• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于滑模觀測(cè)器誤差補(bǔ)償?shù)挠来磐诫姍C(jī)無(wú)位置傳感器控制策略

      2023-02-08 06:23:34梅三冠盧聞州樊啟高黃文濤項(xiàng)柏潭
      電工技術(shù)學(xué)報(bào) 2023年2期
      關(guān)鍵詞:反電動(dòng)勢(shì)同步電機(jī)觀測(cè)器

      梅三冠 盧聞州 樊啟高 黃文濤 項(xiàng)柏潭

      基于滑模觀測(cè)器誤差補(bǔ)償?shù)挠来磐诫姍C(jī)無(wú)位置傳感器控制策略

      梅三冠 盧聞州 樊啟高 黃文濤 項(xiàng)柏潭

      (江南大學(xué)物聯(lián)網(wǎng)工程學(xué)院 無(wú)錫 214122)

      轉(zhuǎn)子位置精度對(duì)于永磁同步電機(jī)無(wú)位置傳感器控制至關(guān)重要?;诨S^測(cè)器的轉(zhuǎn)子位置估計(jì)方法因?qū)?shù)敏感性低、魯棒性強(qiáng)的優(yōu)勢(shì)得到了廣泛的研究和應(yīng)用。針對(duì)滑模觀測(cè)器估計(jì)相位延遲導(dǎo)致的位置信號(hào)不準(zhǔn)確問(wèn)題,提出一種基于誤差補(bǔ)償?shù)挠来磐诫姍C(jī)無(wú)位置傳感器控制策略。首先,詳細(xì)分析了滑模觀測(cè)器的位置誤差產(chǎn)生機(jī)理,利用一階濾波器設(shè)計(jì)了相位延遲補(bǔ)償方法,以提高位置估計(jì)精度;然后,通過(guò)臨界飽和切換函數(shù)改進(jìn)滑模觀測(cè)器收斂性能;最后,通過(guò)實(shí)驗(yàn)驗(yàn)證了所提方法的可行性。實(shí)驗(yàn)結(jié)果表明,所提方法的位置估計(jì)誤差較傳統(tǒng)方法減少了89.64%。

      永磁同步電機(jī) 無(wú)位置傳感器控制 滑模觀測(cè)器 位置估計(jì)誤差補(bǔ)償

      0 引言

      隨著永磁材料的發(fā)展與應(yīng)用,永磁同步電機(jī)(Permanent Magnet Synchronous Motor, PMSM)以其功率密度高、轉(zhuǎn)動(dòng)慣量小、動(dòng)態(tài)響應(yīng)快、日趨高速化等特點(diǎn),在大型艦船電力推進(jìn)系統(tǒng)、先進(jìn)電力傳動(dòng)系統(tǒng)、高速機(jī)床加工等領(lǐng)域具有巨大發(fā)展?jié)摿?,已成為?guó)內(nèi)外研究的熱點(diǎn)[1-3]。

      交流調(diào)速系統(tǒng)中,用作閉環(huán)反饋的轉(zhuǎn)速和轉(zhuǎn)子位置信息通常由編碼器、旋轉(zhuǎn)變壓器等位置傳感器測(cè)得,位置信息的測(cè)量精度決定著電機(jī)的驅(qū)動(dòng)性能。然而在受運(yùn)行環(huán)境、安裝空間和成本等條件的限制時(shí),位置傳感器可能會(huì)出現(xiàn)測(cè)不準(zhǔn)、易損壞的情況,因此無(wú)位置傳感器控制方案是更為合適的選擇[4-6]。經(jīng)過(guò)去諸多學(xué)者的探究,PMSM無(wú)位置傳感器驅(qū)動(dòng)技術(shù)目前主要包括:基于電機(jī)基波模型的反電動(dòng)勢(shì)觀測(cè)法[7-8]、磁鏈估計(jì)法[9]、模型參考自適應(yīng)法[10],以及基于凸極跟蹤的高頻信號(hào)注入法[11-12]。其中,基于反電動(dòng)勢(shì)模型的滑模觀測(cè)器(Sliding-Mode Observer, SMO)因參數(shù)敏感性低和魯棒性強(qiáng)的優(yōu) 勢(shì)[13],得到了廣泛研究和應(yīng)用。

