竇立謙,唐藝璠,張秀云
執(zhí)行器故障下臨近空間飛行器容錯(cuò)控制重構(gòu)
竇立謙,唐藝璠,張秀云
(天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院,天津 300072)
臨近空間飛行器飛行條件復(fù)雜、氣動(dòng)環(huán)境惡劣,極易導(dǎo)致飛行器舵面出現(xiàn)故障,容錯(cuò)控制是保證飛行器安全運(yùn)行的關(guān)鍵,對(duì)此提出了一種基于觀測(cè)器-控制器的有限時(shí)間高精度容錯(cuò)控制重構(gòu)策略.首先,為提高容錯(cuò)控制的精確性,在故障影響下飛行器姿態(tài)模型基礎(chǔ)上,設(shè)計(jì)了雙層快速自適應(yīng)滑模觀測(cè)器,實(shí)現(xiàn)對(duì)包含故障、干擾等在內(nèi)的綜合干擾有限時(shí)間估計(jì),避免了傳統(tǒng)自適應(yīng)增益的過估計(jì),從而有效提高觀測(cè)器估計(jì)精度;進(jìn)一步基于觀測(cè)器估計(jì)值設(shè)計(jì)容錯(cuò)控制器,獲得故障影響下的期望控制力矩,實(shí)現(xiàn)飛行姿態(tài)的有限時(shí)間容錯(cuò)控制.其次,針對(duì)故障時(shí)氣動(dòng)舵面實(shí)際提供的控制力矩難以滿足期望值的問題,引入推力矢量噴管作為補(bǔ)充執(zhí)行器.考慮故障舵面特性,采用基于二次規(guī)劃的最優(yōu)控制分配策略,將期望力矩合理分配到氣動(dòng)舵面及矢量噴管上,通過矢量噴管補(bǔ)償故障舵面力矩?fù)p失,實(shí)現(xiàn)執(zhí)行器故障下控制重構(gòu). 最后,通過數(shù)值仿真驗(yàn)證了所設(shè)計(jì)觀測(cè)器的優(yōu)越性,并驗(yàn)證了所提出容錯(cuò)控制重構(gòu)策略的有效性.
臨近空間飛行器;容錯(cuò)控制;自適應(yīng)滑模觀測(cè)器;控制分配
臨近空間飛行器(NSV)是指在20~100km的臨近空間區(qū)域內(nèi)飛行并完成特定任務(wù)的飛行器.其飛行速度快、高度范圍廣的特點(diǎn)使其成為現(xiàn)代戰(zhàn)爭(zhēng)中進(jìn)行空天作戰(zhàn)的關(guān)鍵武器[1].然而,臨近空間飛行器在完成飛行任務(wù)過程中,軌跡與姿態(tài)變化劇烈,飛行條件極端復(fù)雜,氣動(dòng)環(huán)境非常惡劣.這些不利因素極易導(dǎo)致飛行器執(zhí)行器出現(xiàn)故障,若不及時(shí)進(jìn)行容錯(cuò)處理,將會(huì)影響飛行器安全穩(wěn)定飛行,甚至導(dǎo)致飛行器失穩(wěn)墜毀.因此,研究執(zhí)行器非致命故障下的容錯(cuò)控制重構(gòu)技術(shù)是保證臨近空間飛行器安全性的關(guān)鍵.
