徐湘楚 米增強 詹澤偉 紀(jì) 陵
考慮多重不確定性的電動汽車聚合商參與能量-調(diào)頻市場的魯棒優(yōu)化模型
徐湘楚1米增強1詹澤偉1紀(jì) 陵2
(1. 新能源電力系統(tǒng)國家重點實驗室(華北電力大學(xué)) 保定 071003 2. 國電南京自動化股份有限公司 南京 210003)
為了充分挖掘電動汽車(EV)參與電力市場交易的市場價值,電動汽車聚合商(EVA)可將眾多EV資源聚合起來作為一個投標(biāo)主體參與日前能量和調(diào)頻市場。針對EVA參與電力市場的投標(biāo)決策面臨多重不確定性因素影響問題,計及EV電量和功率邊界,建立了EVA響應(yīng)能力評估模型;對EV用戶響應(yīng)意愿、調(diào)頻信號和市場電價的不確定性進(jìn)行建模;以EVA的投標(biāo)凈收益最大化為目標(biāo),構(gòu)建一種考慮多重不確定性的EVA參與能量-調(diào)頻市場的魯棒優(yōu)化模型,以合理制定次日各交易時段EVA的基線功率和所提供的調(diào)頻容量。通過算例驗證了模型的有效性,并分析了各種不確定因素對投標(biāo)凈收益的影響,所提策略可為EVA的投標(biāo)決策提供參考。
電動汽車聚合商 能量-調(diào)頻市場 多重不確定性 魯棒優(yōu)化
構(gòu)建以新能源為主體的新型電力系統(tǒng)是實現(xiàn)“碳達(dá)峰、碳中和”目標(biāo)的主要戰(zhàn)略舉措之一,但隨著新能源的大規(guī)模接入,其隨機性、波動性給電力系統(tǒng)安全穩(wěn)定運行帶來了巨大挑戰(zhàn)。傳統(tǒng)的以“源隨荷動”來實現(xiàn)系統(tǒng)供需平衡的調(diào)控模式已難以為繼,利用柔性負(fù)荷資源的需求響應(yīng)方案為破解系統(tǒng)供需平衡難題提供了新的解決思路[1]。
電動汽車(Electric Vehicle, EV)作為一種重要的需求響應(yīng)資源,因其節(jié)能減排的優(yōu)勢,近年來發(fā)展迅猛。根據(jù)國際能源署公布的《Global EV Outlook 2021》報告顯示,2020年全球EV的數(shù)量已經(jīng)達(dá)到約1 000萬輛,預(yù)計到2030年將飆升至1.45億輛[2]。此外,隨著5G通信、智能控制技術(shù)和大數(shù)據(jù)分析技術(shù)的發(fā)展,以及電力市場機制的完善,使得聚合碎片化的EV資源并高效利用在電力輔助服務(wù)市場成為可能[3]。電動汽車聚合商(Electric Vehicle Aggregator, EVA)作為電力市場和EV用戶之間的中間代理機構(gòu),可將眾多EV聚合成一個利益主體參與電力市場交易,為電力系統(tǒng)提供多種輔助服務(wù),如削峰填谷、旋轉(zhuǎn)備用、調(diào)頻、促進(jìn)新能源消納等[4-7]。
然而電力市場和EV用戶具有的不確定性會給EVA的投標(biāo)決策帶來一定挑戰(zhàn)。其中與電力市場相關(guān)的不確定性因素包括能量電價、輔助服務(wù)價格、調(diào)頻信號等;EV用戶的不確定性因素有EV入網(wǎng)/離網(wǎng)時間、入網(wǎng)/離網(wǎng)時的荷電狀態(tài)(State of Charge, SOC)、用戶響應(yīng)意愿等。在已有的研究文獻(xiàn)中,對不確定性問題的處理方法大致可分為隨機優(yōu)化、模糊優(yōu)化和魯棒優(yōu)化三種[8]。其中隨機優(yōu)化和模糊優(yōu)化方法需要利用相應(yīng)的概率分布函數(shù)和隸屬度函數(shù)來表征變量的不確定性,而魯棒優(yōu)化方法只需定義變量的置信區(qū)間,對于無法獲得相關(guān)變量概率分布函數(shù)和隸屬度函數(shù)的場景,魯棒優(yōu)化方法具有更好的適用性。