      SMO本質(zhì)上是根據(jù)兩相靜止坐標(biāo)系下的電機(jī)定子電流狀態(tài)方程,對(duì)系統(tǒng)狀態(tài)進(jìn)行重構(gòu),使其在滑模面上來(lái)回滑動(dòng),以快速地修正估計(jì)電流,從而讓反電動(dòng)勢(shì)觀測(cè)值接近真實(shí)值,從而得到估計(jì)的轉(zhuǎn)子位置信息。然而,由于濾波器和符號(hào)函數(shù)等模塊的引入,SMO存在著估計(jì)位置信息相位延遲、系統(tǒng)高頻抖振等問(wèn)題[14-15]。

      針對(duì)位置估計(jì)相位延遲問(wèn)題,常采用自適應(yīng)算法補(bǔ)償誤差,其中一類(lèi)是在SMO內(nèi)部原有結(jié)構(gòu)的基礎(chǔ)上設(shè)計(jì)觀測(cè)器或?yàn)V波器參數(shù)的自適應(yīng)律,以提高估計(jì)反電動(dòng)勢(shì)信號(hào)精度[16-17],但這類(lèi)自適應(yīng)算法往往依賴(lài)電機(jī)參數(shù),導(dǎo)致?tīng)奚讼到y(tǒng)的魯棒性;另一類(lèi)是根據(jù)位置估計(jì)誤差會(huì)造成電流狀態(tài)方程不平衡的特性,在SMO外部通過(guò)閉環(huán)調(diào)節(jié),實(shí)現(xiàn)對(duì)估計(jì)誤差自適應(yīng)補(bǔ)償[18-19],但這類(lèi)方法往往直接將估計(jì)位置角與補(bǔ)償角相加,并沒(méi)有考慮估計(jì)轉(zhuǎn)速相應(yīng)的延遲,因而無(wú)法保證延遲較大時(shí)電機(jī)轉(zhuǎn)速環(huán)輸出依舊平穩(wěn)。針對(duì)SMO固有的抖振問(wèn)題,常采用S型函數(shù)或飽和函數(shù)等替代符號(hào)函數(shù),減小高頻開(kāi)關(guān)信號(hào)影響[20-21],但采用常規(guī)切換函數(shù)替換,將改變系統(tǒng)向滑模面收斂的速度,導(dǎo)致位置估計(jì)精度降低。

      為解決上述問(wèn)題,提出了一種基于SMO誤差補(bǔ)償?shù)膶?shí)時(shí)位置估計(jì)方法。首先對(duì)不同因素所造成的位置信息估計(jì)誤差進(jìn)行分析;其次針對(duì)誤差產(chǎn)生原因,提出一種基于滑模觀測(cè)器估計(jì)誤差反饋的位置補(bǔ)償角計(jì)算方法,并利用一階低通濾波器(Low- Pass Filter, LPF)和高通濾波器(High-Pass Filter, HPF)設(shè)計(jì)了一種前饋相位補(bǔ)償器,能夠直接對(duì)SMO觀測(cè)到的反電動(dòng)勢(shì)進(jìn)行相移,使估計(jì)轉(zhuǎn)速和角度同時(shí)得到補(bǔ)償;再次討論了SMO響應(yīng)速度對(duì)觀測(cè)性能的影響,并提出了一種優(yōu)化的切換函數(shù)以保持SMO收斂速度基本不變,同時(shí)削弱抖振;然后設(shè)計(jì)了一種參考轉(zhuǎn)速發(fā)生器,用以配合算法中的其他模塊工作,以及在低速下開(kāi)環(huán)運(yùn)行;最后在兩臺(tái)0.75kW永磁同步電機(jī)組成的同軸對(duì)拖平臺(tái)上進(jìn)行了實(shí)驗(yàn),驗(yàn)證了所提出算法的有效性。

      1 滑模觀測(cè)器估計(jì)誤差分析

      1.1 永磁同步電機(jī)滑模觀測(cè)器的構(gòu)建

      滑模觀測(cè)器以永磁同步電機(jī)在兩相靜止坐標(biāo)系下的電壓方程為模型,對(duì)于本文所研究的表貼式永磁同步電機(jī),其電壓方程可表述[22]為