容錯(cuò)控制分為兩種:主動(dòng)容錯(cuò)與被動(dòng)容錯(cuò)[2].被動(dòng)容錯(cuò)將故障及干擾等處理為系統(tǒng)綜合不確定,通過系統(tǒng)的魯棒性達(dá)到容錯(cuò)目的,在飛行器容錯(cuò)控制中已有較為深入的研究.文獻(xiàn)[3-4]針對(duì)高超聲速舵面故障,基于反饋線性化,設(shè)計(jì)帶有在線參數(shù)辨識(shí)的容錯(cuò)控制器,實(shí)現(xiàn)對(duì)故障等引起的系統(tǒng)綜合不確定的自適應(yīng)估計(jì).文獻(xiàn)[5]針對(duì)多干擾及時(shí)變故障影響下的再入飛行器控制問題,基于高階滑模觀測(cè)器對(duì)綜合不確定的估計(jì),設(shè)計(jì)有限時(shí)間容錯(cuò)控制器,并利用遞歸神經(jīng)網(wǎng)絡(luò)進(jìn)行控制舵分配,保證飛行器的安全穩(wěn)定運(yùn)行.文獻(xiàn)[6]針對(duì)高超聲速飛行器故障問題,設(shè)計(jì)了一種改進(jìn)的有限時(shí)間指令濾波反步容錯(cuò)控制器,實(shí)現(xiàn)飛行器安全穩(wěn)定運(yùn)行.文獻(xiàn)[7]針對(duì)復(fù)合干擾及間歇性故障共同影響下的高超聲速飛行器,提出一種改進(jìn)的自適應(yīng)容錯(cuò)控制算法,實(shí)現(xiàn)故障下飛行器系統(tǒng)的穩(wěn)定性.目前飛行器被動(dòng)容錯(cuò)控制中,大多利用觀測(cè)器等對(duì)故障、干擾等在內(nèi)的綜合不確定進(jìn)行估計(jì),但目前所設(shè)計(jì)的自適應(yīng)觀測(cè)器存在對(duì)不確定的過估計(jì)問題,難以保證高精度估計(jì)及控制.然而考慮到飛行器出現(xiàn)故障后仍需完成飛行任務(wù),如何設(shè)計(jì)一種新型的高精度魯棒容錯(cuò)控制器,在出現(xiàn)故障的情況下仍能保證對(duì)參考指令的精確跟蹤,是本文研究的關(guān)鍵.
因此,為提高故障影響下臨近空間飛行器姿態(tài)容錯(cuò)控制的精確性,保證故障下,本文提出了一種高精度容錯(cuò)控制重構(gòu)策略,具體貢獻(xiàn)歸納如下:
(1) 設(shè)計(jì)雙層快速自適應(yīng)滑模觀測(cè)器,觀測(cè)器增益依據(jù)干擾大小自適應(yīng)調(diào)整,避免過估計(jì)帶來的抖振問題,實(shí)現(xiàn)對(duì)包含故障在內(nèi)的綜合干擾有限時(shí)間高精度估計(jì);進(jìn)一步基于估計(jì)值設(shè)計(jì)容錯(cuò)控制器實(shí)現(xiàn)控制系統(tǒng)有限時(shí)間收斂;
(2) 依據(jù)飛行器舵面故障特性,提出最優(yōu)控制分配策略,引入推力矢量,有效補(bǔ)償了故障舵面損失的力矩,實(shí)現(xiàn)了故障下執(zhí)行器控制重構(gòu).
考慮外界干擾,臨近空間飛行器控制模型可以表示[8]為
由此得控制力矩與執(zhí)行器偏轉(zhuǎn)間的關(guān)系為
引入推力矢量技術(shù)可以通過矢量噴管的偏轉(zhuǎn)提供三軸方向力矩,對(duì)姿態(tài)角速率產(chǎn)生直接控制作用.在推力矢量作用下,控制力矩由氣動(dòng)舵面與推力矢量共同產(chǎn)生,其公式變?yōu)?/p>
1.3.1?舵面效率損失故障
1.3.2?舵面卡死故障
1.3.3?綜合故障分析
考慮飛行器舵面卡死故障及效率損失故障共同影響,故障下舵面偏轉(zhuǎn)模型可以綜合表示[11]為
出現(xiàn)綜合故障的具體情況描述如下:
考慮舵面綜合故障,將式(5)和式(12)代入姿態(tài)角速率控制系統(tǒng)(2)得
進(jìn)一步得到綜合舵面故障姿態(tài)控制模型
臨近空間飛行器姿態(tài)容錯(cuò)控制重構(gòu)分為3部分,結(jié)構(gòu)如圖1所示.首先,基于故障影響下臨近空間飛行器姿態(tài)控制模型,設(shè)計(jì)雙層快速自適應(yīng)滑模觀測(cè)器,用于實(shí)現(xiàn)對(duì)包括舵面故障和外界干擾在內(nèi)的綜合干擾的有限時(shí)間估計(jì);其次,基于觀測(cè)值設(shè)計(jì)容錯(cuò)控制器,獲得期望控制力矩,保證故障下控制系統(tǒng)有限時(shí)間高精度收斂;最后,設(shè)計(jì)最優(yōu)分配策略,將期望控制力矩分配氣動(dòng)舵面和矢量噴管上,以推力矢量補(bǔ)充故障舵面損失的力矩,最終實(shí)現(xiàn)容錯(cuò)控制重構(gòu),保證臨近空間飛行器故障下安全飛行.