基于隨機優(yōu)化或模糊優(yōu)化方法,文獻(xiàn)[9]提出了一種EVA參與日前和實時能量市場與調(diào)頻市場的最佳投標(biāo)策略,所提方案基于兩階段隨機規(guī)劃方法,通過條件風(fēng)險價值法來規(guī)避風(fēng)險,包括將電價、調(diào)頻信號及與EV車主相關(guān)的不確定性建模為由不同場景集表示的隨機過程。文獻(xiàn)[10]建立了以最大化EVA預(yù)期利潤為目標(biāo)的隨機優(yōu)化模型,從而制定EVA參與日前能量市場的最優(yōu)投標(biāo)策略,基于歷史數(shù)據(jù)利用隨機優(yōu)化方法對市場出清場景和不同類型EV充電模式的不確定性進(jìn)行建模。文獻(xiàn)[11]在考慮了備用需求的不確定性的情況下,提出一種EVA參與能量市場和備用市場的隨機優(yōu)化模型。文獻(xiàn)[12]基于數(shù)據(jù)驅(qū)動方法,提出EVA參與能量市場和備用市場的隨機優(yōu)化模型,考慮了EV充電行為和調(diào)頻信號的不確定性。文獻(xiàn)[13]利用隨機規(guī)劃方法制定了EVA參與能量市場和調(diào)節(jié)市場的最優(yōu)投標(biāo)策略,考慮了市場電價和調(diào)節(jié)信號的不確定性。盡管上述文獻(xiàn)確定了最大化EVA預(yù)期利潤的策略,但不能保證完全防止出現(xiàn)不確定性的最壞情況,如果不確定性場景沒有正確生成,則可能無法得到正確的優(yōu)化結(jié)果。文獻(xiàn)[14]提出了一種EVA參與多個輔助服務(wù)市場的協(xié)調(diào)優(yōu)化投標(biāo)策略,使用模糊優(yōu)化考慮輔助服務(wù)價格和調(diào)節(jié)信號的不確定性。文獻(xiàn)[15]考慮了能量市場電價和EV移動性相關(guān)的不確定性,提出一種模糊優(yōu)化模型,旨在最大化停車場運營商(等價于EVA)的利潤,同時滿足EV車主的充電需求。然而,模糊規(guī)劃的難點在于構(gòu)建合理的隸屬度函數(shù)。
相比于隨機優(yōu)化和模糊優(yōu)化方法,基于魯棒優(yōu)化的EVA的決策模型計算成本較低,并且可以在最壞的不確定性場景下給出使得EVA自身利益最大化的優(yōu)化投標(biāo)策略。然而,這方面的研究文獻(xiàn)較少。文獻(xiàn)[16]提出一種考慮價格不確定性的魯棒優(yōu)化模型,旨在制定可供電力零售商使用的各種決策策略。文獻(xiàn)[17]提出一種EVA參與日前能量市場的分層優(yōu)化決策模型,旨在使其自身利益最大化,利用魯棒優(yōu)化方法考慮了EV出行模式的不確定性,同時考慮了電池退化成本對收益的影響,但是沒有考慮電價的不確定性。文獻(xiàn)[18]提出一種EVA參與能量市場的魯棒優(yōu)化方法,考慮了電價不確定性對EVA優(yōu)化調(diào)度的影響。文獻(xiàn)[19]提出非合作博弈和合作博弈兩種魯棒優(yōu)化策略,其中不確定性集用于刻畫EV集群的總能量需求。文獻(xiàn)[20]提出一種EV集群并網(wǎng)的分布式魯棒優(yōu)化調(diào)度模型。文獻(xiàn)[21]提出一種考慮EV電池退化成本的EV集群調(diào)度算法,所提方案中利用魯棒優(yōu)化表征了電價的不確定性。文獻(xiàn)[22]建立了EVA參與日前能量市場的隨機魯棒優(yōu)化投標(biāo)模型,其中日前市場價格和EV出行需求的不確定性分別使用場景法和置信區(qū)間進(jìn)行建模。但是,以上魯棒優(yōu)化模型只考慮了EVA僅參加能量市場的場景,忽略了EV參與輔助服務(wù)市場的價值。文獻(xiàn)[23]提出了集中充電站同時參與能量市場和調(diào)頻市場的魯棒優(yōu)化模型,考慮了能量電價和調(diào)頻電價的不確定性。然而,文獻(xiàn)[16-23]的魯棒優(yōu)化模型中均未考慮EV用戶響應(yīng)意愿不確定性的影響。