      其中

      圖1 采用PLL的SMO結(jié)構(gòu)

      1.2 位置估計(jì)誤差分析

      基于圖1原理所設(shè)計(jì)的位置觀測(cè)器在估計(jì)轉(zhuǎn)子位置時(shí)存在著固有誤差,一般表現(xiàn)為估計(jì)角度滯后于實(shí)際角度[19],造成這些誤差的因素是多方面的,下面具體分析產(chǎn)生誤差的原因。

      1.2.1 濾波環(huán)節(jié)的誤差

      由式(5)可知,一階LPF的相頻特性為

      1.2.2 滑模觀測(cè)環(huán)節(jié)的誤差

      對(duì)于SMO,根據(jù)文獻(xiàn)[20, 25]的分析,要使所選取的滑模面具有存在性和可達(dá)性,滑模增益系數(shù)應(yīng)滿足

      SMO中所設(shè)定的滑模增益系數(shù)大小會(huì)影響滑模面向零收斂的速度,這也將會(huì)使估計(jì)角度滯后,收斂越慢,滯后越多[26]。隨著轉(zhuǎn)速的提高,反電動(dòng)勢(shì)相應(yīng)增大,使收斂速度相對(duì)變慢而引起一定延遲,故所取最佳滑模增益系數(shù)也應(yīng)隨之變化[27],有

      選取此值既能保證滑模面收斂,又不會(huì)因滑動(dòng)幅度過(guò)大引起系統(tǒng)抖振。

      1.2.3 單位延遲環(huán)節(jié)和采樣環(huán)節(jié)的誤差

      上述的四類(lèi)環(huán)節(jié)均會(huì)引起位置估計(jì)精度下降,導(dǎo)致調(diào)制的電壓矢量不準(zhǔn),從而造成電機(jī)運(yùn)行效率低、無(wú)法額定工況運(yùn)行等不利結(jié)果。如果估計(jì)轉(zhuǎn)速延遲較大,還會(huì)造成自動(dòng)速度調(diào)節(jié)器(Automatic Speed Regulator, ASR)輸出振蕩,嚴(yán)重影響電機(jī)壽命。因此,探究轉(zhuǎn)速和轉(zhuǎn)子位置角誤差補(bǔ)償方法,是實(shí)現(xiàn)PMSM高效穩(wěn)定運(yùn)行的關(guān)鍵。

      2 改進(jìn)的位置估計(jì)策略

      一方面針對(duì)上述所有造成誤差的因素,提出一種相位延遲補(bǔ)償方法,以提高位置信息估計(jì)的精度;另一方面針對(duì)SMO收斂速度和抖振問(wèn)題,提出一種臨界飽和的切換函數(shù),以改善SMO的性能。

      2.1 相位延遲補(bǔ)償思路

      2.1.1 相位延遲計(jì)算

      濾波環(huán)節(jié)和滑模觀測(cè)環(huán)節(jié)中,由于SMO性能和LPF特性這類(lèi)因素引起估計(jì)延遲,可以通過(guò)計(jì)算理論反電動(dòng)勢(shì)與估計(jì)反電動(dòng)勢(shì)之間的關(guān)系得到。將式(1)所示的電壓方程寫(xiě)成復(fù)頻域形式為

      為避免的非線性帶來(lái)不利影響,將式(11)上下相減,得到定子電流估計(jì)誤差與反電動(dòng)勢(shì)估計(jì)誤差的數(shù)量關(guān)系為

      其中

      由于式(12)兩邊均為正弦曲線且其幅值相等,故將其左右同時(shí)取模并將其離散化可得

      2.1.2 相位補(bǔ)償器設(shè)計(jì)

      綜上所述,相位延遲計(jì)算和補(bǔ)償如圖2所示,其中相位補(bǔ)償器設(shè)置在估計(jì)誤差補(bǔ)償角計(jì)算和PLL之間,使得估計(jì)反電動(dòng)勢(shì)信號(hào)在輸入到PLL之前就對(duì)其進(jìn)行補(bǔ)償,實(shí)現(xiàn)估計(jì)轉(zhuǎn)速延遲的消除。

      2.2 臨界飽和切換函數(shù)設(shè)計(jì)

