人妻al黑| 午夜精品久久久久久毛片777| 欧美大码av| 9热在线视频观看99| 免费黄频网站在线观看国产| 黄频高清免费视频| 欧美成人免费av一区二区三区 | 国产区一区二久久| 一区二区三区乱码不卡18| 少妇粗大呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美精品人与动牲交sv欧美| 国产男女内射视频| 国产精品免费视频内射| 国产av一区二区精品久久| 亚洲av第一区精品v没综合| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 老司机亚洲免费影院| 99久久人妻综合| av有码第一页| 亚洲天堂av无毛| 国产精品一区二区在线不卡| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区 | www日本在线高清视频| 国产日韩欧美视频二区| 曰老女人黄片| 亚洲va日本ⅴa欧美va伊人久久| 国精品久久久久久国模美| 人人妻人人澡人人看| 久久久久国产一级毛片高清牌| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 日韩免费av在线播放| 精品国产超薄肉色丝袜足j| 精品福利观看| 老熟妇仑乱视频hdxx| 丁香六月欧美| 成人18禁高潮啪啪吃奶动态图| 黄色怎么调成土黄色| 欧美日韩亚洲国产一区二区在线观看 | 欧美乱码精品一区二区三区| 中文字幕av电影在线播放| 9191精品国产免费久久| 免费在线观看视频国产中文字幕亚洲| 免费日韩欧美在线观看| 一边摸一边做爽爽视频免费| 三上悠亚av全集在线观看| 亚洲成人免费av在线播放| 国产精品香港三级国产av潘金莲| 免费在线观看完整版高清| 国产精品九九99| 天堂中文最新版在线下载| 国产黄色免费在线视频| 精品熟女少妇八av免费久了| 国产精品亚洲av一区麻豆| 成人18禁在线播放| 大片免费播放器 马上看| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 男女免费视频国产| 正在播放国产对白刺激| 国产精品免费视频内射| 国产精品av久久久久免费| 一区二区av电影网| 美国免费a级毛片| 十八禁高潮呻吟视频| 国产精品自产拍在线观看55亚洲 | 91老司机精品| 国产精品久久久久久精品古装| 深夜精品福利| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 国产又色又爽无遮挡免费看| 国产精品偷伦视频观看了| 欧美久久黑人一区二区| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 亚洲人成电影观看| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区久久| 午夜91福利影院| 精品亚洲成a人片在线观看| 香蕉丝袜av| 久久精品国产99精品国产亚洲性色 | 久久久久久久国产电影| 大香蕉久久网| 热99re8久久精品国产| 9191精品国产免费久久| 国产高清激情床上av| 日韩人妻精品一区2区三区| av天堂久久9| 欧美日韩黄片免| 日本黄色日本黄色录像| 两人在一起打扑克的视频| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 正在播放国产对白刺激| www.自偷自拍.com| 国产精品久久久久久人妻精品电影 | 好男人电影高清在线观看| 老司机影院毛片| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| 美女福利国产在线| 欧美在线黄色| 久9热在线精品视频| 少妇猛男粗大的猛烈进出视频| 99国产极品粉嫩在线观看| 极品教师在线免费播放| 欧美成人免费av一区二区三区 | 亚洲国产欧美日韩在线播放| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 曰老女人黄片| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 黄色成人免费大全| 日韩熟女老妇一区二区性免费视频| 夜夜夜夜夜久久久久| 成年人午夜在线观看视频| 久久久欧美国产精品| 国产精品成人在线| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 久久午夜亚洲精品久久| 国产成+人综合+亚洲专区| av在线播放免费不卡| 亚洲av国产av综合av卡| 9191精品国产免费久久| 18禁国产床啪视频网站| 中文欧美无线码| 黄色毛片三级朝国网站| 精品国产一区二区三区四区第35| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 大香蕉久久网| 丰满人妻熟妇乱又伦精品不卡| 超碰97精品在线观看| 久久久国产精品麻豆| 久久精品国产99精品国产亚洲性色 | 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 丰满少妇做爰视频| 午夜福利,免费看| 三级毛片av免费| 成年人午夜在线观看视频| 18禁国产床啪视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲色图av天堂| 99re6热这里在线精品视频| 国产成人一区二区三区免费视频网站| 一级a爱视频在线免费观看| 深夜精品福利| 亚洲精品国产一区二区精华液| 成人特级黄色片久久久久久久 | 青青草视频在线视频观看| 嫩草影视91久久| 久久99一区二区三区| 欧美久久黑人一区二区| 免费少妇av软件| 黄片大片在线免费观看| 国产精品久久久久成人av| 久久中文看片网| 一区二区av电影网| 亚洲中文字幕日韩| 日韩欧美免费精品| 国产99久久九九免费精品| tube8黄色片| 这个男人来自地球电影免费观看| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲成国产人片在线观看| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| av天堂久久9| 乱人伦中国视频| 久久免费观看电影| 大片免费播放器 马上看| 日韩欧美一区视频在线观看| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 