針對上述文獻(xiàn)研究的不足,為了充分挖掘EV的市場價值,特別是EV因具有快速調(diào)節(jié)特性,是一種稀缺的優(yōu)質(zhì)調(diào)頻資源,本文提出一種EVA參與日前能量市場和調(diào)頻輔助市場的投標(biāo)決策模型。利用魯棒優(yōu)化方法全面地考慮了包括EV用戶響應(yīng)意愿、調(diào)頻信號和市場電價(能量電價,調(diào)頻電價)等在內(nèi)的多重不確定性因素,通過算例分析了EVA在日前電力市場的投標(biāo)策略和投標(biāo)凈收益。
EVA作為電力市場和EV用戶之間的中間代理機構(gòu),其參與能量-調(diào)頻市場的框架如圖1所示。EVA的主要職責(zé)可相應(yīng)地分為兩部分:①采集EV的出行特征參數(shù)、電池參數(shù)、運行狀態(tài)及用戶用電期望等信息,為EV用戶提出合理的激勵和補償方案,對具有響應(yīng)意愿的EV集群聚合響應(yīng)能力進(jìn)行評估,并根據(jù)下發(fā)的調(diào)度目標(biāo)指令直接控制各EV的充放電行為;②在投標(biāo)過程中與不同電力市場的交易,如能量市場、備用市場和調(diào)頻市場等,為電力系統(tǒng)提供各種不同的輔助服務(wù)。
圖1 EVA參與能量-調(diào)頻市場框架
圖2 EV單體的電量和功率邊界
EVA可聚合和控制某一區(qū)域范圍內(nèi)大規(guī)模的EV,可利用所有EV的電量和功率邊界的總和來表示EVA的總電量和功率邊界。EVA的電量和功率邊界為
實際中EV用戶由于出行習(xí)慣、對激勵水平的敏感程度等因素造成響應(yīng)行為的不確定性,計及不確定性后EV用戶的響應(yīng)意愿示意圖如圖3所示。圖中黑色實線為基于消費者心理學(xué)原理的EV用戶響應(yīng)意愿曲線,隨著激勵價格的變化可分為死區(qū)、線性區(qū)和飽和區(qū),紅色虛線為EV響應(yīng)意愿的最大波動曲線。
圖3 EV用戶響應(yīng)意愿不確定性示意圖
從圖3可以看出,在死區(qū)和線性區(qū),當(dāng)激勵水平還不夠高時,響應(yīng)不確定性主要取決于非經(jīng)濟因素,EV用戶響應(yīng)意愿隨著激勵價格的增大而增大,同時響應(yīng)不確定性也隨之增加。在飽和區(qū),激勵水平對用戶有足夠吸引力,此時響應(yīng)不確定性主要由經(jīng)濟因素決定,隨著激勵水平的提高,響應(yīng)意愿已達(dá)上限,但響應(yīng)不確定性逐漸減小到零[25]。
EV用戶響應(yīng)意愿和響應(yīng)偏差為
本文中市場電價包括EVA參與能量市場的能量電價及EVA參與調(diào)頻市場的上調(diào)頻和下調(diào)頻電價。由于出清場景的不確定性,市場電價不是確定值,而是在預(yù)測電價上下一定范圍內(nèi)波動,其不確定性可用魯棒優(yōu)化方法處理。
電力市場機制對EVA的投標(biāo)決策具有顯著影響,本文研究工作的市場機制基礎(chǔ)如下:①參與調(diào)頻輔助服務(wù)的容量補償按上調(diào)頻容量和下調(diào)頻容量分開結(jié)算;②因參與調(diào)頻輔助服務(wù)的造成的充電功率與基線功率的偏差,按照能量價格進(jìn)行結(jié)算;③EVA所需的基線功率和提供的調(diào)頻容量不足以影響區(qū)域電力市場的出清價格,即EVA被當(dāng)作市場價格接受者。