      圖2 相位延遲計(jì)算和補(bǔ)償

      圖3 改進(jìn)的切換函數(shù)效果示意圖

      2.3 參考轉(zhuǎn)速發(fā)生器設(shè)計(jì)

      圖4 參考轉(zhuǎn)速發(fā)生器效果示意圖

      最后,本文整體控制框圖如圖5所示,主要包括電壓矢量調(diào)制模塊、SMO模塊、相位延遲計(jì)算與補(bǔ)償模塊、PLL模塊以及參考轉(zhuǎn)速發(fā)生模塊。

      圖5 基于觀測(cè)誤差補(bǔ)償PMSM無(wú)位置傳感器控制框圖

      3 實(shí)驗(yàn)驗(yàn)證

      為驗(yàn)證本文所提出相位延遲補(bǔ)償算法的控制效果,搭建了由兩臺(tái)參數(shù)相同的PMSM組成的同軸對(duì)拖平臺(tái),PMSM參數(shù)見(jiàn)表1,控制算法采用參數(shù)見(jiàn)表2,實(shí)驗(yàn)平臺(tái)如圖6所示。由于電壓矢量調(diào)制方式采用模型預(yù)測(cè)控制,因此表2中沒(méi)有給出電流環(huán)PI參數(shù)。被控電機(jī)控制器的主處理器采用了32位浮點(diǎn)型數(shù)字信號(hào)處理器TMS320C28346;直流電源經(jīng)逆變電路為被控電機(jī)供電;負(fù)載電機(jī)工作在恒轉(zhuǎn)矩模式。實(shí)驗(yàn)中,被控電機(jī)配備了2 500線增量式編碼器,以檢測(cè)轉(zhuǎn)子實(shí)際轉(zhuǎn)速和位置,用于與估計(jì)位置信息對(duì)比。系統(tǒng)采樣頻率設(shè)置為10kHz。

      表1 實(shí)驗(yàn)電機(jī)參數(shù)

      表2 控制算法參數(shù)

      圖6 實(shí)驗(yàn)平臺(tái)

      3.1 穩(wěn)態(tài)性能實(shí)驗(yàn)

      相位延遲補(bǔ)償控制實(shí)驗(yàn)結(jié)果如圖7所示。圖7a為未采用本文所提出相位延遲補(bǔ)償方法,被控電機(jī)轉(zhuǎn)速設(shè)定為2 000r/min時(shí)的空載實(shí)驗(yàn)結(jié)果??梢钥闯?,未進(jìn)行相位延遲補(bǔ)償時(shí),轉(zhuǎn)子估計(jì)位置角誤差較大。其中,平均估計(jì)轉(zhuǎn)速波動(dòng)為6.80r/min,最大估計(jì)轉(zhuǎn)速波動(dòng)為71.95r/min,平均轉(zhuǎn)子位置角估計(jì)誤差為0.73rad。圖7b為同工況下,采用本文所提出的補(bǔ)償方法后的運(yùn)行結(jié)果。可以看出,轉(zhuǎn)子位置角估計(jì)偏差得到了有效的改善。其中,平均估計(jì)轉(zhuǎn)速波動(dòng)為5.99r/min,最大估計(jì)轉(zhuǎn)速波動(dòng)為53.59r/min,平均轉(zhuǎn)子位置角估計(jì)誤差為0.07rad。對(duì)比實(shí)驗(yàn)結(jié)果表明,所提出改進(jìn)算法的位置估計(jì)誤差較傳統(tǒng)無(wú)補(bǔ)償算法更準(zhǔn)確,平均絕對(duì)誤差減小了89.64%,驗(yàn)證了相位延遲補(bǔ)償?shù)谋匾院陀行浴?/p>