国产精品自产拍在线观看55亚洲 | 少妇 在线观看| 五月开心婷婷网| 美女扒开内裤让男人捅视频| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲男人天堂网一区| 18禁裸乳无遮挡动漫免费视频| 欧美成人午夜精品| 777米奇影视久久| 国产日韩欧美视频二区| 狠狠狠狠99中文字幕| 青青草视频在线视频观看| 波多野结衣av一区二区av| 亚洲五月婷婷丁香| 激情在线观看视频在线高清 | 国产精品偷伦视频观看了| 丰满少妇做爰视频| 亚洲熟妇熟女久久| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 免费观看av网站的网址| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 如日韩欧美国产精品一区二区三区| 欧美性长视频在线观看| 成人免费观看视频高清| 久久人妻av系列| 黑人巨大精品欧美一区二区蜜桃| 久久性视频一级片| 岛国在线观看网站| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 美女午夜性视频免费| 中文字幕人妻熟女乱码| 亚洲欧美激情在线| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 久久狼人影院| 最新在线观看一区二区三区| 久久婷婷成人综合色麻豆| 国产成人精品久久二区二区91| 淫妇啪啪啪对白视频| 国产一区有黄有色的免费视频| tocl精华| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 国产av国产精品国产| 午夜福利乱码中文字幕| 大码成人一级视频| 亚洲av成人不卡在线观看播放网| 香蕉国产在线看| 成年人午夜在线观看视频| av有码第一页| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频| 咕卡用的链子| 国产精品.久久久| 91大片在线观看| 91成人精品电影| 久久久国产成人免费| 亚洲色图av天堂| 极品教师在线免费播放| 99国产精品99久久久久| 亚洲精品美女久久久久99蜜臀| 亚洲综合色网址| 老熟妇仑乱视频hdxx| 亚洲精品自拍成人| a级毛片黄视频| 日韩视频一区二区在线观看| 中文字幕av电影在线播放| 热99久久久久精品小说推荐| 亚洲欧洲日产国产| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 悠悠久久av| 男女边摸边吃奶| 美国免费a级毛片| 大香蕉久久网| 一级毛片女人18水好多| 亚洲第一青青草原| 国产精品 欧美亚洲| 新久久久久国产一级毛片| 亚洲熟女精品中文字幕| 日韩中文字幕欧美一区二区| 18在线观看网站| 欧美 亚洲 国产 日韩一| 国产精品.久久久| 久久人妻av系列| 国产主播在线观看一区二区| 大片电影免费在线观看免费| 国产亚洲精品第一综合不卡| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 曰老女人黄片| 国产成人精品久久二区二区91| 精品国产国语对白av| 久久久久精品人妻al黑| 我的亚洲天堂| 欧美黄色片欧美黄色片| 国产片内射在线| 日韩 欧美 亚洲 中文字幕| 色婷婷av一区二区三区视频| 老熟女久久久| 久久久精品国产亚洲av高清涩受| 蜜桃国产av成人99| 国产黄频视频在线观看| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 男男h啪啪无遮挡| 91精品三级在线观看| 久久久久精品国产欧美久久久| 欧美在线黄色| 高清av免费在线| 无遮挡黄片免费观看| 无人区码免费观看不卡 | av片东京热男人的天堂| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 妹子高潮喷水视频| 国产精品成人在线| 999精品在线视频| 大香蕉久久成人网| 国产精品亚洲一级av第二区| 69av精品久久久久久 | 一边摸一边抽搐一进一小说 | 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 精品一品国产午夜福利视频| 欧美另类亚洲清纯唯美| 精品一品国产午夜福利视频| 色尼玛亚洲综合影院| 精品视频人人做人人爽| 高清av免费在线| 国产xxxxx性猛交| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 久久久水蜜桃国产精品网| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 成人影院久久| 亚洲视频免费观看视频| 制服人妻中文乱码| 亚洲第一青青草原| 91大片在线观看| 在线永久观看黄色视频| 正在播放国产对白刺激| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 久久久水蜜桃国产精品网| 怎么达到女性高潮| 国产欧美亚洲国产| 午夜免费鲁丝| 岛国毛片在线播放| 大片免费播放器 马上看| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 丝袜美腿诱惑在线| 久久精品亚洲精品国产色婷小说| 一夜夜www| 99国产精品一区二区三区| 免费观看人在逋| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| 国产亚洲精品一区二区www | 少妇的丰满在线观看| 波多野结衣av一区二区av| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 欧美黄色淫秽网站| 国产不卡一卡二| 婷婷丁香在线五月| h视频一区二区三区| 一区二区日韩欧美中文字幕| 欧美大码av| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 岛国在线观看网站| 久久精品91无色码中文字幕| 另类精品久久| 18在线观看网站| 一区二区三区激情视频| 久久香蕉激情| 亚洲少妇的诱惑av| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 2018国产大陆天天弄谢| 