EVA參與日前能量市場和調(diào)頻市場的確定性優(yōu)化模型如下,以最大化EVA凈收益為優(yōu)化目標(biāo),目標(biāo)函數(shù)為
模型需滿足的約束條件為
約束式(1)~式(12),式(15)~式(17)(27)
式(24)~式(26)為EVA運行功率和調(diào)頻容量不越限的約束條件。
全面考慮EV用戶響應(yīng)意愿、調(diào)頻信號和市場電價的不確定性,通過魯棒對等轉(zhuǎn)換將確定性優(yōu)化模型轉(zhuǎn)變?yōu)轸敯魞?yōu)化模型,構(gòu)建的EVA參與能量-調(diào)頻市場的魯棒優(yōu)化投標(biāo)決策模型可描述為
約束式(1)~式(10)(54)
目標(biāo)函數(shù)(28)和約束條件(29)考慮了不確定性對EVA凈收益的影響;式(30)~式(33)表示考慮EV用戶響應(yīng)意愿的EVA電量和功率的上、下邊界;式(34)和式(35)表示考慮EV用戶響應(yīng)意愿的EVA的響應(yīng)能力上、下邊界;式(36)和式(37)表示考慮調(diào)頻信號不確定性后EVA運行時電量不越限的約束條件;式(38)~式(40)為EVA充電功率和調(diào)頻容量不越限的約束條件;式(41)~式(53)為魯棒優(yōu)化約束條件。
圖4 預(yù)測電價
表1 主要參數(shù)
Tab.1 Main parameters
本文采用Python 3.7+Gurobi 9.5求解器軟件環(huán)境對魯棒優(yōu)化問題進(jìn)行求解,系統(tǒng)硬件環(huán)境為Intel Core I7 CPU,3.4GHz,16GB內(nèi)存。
EV因具有快速調(diào)節(jié)特性,是一種稀缺的優(yōu)質(zhì)調(diào)頻資源,為充分體現(xiàn)EVA參與電力市場的市場價值,設(shè)置了兩種場景進(jìn)行對比分析。場景一:EVA只參與能量市場;場景二:EVA參與能量市場和調(diào)頻市場。為了顯示方便,本文所有圖中上調(diào)頻容量顯示為負(fù)。
圖5 時EVA的調(diào)度策略
不同場景下EVA的SOC變化曲線如圖6所示。從圖6可以看出,場景二下EVA的SOC相比于場景一波動范圍更小,數(shù)值更集中于中間區(qū)域。這是因為當(dāng)EVA同時參與能量市場和調(diào)頻市場時,EVA會預(yù)留一部分容量響應(yīng)系統(tǒng)調(diào)頻需求,同時獲得更高的收益,因此,EVA會避免過充或過放。
圖6 不同場景下EVA的SOC變化曲線
EVA在兩種場景下的收益對比見表2,在場景一下EVA只能通過電價差套利,當(dāng)電價差不夠大或者支付給EV的補償成本較高時,EVA的凈利潤可能為負(fù)。在場景二下,EVA的主要收益來自提供調(diào)頻服務(wù),扣除額外電池?fù)p耗和EV補償成本外,仍具有可觀凈收益。
表2 收益對比分析
Tab.2 Revenue comparative analysis (單位:$)
5.3.1 激勵水平對調(diào)度策略的影響
圖7 時不同激勵水平下EVA的調(diào)度策略
5.3.2 魯棒控制系數(shù)對調(diào)度策略的影響
為了分析激勵水平與魯棒控制系數(shù)對EVA投標(biāo)收益的影響,設(shè)置了以下幾種方案進(jìn)行對比分析。方案一:不考慮不確定因素的影響,等價于確定性優(yōu)化;方案二:只考慮調(diào)頻電價的魯棒性;方案三:只考慮能量電價的魯棒性;方案四:只考慮EV響應(yīng)意愿的魯棒性;方案五:只考慮調(diào)頻信號的魯棒性;方案六(本文所提方案):全面考慮EV響應(yīng)意愿、調(diào)頻信號和市場電價的魯棒性。