      圖7 相位延遲補(bǔ)償控制實(shí)驗(yàn)結(jié)果

      圖8為空載運(yùn)行在3 000r/min下,采用相位補(bǔ)償算法,且SMO模塊中設(shè)置不同切換函數(shù)時(shí)的對(duì)比實(shí)驗(yàn)結(jié)果。從圖中可以明顯看出,使用臨界飽和切換函數(shù)相較常規(guī)切換函數(shù),轉(zhuǎn)速波動(dòng)更小。其中,0~3.8s使用Sign函數(shù),估計(jì)轉(zhuǎn)速波動(dòng)區(qū)間為[3 203.83, 2 795.39]r/min,轉(zhuǎn)速波動(dòng)標(biāo)準(zhǔn)差為54.79;3.8~6.5s使用Sigmoid函數(shù),估計(jì)轉(zhuǎn)速波動(dòng)區(qū)間為[3 091.02, 2 933.59]r/min,轉(zhuǎn)速波動(dòng)標(biāo)準(zhǔn)差為21.87;6.5s后使用所提出的臨界飽和切換函數(shù),估計(jì)轉(zhuǎn)速波動(dòng)區(qū)間為[3 061.25, 2 968.44]r/min,轉(zhuǎn)速波動(dòng)標(biāo)準(zhǔn)差為13.22。

      圖9a和圖9b為額定負(fù)載下,采用改進(jìn)位置估計(jì)算法時(shí),分別運(yùn)行在300r/min和3 000r/min條件的穩(wěn)態(tài)運(yùn)行結(jié)果。可以看出,電機(jī)在低速和高速狀態(tài)下均能夠平穩(wěn)運(yùn)行。其中,平均估計(jì)轉(zhuǎn)速波動(dòng)分別為4.27r/min和26.06r/min,平均轉(zhuǎn)子位置角估計(jì)誤差均為0.08rad。上述穩(wěn)態(tài)性能實(shí)驗(yàn)結(jié)果說(shuō)明了所提出方法在低速和高速運(yùn)行狀態(tài)均有良好的控制性能。

      圖8 3 000r/min時(shí)不同切換函數(shù)對(duì)比實(shí)驗(yàn)結(jié)果

      圖9 不同設(shè)定轉(zhuǎn)速下PMSM穩(wěn)態(tài)實(shí)驗(yàn)結(jié)果

      3.2 動(dòng)態(tài)性能實(shí)驗(yàn)

      圖10為動(dòng)態(tài)調(diào)速實(shí)驗(yàn)結(jié)果。參考轉(zhuǎn)速發(fā)生器最大梯度設(shè)定為5 000r/min/s,最小梯度設(shè)定為2 000r/min/s,由于SMO在轉(zhuǎn)速極低時(shí)無(wú)法工作,因此轉(zhuǎn)速在[-200, 200]r/min范圍內(nèi)時(shí)系統(tǒng)采用開(kāi)環(huán)運(yùn)行。在初始時(shí)電機(jī)輕載運(yùn)行在-3 000r/min;3.4s時(shí)給定轉(zhuǎn)速-500r/min,電機(jī)開(kāi)始降速;5.1s時(shí)給定轉(zhuǎn)速-100r/min,并在SMO反饋轉(zhuǎn)速為-200r/min時(shí)將轉(zhuǎn)速閉環(huán)切換為轉(zhuǎn)速開(kāi)環(huán),并持續(xù)開(kāi)環(huán)運(yùn)行;5.5s時(shí)給定轉(zhuǎn)速1 000r/min,并在SMO反饋轉(zhuǎn)速為200r/min時(shí)將轉(zhuǎn)速閉環(huán)重新切入,之后繼續(xù)升速至1 000r/min和3 000r/min。

      圖10 變速實(shí)驗(yàn)結(jié)果

      在實(shí)際轉(zhuǎn)速過(guò)零時(shí),估計(jì)轉(zhuǎn)速存在波動(dòng),最大誤差值為891r/min,原因是轉(zhuǎn)速極低的狀態(tài)下,定子電流和估計(jì)反電動(dòng)勢(shì)也趨近于零,從而導(dǎo)致估計(jì)位置信息不準(zhǔn)確,在電機(jī)進(jìn)入正轉(zhuǎn)后該誤差明顯減小。在200r/min附近電機(jī)從轉(zhuǎn)速開(kāi)環(huán)狀態(tài)切換進(jìn)閉環(huán)時(shí),實(shí)際轉(zhuǎn)速存在下滑,原因是開(kāi)環(huán)時(shí)用作反饋的轉(zhuǎn)子位置角與實(shí)際位置角在數(shù)值上有偏差,直接切換存在突變。