圖1?臨近空間飛行器姿態(tài)容錯(cuò)控制重構(gòu)結(jié)構(gòu)
基于式(15),設(shè)計(jì)雙層快速自適應(yīng)滑模觀測(cè)器為
定義關(guān)系式
選擇李雅普諾夫函數(shù)
對(duì)式(27)求導(dǎo)得
進(jìn)一步得到
引理2[14]針對(duì)積分鏈系統(tǒng)
針對(duì)臨近空間飛行器姿態(tài)控制系統(tǒng),定義跟蹤誤差為
考慮觀測(cè)器對(duì)綜合干擾的估計(jì),基于飛行器動(dòng)力學(xué)模型(14)和(15),建立誤差動(dòng)態(tài)方程為
設(shè)計(jì)容錯(cuò)控制器
當(dāng)氣動(dòng)舵面發(fā)生故障時(shí),舵面實(shí)際產(chǎn)生的力矩難以滿足期望控制力矩,采用矢量噴管補(bǔ)償氣動(dòng)舵面受故障影響無法提供的力矩,最終通過最優(yōu)控制分配實(shí)現(xiàn)控制重構(gòu).
舵面的偏轉(zhuǎn)約束條件為
基于控制效率矩陣和舵面偏轉(zhuǎn)約束條件,針對(duì)舵面故障影響下的控制重分配問題,采用有約束的最優(yōu)二次規(guī)劃方法進(jìn)行控制分配求解.
1)仿真1所設(shè)計(jì)觀測(cè)器與典型觀測(cè)器對(duì)比仿真
為驗(yàn)證所設(shè)計(jì)觀測(cè)器的優(yōu)越性,對(duì)比典型自適應(yīng)滑模觀測(cè)器與所設(shè)計(jì)觀測(cè)器對(duì)綜合干擾的估計(jì)效果.自適應(yīng)滑模觀測(cè)器表達(dá)[15]為
采用所設(shè)計(jì)的觀測(cè)器及典型自適應(yīng)滑模觀測(cè)器對(duì)綜合干擾進(jìn)行估計(jì),觀測(cè)器對(duì)比仿真效果如圖2和圖3所示.
圖2為所設(shè)計(jì)觀測(cè)器與典型自適應(yīng)滑模觀測(cè)器對(duì)綜合干擾的跟蹤對(duì)比曲線.從圖2中可以看到所設(shè)計(jì)觀測(cè)器響應(yīng)速度快,能夠在1s內(nèi)恢復(fù)對(duì)干擾的估計(jì).圖3為兩種觀測(cè)器的觀測(cè)誤差對(duì)比,所設(shè)計(jì)觀測(cè)器的觀測(cè)精度高,估計(jì)誤差精度達(dá)到0.005.由此說明,所設(shè)計(jì)的觀測(cè)器能夠?qū)收霞巴饨鐢_動(dòng)所構(gòu)成的綜合干擾進(jìn)行準(zhǔn)確快速估計(jì),證明了觀測(cè)器的有效性.