不同方案下EVA的投標(biāo)收益如圖9所示,具體凈收益數(shù)值見表3。由圖9可知,相同條件下,考慮不確定性的魯棒優(yōu)化投標(biāo)策略相對于確定性投標(biāo)策略更加保守,因此收益更小,但不確定性因素對投標(biāo)收益的影響卻不盡相同。由表3可知,EVA的收益基本上為正值,說明EVA同時參與能量和調(diào)頻輔助服務(wù)市場,通過能量電價差套利和提供調(diào)頻輔助服務(wù)獲利,這有助于提高EVA參與電力市場的積極性。
圖9 不同方案下EVA的投標(biāo)凈收益
表3 EVA投標(biāo)凈收益
Tab.3 EVA's net bidding revenue (單位:$)
圖10 時激勵水平對投標(biāo)凈收益的影響
圖11 時魯棒控制系數(shù)對投標(biāo)凈收益的影響
Fig.11 The influence of robust control factor on net bidding revenue when
另外,市場電價的預(yù)測誤差區(qū)間也會對魯棒優(yōu)化結(jié)果產(chǎn)生影響。假設(shè)能量電價和調(diào)頻電價的預(yù)測值與實際值的誤差均在0~30%內(nèi),分別取預(yù)測誤差為0、5%、10%、15%、20%、25%、30%。在不同市場電價預(yù)測誤差下EVA的魯棒凈收益如圖12所示。隨著市場電價預(yù)測誤差的增大,EVA的魯棒凈收益逐漸減小。當(dāng)能量電價和調(diào)頻電價的誤差為0 時,凈收益為2 050.5$;當(dāng)能量電價和調(diào)頻電價的誤差為30%時,凈收益為1 579.1$。
圖12 電價預(yù)測誤差對投標(biāo)凈收益的影響
在電力市場環(huán)境下,為了充分挖掘EV作為優(yōu)質(zhì)調(diào)頻資源的市場價值,同時考慮到EVA投標(biāo)決策面臨各種不確定因素的影響,本文提出一種EVA同時參與日前能量市場和調(diào)頻輔助市場的投標(biāo)決策魯棒優(yōu)化模型。主要結(jié)論如下:
1)EVA主要通過參與調(diào)頻市場獲利,因EV的優(yōu)質(zhì)調(diào)頻特性,為充分體現(xiàn)EVA的市場價值,EVA更適宜參與調(diào)頻市場。
2)提高激勵水平可以提高EV用戶的響應(yīng)意愿,進(jìn)而增大EVA的響應(yīng)能力,在一定程度上可以提高EVA的投標(biāo)收益。但是一味增大激勵水平,可能使得EV的調(diào)度成本顯著增加,EVA的凈收益反而減小。因此,EVA應(yīng)該根據(jù)調(diào)頻需求設(shè)置合理的激勵水平。
3)增大魯棒控制系數(shù)可降低EVA的投標(biāo)風(fēng)險,但投標(biāo)凈收益也隨之減小,不同不確定性因素的魯棒性對EVA凈收益的影響的重要程度不同,其中調(diào)頻信號的不確定性對EVA投標(biāo)凈收益的影響最大。
4)本文所提模型全面考慮了EVA參與能量-調(diào)頻市場聯(lián)合優(yōu)化投標(biāo)決策所面臨的各種不確定性因素的影響,優(yōu)化結(jié)果可為EVA的投標(biāo)決策提供可靠參考。
后續(xù)研究將進(jìn)一步關(guān)注如何將EVA調(diào)度指令合理分解到每輛EV,聚焦實時控制策略研究和補償機制設(shè)計。
[1] 王錫凡, 邵成成, 王秀麗, 等. 電動汽車充電負(fù)荷與調(diào)度控制策略綜述[J]. 中國電機工程學(xué)報, 2013, 33(1): 1-10.