      為進(jìn)一步驗(yàn)證系統(tǒng)的魯棒性,使用負(fù)載電機(jī)控制器將負(fù)載電機(jī)控制在恒轉(zhuǎn)矩模式,通過(guò)調(diào)節(jié)控制器參數(shù),使之輸出與被控電機(jī)旋轉(zhuǎn)方向相反、大小可調(diào)的轉(zhuǎn)矩。若被控電機(jī)具有良好的動(dòng)態(tài)性能,則最終會(huì)穩(wěn)定輸出與所設(shè)定負(fù)載大小相同的轉(zhuǎn)矩,以達(dá)到動(dòng)態(tài)平衡。

      圖11為電機(jī)運(yùn)行在1 500r/min下突變負(fù)載的實(shí)驗(yàn)結(jié)果,其中,圖11a為0.18s時(shí)負(fù)載轉(zhuǎn)矩從2N·m突變?yōu)?,圖11b為0.18s時(shí)負(fù)載轉(zhuǎn)矩從0突變?yōu)?N·m??梢钥闯?,無(wú)論減載和加載,系統(tǒng)都在100ms內(nèi)重新回歸穩(wěn)態(tài)。而整個(gè)暫態(tài)過(guò)程中,突卸負(fù)載估計(jì)轉(zhuǎn)子位置角的最大誤差為0.34rad,突增負(fù)載估計(jì)轉(zhuǎn)子位置角的最大誤差為0.41rad,均在可接受范圍內(nèi)。上述動(dòng)態(tài)性能實(shí)驗(yàn)結(jié)果表明,在工況突變時(shí),所提出方法具有良好的抗擾能力。

      圖11 負(fù)載突變實(shí)驗(yàn)結(jié)果

      4 結(jié)論

      本文提出了一種基于滑模觀測(cè)器估計(jì)誤差反饋補(bǔ)償?shù)挠来磐诫姍C(jī)無(wú)位置傳感器控制策略。首先分析了采用正交鎖相環(huán)的滑模觀測(cè)器在估計(jì)轉(zhuǎn)子位置時(shí),引起估計(jì)誤差和系統(tǒng)控制性能不佳的因素;其次針對(duì)誤差產(chǎn)生的原因,提出了一種位置補(bǔ)償角的計(jì)算與誤差補(bǔ)償方法;然后利用一種臨界飽和的切換函數(shù),提高了滑模觀測(cè)器的收斂性能;最后在兩臺(tái)參數(shù)相同的永磁同步電機(jī)對(duì)拖平臺(tái)上進(jìn)行了實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,所提方法可有效補(bǔ)償轉(zhuǎn)子位置誤差,電機(jī)的運(yùn)行具有良好的穩(wěn)態(tài)和動(dòng)態(tài)性能。

      [1] 劉計(jì)龍, 肖飛, 沈洋, 等. 永磁同步電機(jī)無(wú)位置傳感器控制技術(shù)研究綜述[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(16): 76-88.

      Liu Jilong, Xiao Fei, Shen Yang, et al. Position- sensorless control technology of permanent-magnet synchronous motor-a review[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88.

      [2] Xu Dianguo, Wang Bo, Zhang Guoqiang, et al. A review of sensorless control methods for AC motor drives[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 104-115.

      [3] Bianchi N, Bolognani S, Luise F. Potentials and limits of high-speed PM motors[J]. IEEE Transactions on Industry Applications, 2004, 40(6): 1570-1578.

      [4] 麥志勤, 肖飛, 劉計(jì)龍, 等. 基于改進(jìn)型自調(diào)整軸系幅值收斂電流解調(diào)算法的旋轉(zhuǎn)高頻電壓注入法[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(10): 2049-2060.

      Mai Zhiqin, Xiao Fei, Liu Jilong, et al. Rotating high-frequency voltage injection method based on improved self-adjusting frame amplitude convergence current demodulation algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2049- 2060.

      [5] 張麗, 朱孝勇, 左月飛. 電動(dòng)汽車(chē)用轉(zhuǎn)子永磁型無(wú)刷電機(jī)與控制系統(tǒng)容錯(cuò)技術(shù)綜述[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(6): 1792-1802, 1875.

      Zhang Li, Zhu Xiaoyong, Zuo Yuefei. Overview of fault-tolerant technologies of rotor permanent magnet brushless machine and its control system for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(6): 1792-1802, 1875.