一进一出好大好爽视频| 精品一区二区三区av网在线观看 | 欧美另类亚洲清纯唯美| 久久久欧美国产精品| 9色porny在线观看| 欧美黑人欧美精品刺激| 久久国产亚洲av麻豆专区| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 性色av乱码一区二区三区2| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 欧美 日韩 精品 国产| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽 | 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费现黄频在线看| 国产高清videossex| 欧美在线黄色| 老司机午夜十八禁免费视频| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 亚洲欧洲精品一区二区精品久久久| 宅男免费午夜| 国产1区2区3区精品| 国产免费现黄频在线看| 国产精品久久久久成人av| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 夜夜夜夜夜久久久久| 国产又爽黄色视频| 成人影院久久| 国产一区二区激情短视频| 黑人操中国人逼视频| 18禁美女被吸乳视频| 黄色成人免费大全| 波多野结衣一区麻豆| 欧美+亚洲+日韩+国产| 日韩大片免费观看网站| 久久精品国产亚洲av香蕉五月 | 青青草视频在线视频观看| 久久精品aⅴ一区二区三区四区| 日本wwww免费看| 高清欧美精品videossex| 五月开心婷婷网| 91老司机精品| 国产av一区二区精品久久| 精品国产一区二区久久| 不卡一级毛片| 亚洲精华国产精华精| 女性被躁到高潮视频| 狠狠婷婷综合久久久久久88av| 国产免费视频播放在线视频| 他把我摸到了高潮在线观看 | 午夜免费成人在线视频| 99精品久久久久人妻精品| www日本在线高清视频| 一个人免费在线观看的高清视频| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡| 日本一区二区免费在线视频| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 免费在线观看日本一区| 热99久久久久精品小说推荐| 午夜久久久在线观看| 国产不卡一卡二| 99热国产这里只有精品6| 在线 av 中文字幕| 亚洲性夜色夜夜综合| 亚洲av片天天在线观看| 色94色欧美一区二区| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 日本欧美视频一区| 狂野欧美激情性xxxx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 亚洲 国产 在线| 中文字幕人妻熟女乱码| 涩涩av久久男人的天堂| 久久久久精品国产欧美久久久| 国产一区二区激情短视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美av亚洲av综合av国产av| 搡老乐熟女国产| 久久精品人人爽人人爽视色| 9热在线视频观看99| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久人人爽av亚洲精品天堂| 丝袜美腿诱惑在线| 亚洲成人免费电影在线观看| 性少妇av在线| 欧美变态另类bdsm刘玥| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影 | 人成视频在线观看免费观看| 热re99久久精品国产66热6| 两人在一起打扑克的视频| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 男女边摸边吃奶| 自线自在国产av| 法律面前人人平等表现在哪些方面| 亚洲精品粉嫩美女一区| 757午夜福利合集在线观看| 男人操女人黄网站| 欧美精品高潮呻吟av久久| 久久久久久久久免费视频了| 免费观看人在逋| 成人特级黄色片久久久久久久 | 国产高清视频在线播放一区| 午夜激情久久久久久久| 成年人免费黄色播放视频| 久久久久网色| 69精品国产乱码久久久| 日韩 欧美 亚洲 中文字幕| 一级毛片女人18水好多| 最近最新中文字幕大全免费视频| 女人被躁到高潮嗷嗷叫费观| 一级片'在线观看视频| 国产欧美亚洲国产| 国产精品久久久久久精品电影小说| 69精品国产乱码久久久| 在线观看免费视频网站a站| 丁香六月欧美| 色精品久久人妻99蜜桃| 日韩欧美国产一区二区入口| 伦理电影免费视频| 叶爱在线成人免费视频播放| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| 成人黄色视频免费在线看| 国产xxxxx性猛交| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影 | 中亚洲国语对白在线视频| 亚洲av成人不卡在线观看播放网| 国产片内射在线| 大陆偷拍与自拍| 午夜两性在线视频| 最新在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影观看| 免费看a级黄色片| 两个人看的免费小视频| 狠狠狠狠99中文字幕| 飞空精品影院首页| 国产精品久久电影中文字幕 | 国产成人精品久久二区二区91| 久久久久久人人人人人| 法律面前人人平等表现在哪些方面| 亚洲av电影在线进入| 亚洲欧美激情在线| 老司机午夜福利在线观看视频 | 国产片内射在线| 精品国产一区二区三区久久久樱花| av免费在线观看网站| 99久久精品国产亚洲精品| 国产精品二区激情视频| 欧美激情久久久久久爽电影 | 男女无遮挡免费网站观看| 真人做人爱边吃奶动态| 又大又爽又粗| 搡老岳熟女国产| 一级毛片精品| 视频在线观看一区二区三区| 新久久久久国产一级毛片| 国产成人av激情在线播放| av网站免费在线观看视频| 亚洲伊人色综图| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜制服| 纯流量卡能插随身wifi吗| 亚洲精品国产色婷婷电影| 国产亚洲精品久久久久5区| 国产高清视频在线播放一区| 亚洲欧洲精品一区二区精品久久久| 中文字幕另类日韩欧美亚洲嫩草|