Wang Xifan, Shao Chengcheng, Wang Xiuli, et al. Survey of electric vehicle charging load and dispatch control strategies[J]. Proceedings of the CSEE, 2013, 33(1): 1-10.
[2] International Energy Agency Website. Global EV Outlook 2021. [R/OL]. 2021. https://www.iea.org/ reports/global-ev-outlook-2021.
[3] 賈雨龍, 米增強, 余洋, 等. 計及不確定性的柔性負(fù)荷聚合商隨機-魯棒投標(biāo)決策模型[J]. 電工技術(shù)學(xué)報, 2019, 34(19): 4096-4107.
Jia Yulong, Mi Zengqiang, Yu Yang, et al. Stochastic-robust decision-making model for flexible load aggregator considering uncertainties[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4096-4107.
[4] 張謙, 鄧小松, 岳煥展, 等. 計及電池壽命損耗的電動汽車參與能量-調(diào)頻市場協(xié)同優(yōu)化策略[J]. 電工技術(shù)學(xué)報, 2022, 37(1): 72-81.
Zhang Qian, Deng Xiaosong, Yue Huanzhan, et al. Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81.
[5] 吳巨愛, 薛禹勝, 謝東亮, 等. 電動汽車參與電量市場與備用市場的聯(lián)合風(fēng)險調(diào)度[J]. 電工技術(shù)學(xué)報, 2022, DOI: 10.19595/j.cnki.1000-6753.tces. 221386.
Wu Juai, Xue Yusheng, Xie Dongliang, et al. The joint risk dispatch of electric vehicle in day-ahead electricity energy market and reserve market[J]. Transactions of China Electrotechnical Society, 2022. DOI: 10.19595/j.cnki.1000-6753.tces.221386.
[6] 胡俊杰, 馬文帥, 薛禹勝, 等. 基于CPSSE框架的電動汽車聚合商備用容量量化[J]. 電力系統(tǒng)自動化, 2022, 46(18): 46-54.
Hu Junjie, Ma Wenshuai, Xue Yusheng, et al. Quantification of reserve capacity provided by electric vehicle aggregator based on framework of cyber-physical-social system in energy[J]. Automation of Electric Power Systems, 2022, 46(18): 46-54.
[7] 婁素華, 張立靜, 吳耀武, 等. 低碳經(jīng)濟下電動汽車集群與電力系統(tǒng)間的協(xié)調(diào)優(yōu)化運行[J]. 電工技術(shù)學(xué)報, 2017, 32(5): 176-183.
Lou Suhua, Zhang Lijing, Wu Yaowu, et al. Coordination operation of electric vehicles and power system under low-carbon economy[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 176-183.
[8] Lu Xiaoxing, Li Kangping, Wang Fei, et al. Optimal bidding strategy of DER aggregator considering bilateral uncertainty via information gap decision theory[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 158-169.
[9] Habibifar R, Aris Lekvan A, Ehsan M. A risk-constrained decision support tool for EV aggregators participating in energy and frequency regulation markets[J]. Electric Power Systems Research, 2020, 185: 106367.
[10] Zheng Yanchong, Yu Hang, Shao Ziyun, et al. Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets[J]. Applied Energy, 2020, 280: 115977.
[11] Han Bing, Lu Shaofeng, Xue Fei, et al. Day-ahead electric vehicle aggregator bidding strategy using stochastic programming in an uncertain reserve market[J]. IET Generation, Transmission & Distribution, 2019, 13(12): 2517-2525.