      [6] Yin Zhonggang, Gao Fengtao, Zhang Yanqing, et al. A review of nonlinear Kalman filter appling to sensorless control for AC motor drives[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(4): 351-362.

      [7] 李垣江, 董鑫, 魏海峰, 等. 表貼式永磁同步電機(jī)轉(zhuǎn)速環(huán)復(fù)合PI無(wú)位置傳感器控制[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(10): 2119-2129.

      Li Yuanjiang, Dong Xin, Wei Haifeng, et al. Sensor- less compound PI control for surface permanent magnet synchronous motor speed regulation system[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2119-2129.

      [8] Fan Ying, Zhang Li, Cheng Ming, et al. Sensorless SVPWM-FADTC of a new flux-modulated permanent- magnet wheel motor based on a wide-speed sliding mode observer[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3143-3151.

      [9] Sun Hongbo, Jiang Dong, Yang Jichang. Synchronous vibration suppression of magnetic bearing systems without angular sensors[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 70-77.

      [10] 張洪帥, 王平, 韓邦成. 基于模糊PI模型參考自適應(yīng)的高速永磁同步電機(jī)轉(zhuǎn)子位置檢測(cè)[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2014, 34(12): 1889-1896.

      Zhang Hongshuai, Wang Ping, Han Bangcheng. Rotor position measurement for high-speed permanent magnet synchronous motors based on fuzzy PI MRAS[J]. Proceedings of the CSEE, 2014, 34(12): 1889-1896.

      [11] 闕鴻杰, 全力, 張麗, 等. 基于自適應(yīng)濾波器在線解耦的磁場(chǎng)增強(qiáng)型永磁電機(jī)無(wú)位置傳感器控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(2): 344-354.

      Que Hongjie, Quan Li, Zhang Li, et al. Sensorless control of flux-intensifying permanent magnet syn- chronous motor based on adaptive Notch filter online decoupling[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 344-354.

      [12] 劉旭, 牛大強(qiáng), 曹陽(yáng), 等. 基于勵(lì)磁繞組高頻信號(hào)注入的混合勵(lì)磁開(kāi)關(guān)磁鏈永磁電機(jī)位置估計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(20): 4297-4307.

      Liu Xu, Niu Daqiang, Cao Yang, et al. Position estimation for hybrid excited switched flux PM machine by injecting high-frequency pulse into the field winding[J]. Transactions of China Electro- technical Society, 2021, 36(20): 4297-4307.

      [13] Zhang Li, Fan Ying, Li Chenxue, et al. Fault-tolerant sensorless control of a five-phase FTFSCW-IPM motor based on a wide-speed strong-robustness sliding mode observer[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 87-95.

      [14] 姜燕, 李博文, 吳軒, 等. 基于比例諧振濾波的改進(jìn)永磁同步電機(jī)轉(zhuǎn)子位置觀測(cè)器[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(17): 3619-3630.

      Jiang Yan, Li Bowen, Wu Xuan, et al. An improved rotor position observer for permanent magnet syn- chronous motors based on proportional resonant filtering[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3619-3630.

      [15] Jung S Y, Nam K. PMSM control based on edge-field hall sensor signals through ANF-PLL processing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11): 5121-5129.

      [16] Liang Donglai, Li Jian, Qu Ronghai, et al. Adaptive second-order sliding-mode observer for PMSM sensorless control considering VSI nonlinearity[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8994-9004.

      [17] Song Xinda, Fang Jiancheng, Han Bangcheng, et al. Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1438-1449.

      [18] 黃科元, 高麗真, 黃守道, 等. 基于電流環(huán)誤差修正的高速永磁同步電機(jī)轉(zhuǎn)子位置校正方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2017, 37(8): 2391-2399.

      Huang Keyuan, Gao Lizhen, Huang Shoudao, et al. A correction method of rotor positions for high speed permanent magnet synchronous motor based on the error correction of the current loop[J]. Proceedings of the CSEE, 2017, 37(8): 2391-2399.

      [19] 顧聰, 王曉琳, 鄧智泉. 一種基于雙重鎖相環(huán)的高速永磁同步電機(jī)轉(zhuǎn)子位置估計(jì)誤差全補(bǔ)償方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2020, 40(3): 962-970.