2)仿真2 舵面故障下飛行器姿態(tài)跟蹤仿真
圖4~圖6為姿態(tài)角跟蹤參考指令的仿真,姿態(tài)角實(shí)現(xiàn)對(duì)給定參考指令的穩(wěn)定跟蹤.圖7和圖8為控制重分配之后各執(zhí)行器偏轉(zhuǎn)角度.由仿真圖可以看出,升降舵在第10s卡死在2°后將一直處于卡死狀態(tài),無法進(jìn)行靈活調(diào)整,方向舵在15s出現(xiàn)0.8效率損失故障后,方向舵能夠提供的偏轉(zhuǎn)角度明顯變小,缺失的力矩主要由推力矢量舵面進(jìn)行補(bǔ)償,以實(shí)現(xiàn)最優(yōu)控制分配的目標(biāo).由此可知所設(shè)計(jì)的容錯(cuò)控制重構(gòu)策略可以在舵面非致命故障影響下實(shí)現(xiàn)對(duì)姿態(tài)角的有效控制,提高了飛行器的容錯(cuò)能力.
圖4?滾轉(zhuǎn)角跟蹤曲線及跟蹤誤差曲線
圖5?俯仰角跟蹤曲線及跟蹤誤差曲線
圖6?偏航角跟蹤曲線及跟蹤誤差曲線
圖7 氣動(dòng)舵面故障下執(zhí)行器氣動(dòng)舵面重分配偏轉(zhuǎn)角度
圖8?氣動(dòng)舵面故障下執(zhí)行器矢量噴管重分配偏轉(zhuǎn)角度
為確保臨近空間飛行器在執(zhí)行器故障影響下對(duì)參考指令的精確跟蹤,本文提出了一種基于觀測(cè)器-控制器的高精度容錯(cuò)控制重構(gòu)策略.考慮執(zhí)行器效率損失及卡死故障,建立故障下帶有推力矢量的飛行器姿態(tài)控制模型;設(shè)計(jì)了雙層快速自適應(yīng)滑模觀測(cè)器,該觀測(cè)器具有自適應(yīng)增益非過估計(jì)、抖振小、估計(jì)精度高的優(yōu)點(diǎn),可以在干擾突變后快速恢復(fù)對(duì)綜合干擾的估計(jì);進(jìn)一步結(jié)合容錯(cuò)控制器,實(shí)現(xiàn)對(duì)飛行姿態(tài)有限時(shí)間容錯(cuò)控制;最后,考慮故障特性用矢量噴管提供補(bǔ)充力矩,完成控制重構(gòu).最終實(shí)現(xiàn)執(zhí)行器故障下臨近空間飛行器姿態(tài)角對(duì)參考指令精確跟蹤,降低故障對(duì)飛行性能的影響.
[1] 包為民. 航天飛行器控制技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 自動(dòng)化學(xué)報(bào),2013,39(6):697-702.
Bao Weimin. Present situation and development tendency of aerospace control techniques[J]. Acta Automatica Sinica,2013,39(6):697-702(in Chinese).
[2] Eterno J S,Weiss J L,Looze D P,et al. Design issues for fault tolerant-restructurable aircraft control[C]//IEEE Conference on Decision and Control. Fort Lauderdale,USA,1985:900-905.
[3] Xu B Y,Qi R Y,Jiang B. Adaptive fault-tolerant control for HSV with unknown control direction[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,55(6):2743-2758.
[4] 董?旺,齊瑞云,姜?斌. 空天飛行器直接力/氣動(dòng)力復(fù)合容錯(cuò)控制[J]. 航空學(xué)報(bào),2020,41(11):78-91.
Dong Wang,Qi Ruiyun,Jiang Bin. Composite fault tolerant control for aerospace vehicle with swing engines and aerodynamic fins[J]. Acta Aeronauticaet Astronautica Sinica,2020,41(11):78-91(in Chinese).
[5] Yu Yue,Wang Honglun,Li Na. Fault-tolerant control for over-actuated hypersonic reentry vehicle subject to multiple disturbances and actuator faults[J]. Aerospace Science and Technology,2019,87:230-243.