[12] Wu Zhouyang, Hu Junjie, Ai Xin, et al. Data-driven approaches for optimizing EV aggregator power profile in energy and reserve market[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106808.
[13] Vagropoulos S I, Bakirtzis A G. Optimal bidding strategy for electric vehicle aggregators in electricity markets[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4031-4041.
[14] Ansari M, Al-Awami A T, Sortomme E, et al. Coordinated bidding of ancillary services for vehicle-to-grid using fuzzy optimization[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 261-270.
[15] Faddel S, Al-Awami A T, Abido M A. Fuzzy optimization for the operation of electric vehicle parking lots[J]. Electric Power Systems Research, 2017, 145: 166-174.
[16] Nojavan S, Mohammadi-Ivatloo B, Zare K. Optimal bidding strategy of electricity retailers using robust optimisation approach considering time-of-use rate demand response programs under market price uncertainties[J]. IET Generation, Transmission & Distribution, 2015, 9(4): 328-338.
[17] Porras á, Fernández-Blanco R, Morales J M, et al. An efficient robust approach to the day-ahead operation of an aggregator of electric vehicles[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4960-4970.
[18] Cao Yan, Huang Liang, Li Yiqing, et al. Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105628.
[19] Yang Helin, Xie Xianzhong, Vasilakos A V. Noncooperative and cooperative optimization of electric vehicle charging under demand uncertainty: a robust stackelberg game[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1043-1058.
[20] 許剛, 張丙旭, 張廣超. 電動汽車集群并網(wǎng)的分布式魯棒優(yōu)化調(diào)度模型[J]. 電工技術(shù)學(xué)報, 2021, 36(3): 565-578.
Xu Gang, Zhang Bingxu, Zhang Guangchao. Distributed and robust optimal scheduling model for large-scale electric vehicles connected to grid[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 565-578.
[21] Ortega-Vazquez M A. Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty[J]. IET Generation, Transmission & Distribution, 2014, 8(6): 1007-1016.
[22] Baringo L, Sánchez Amaro R. A stochastic robust optimization approach for the bidding strategy of an electric vehicle aggregator[J]. Electric Power Systems Research, 2017, 146: 362-370.
[23] 姚偉鋒, 趙俊華, 文福拴, 等. 集中充電模式下的電動汽車調(diào)頻策略[J]. 電力系統(tǒng)自動化, 2014, 38(9): 69-76.
Yao Weifeng, Zhao Junhua, Wen Fushuan, et al. Frequency regulation strategy for electric vehicles with centralized charging[J]. Automation of Electric Power Systems, 2014, 38(9): 69-76.
[24] Zhang Hongcai, Hu Zechun, Xu Zhiwei, et al. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model[J]. IEEE Transactions on Power Systems, 2017, 32(1): 784-794.
[25] 趙冬梅, 宋原, 王云龍, 等. 考慮柔性負(fù)荷響應(yīng)不確定性的多時間尺度協(xié)調(diào)調(diào)度模型[J]. 電力系統(tǒng)自動化, 2019, 43(22): 21-30.
Zhao Dongmei, Song Yuan, Wang Yunlong, et al. Coordinated scheduling model with multiple time scales considering response uncertainty of flexible load[J]. Automation of Electric Power Systems, 2019, 43(22): 21-30.
[26] 張亞朋, 穆云飛, 賈宏杰, 等. 電動汽車虛擬電廠的多時間尺度響應(yīng)能力評估模型[J]. 電力系統(tǒng)自動化, 2019, 43(12): 94-103.
Zhang Yapeng, Mu Yunfei, Jia Hongjie, et al. Response capability evaluation model with multiple time scales for electric vehicle virtual power plant[J]. Automation of Electric Power Systems, 2019, 43(12): 94-103.
[27] Mu Yunfei, Wu Jianzhong, Jenkins N, et al. A spatial-temporal model for grid impact analysis of plug-in electric vehicles[J]. Applied Energy, 2014, 114: 456-465.
[28] PJM Data Website. PJM Data Miner2[DB/OL]. 2021. https://dataminer2. pjm.com /list.
A Robust Optimization Model for Electric Vehicle Aggregator Participation in Energy and Frequency Regulation Markets Considering Multiple Uncertainties
Xu Xiangchu1Mi Zengqiang1Zhan Zewei1Ji Ling2
(1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China 2. Guodian Nanjing Automation Co. Ltd Nanjing 210003 China)
In order to fully exploit the market value of electric vehicle (EV) participation in the electricity market, EV aggregator (EVA) can aggregate large number of EV resources to participate in the day-ahead energy and frequency regulation markets as a bidding entity. To address the problem that EVA face multiple uncertainties in bidding decisions to participate in the electricity market, a response capability evaluation model of EVA is developed, the uncertainty characteristics of EV users' willingness to respond, frequency regulation signals and market electricity prices are modeled, and a robust optimization model for EVA participation in the energy and frequency regulation markets considering multiple uncertainties is constructed.
Firstly, the energy and power boundaries of an individual EV are evaluated, and the energy and power boundaries of the EVA are obtained by aggregation, based on which the response capability evaluation model of the EVA is constructed. Furthermore, the uncertainties facing by EVA participation in the energy and frequency regulation markets are modeled. Among them, EV users' willingness to respond is characterized based on consumer psychology principles, and EVA energy accumulation triggered by frequency regulation signals is portrayed by frequency regulation energy coefficients. Uncertainties including EV users' willingness to respond, frequency regulation signals and market electricity prices can be handled by robust optimization methods. Finally, A robust optimization model for EVA participation in the energy and frequency regulation markets considering multiple uncertainties is constructed with the objective of maximizing the net bidding revenue of EVA.
The bidding strategies of EVA in the day-ahead electricity market under several scenarios are constructed and their net bidding revenues are compared. The case simulation results show that the proposed robust optimization model can reasonably formulate the dispatching strategy for EVA to participate in the day-ahead energy and frequency regulation markets.
Based on the case simulation results, the main conclusions can be obtained as follows. ① EVA mainly profits by participating in the frequency regulation market, and it is more appropriate for EVA to participate in the frequency regulation market in order to fully reflect the market value of EVA. ② Increasing the incentive level can increase the response willingness of EV users, which in turn increases the response capability of EVA, and to a certain extent can improve the bidding revenue of EVA. However, increasing the incentive level may make the dispatching cost of EVs increase significantly, and the net revenue of EVA decreases instead. Therefore, EVA should set a reasonable incentive level according to the frequency regulation demand. ③ Increasing the robust control coefficient can reduce the bidding risk of EVA, but the net bidding revenue also decreases. The robustness of different uncertainty factors has different degrees of importance on the net bidding revenue of EVA, among which the uncertainty of frequency regulation signal has the greatest impact on the net bidding revenue of EVA. ④ The model proposed comprehensively considers the impact of various uncertainties faced by EVA in the energy and frequency regulation markets joint optimization bidding decision, and the optimization results can provide a reliable reference for EVA's bidding decision.
Electric vehicle aggregator, energy and frequency regulation markets, multiple uncertainties, robust optimization
10.19595/j.cnki.1000-6753.tces.220597
TM732
國家重點研發(fā)計劃項目(2018YFE0122200)和中國華電集團“揭榜掛帥”項目(CHDKJ21-01-107)資助。
2022-04-18
2022-11-11
徐湘楚 男,1990年生,博士研究生,研究方向為電動汽車聚合建模及響應(yīng)能力評估、柔性負(fù)荷聚合調(diào)控技術(shù)和電力市場等。E-mail:xxc@ncepu.edu.cn(通信作者)
米增強 男,1960年生,教授,博士生導(dǎo)師,研究方向為新能源發(fā)電功率預(yù)測、柔性負(fù)荷聚合調(diào)控技術(shù)等。E-mail:mizengqiang@sina.com
(編輯 赫蕾)