[6] Zhang Xiuyun,Zong Qun,Dou liqian,et al. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle[J]. Journal of the Franklin Institute,2020,357(13):8543-8565.
[7] 胡開宇,陳復(fù)揚(yáng),程子安. 高超聲速飛行器間歇故障改進(jìn)自適應(yīng)容錯(cuò)控制[J]. 控制與決策,2021,36(11):2627-2636.
Hu Kaiyu,Chen Fuyang,Cheng Zi’an. Improved adaptive fault-tolerant control of intermittent faults in hypersonic flight vehicle[J]. Control and Decision,2021,36(11):2627-2636(in Chinese).
[8] Liu Junjie,Sun Mingwei,Chen Zengqinag,et al. Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer[J]. Nonlinear Dynamics,2020,99:2785.
[9] Yu Y,Wang H,Li N. Fault-tolerant control for over-actuated hypersonic reentry vehicle subject to multiple disturbances and actuator faults[J]. Aerospace Science and Technology,2019,87:230-243.
[10] Bolende M A,Domand B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets,2007,44(2):374-387.
[11] Zhang Z H,Li S,YanH,et al. Sliding mode switching observer-based actuator fault detection and isolation for a class of uncertain systems[J]. Nonlinear Analysis Hybrid Systems,2019,33:322-335.
[12] Levant A. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control,1993,58(6):1247-1263.
[13] Utkin V I,Poznyak A S. Adaptive sliding mode control with application to super-twisting algorithm:Equivalent control method[J]. Automatica,2013,49:39-47.
[14] Tian B,Liu L,Lu H,et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics,2018,65(3):2567-2557.
[15] Dong Q,Zong Q,Tian B,et al. Adaptive disturbance observer‐based finite‐time continuous fault‐tolerant control for reentry RLV[J]. International Journal of Robust and Nonlinear Control,2017,27(18):4275-4295.
Fault-Tolerant Control Reconstruction of Near Space Vehicle Under Actuator Faults
Dou Liqian,Tang Yifan,Zhang Xiuyun
(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
The flight conditions of near space vehicles are complex and the aerodynamic environment is poor,which can easily lead to the failure of the aircraft rudder. Fault-tolerant control is the key to ensuring the safe operation of the aircraft. A finite-time and high-precision fault-tolerant control reconfiguration strategy based on observer-controller is proposed. Firstly,to improve the accuracy of fault-tolerant control,a double-layer fast adaptive sliding mode observer is designed based on the attitude model of aircraft under the influence of faults. The finite-time estimation of comprehensive disturbances including faults and other disturbances is realized,and the overestimation of the traditional adaptive gain is avoided,so as to effectively improve the estimation accuracy of the observer. Based on the estimation of disturbance,a fault-tolerant controller is designed to obtain the desired control torque under the influence of fault,and the finite time fault-tolerant control of flight attitude is realized. Second,the actual control torque provided by the aerodynamic rudder is difficult to meet the expected value when the fault occurs,the thrust vectoring nozzles are therefore introduced as supplementary actuators. Considering the characteristics of the fault rudder,the optimal control allocation strategy based on quadratic programming is adopted. The expected torque is reasonably distributed to aerodynamic rudders and the vector nozzles. Vectoring nozzles are used to compensate for torque loss of the fault rudder and realize the control reconfiguration under actuator fault. Finally,the superiority of the designed observer is verified by numerical simulations,and the effectiveness of the proposed fault-tolerant control reconfiguration strategy is verified.
near space vehicle(NSV);fault-tolerant control;adaptive sliding mode observer;control allocation
10.11784/tdxbz202111034
TP237
A
0493-2137(2023)02-0160-09
2021-11-19;
2022-04-18.
竇立謙(1976—??),男,博士,副教授,douliqian@tju.edu.cn.
張秀云,zxy_11@tju.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61873340,61903349,62073234,62003236,62022060).
Supported by the National Natural Science Foundation of China(No.61873340,No.61903349,No.62073234,No.62003236,No.62022060).
(責(zé)任編輯:孫立華)