      Gu Cong, Wang Xiaolin, Deng Zhiquan. A rotor position estimated error correction method for high- speed permanent magnet synchronous motor based on dual-phase-locked-loop[J]. Proceedings of the CSEE, 2020, 40(3): 962-970.

      [20] 王要強(qiáng), 馮玉濤, 秦明, 等. 表貼式永磁同步電機(jī)全階滑模觀測(cè)與控制策略[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(24): 5688-5699.

      Wang Yaoqiang, Feng Yutao, Qin Ming, et al. Full- order sliding mode observation and control strategy for surface permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5688-5699.

      [21] 武亞恒, 樊啟高, 惠晶, 等. 基于改進(jìn)型滑模觀測(cè)器的無(wú)位置BLDCM控制[J]. 江南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 14(3): 278-282.

      Wu Yaheng, Fan Qigao, Hui Jing, et al. Sensorless control research of BLDCM based on improved sliding mode observer[J]. Journal of Jiangnan University (Natural Science Edition), 2015, 14(3): 278-282.

      [22] Elbuluk M, Li Changsheng. Sliding mode observer for wide-speed sensorless control of PMSM drives[C]// 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, Salt Lake City, UT, USA, 2004: 480-485.

      [23] Sun Xiaodong, Hu Changchang, Lei Gang, et al. Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4968-4978.

      [24] 劉家曦, 李鐵才, 楊貴杰. 永磁同步電機(jī)轉(zhuǎn)子位置與速度預(yù)估[J]. 電機(jī)與控制學(xué)報(bào), 2009, 13(5): 690- 694.

      Liu Jiaxi, Li Tiecai, Yang Guijie. Rotor position and speed estimation for PMSM[J]. Electric Machines and Control, 2009, 13(5): 690-694.

      [25] 尚喆, 趙榮祥, 竇汝振. 基于自適應(yīng)滑模觀測(cè)器的永磁同步電機(jī)無(wú)位置傳感器控制研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2007, 27(3): 23-27.

      Shang Zhe, Zhao Rongxiang, Dou Ruzhen. Research on sensorless control method of PMSM based on an adaptive sliding mode observer[J]. Proceedings of the CSEE, 2007, 27(3): 23-27.

      [26] 鄭雪梅, 李秋明, 史宏宇, 等. 用于永磁同步電機(jī)的一種非奇異高階終端滑模觀測(cè)器[J]. 控制理論與應(yīng)用, 2011, 28(10): 1467-1472.

      Zheng Xuemei, Li Qiuming, Shi Hongyu, et al. Higher- order nonsingular terminal-sliding-mode observer for permanent-magnet synchronous motor[J]. Control Theory & Applications, 2011, 28(10): 1467-1472.

      [27] Kim H, Son J, Lee J. A high-speed sliding-mode observer for the sensorless speed control of a PMSM[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(9): 4069-4077.

      [28] Sun Le, Li Xiaoxiang, Chen Longmiao. Motor speed control with convex optimization-based position estimation in the current loop[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10906-10919.

      Sensorless Control Strategy of Permanent Magnet Synchronous Motor Based on Error Compensation Estimated by Sliding Mode Observer

      (School of IOT Engineering Jiangnan University Wuxi 214122 China)

      With the rising demand for motor output power and speed control performance in various industries, and the rapid development of permanent magnet materials, Permanent Magnet Synchronous Motor (PMSM) has been widely used in electrical vehicle drive systems, marine electric propulsion systems and aerospace power systems.

      All existing synchronous motor drive technologies must obtain real-time motor speed and rotor position angle information, usually using position sensors to obtain motor position information. In AC speed control systems, the speed and rotor position information used as closed-loop feedback are usually measured by position sensors such as encoders and rotary transformers, and the accuracy of the position information measurement determines the drive performance of the motor. However, due to the constraints of operating environment, installation space and cost, the position sensor may be inaccurate and easily damaged, so a sensorless control scheme is a more suitable choice.

      The estimation accuracy of rotor position is crucial in the sensorless control technology of PMSM. The rotor position estimation method based on the Sliding-Mode Observer (SMO) has been widely studied and applied because of its low sensitivity to parameters and high robustness. However, due to the introduction of modules such as filters and symbolic functions, the estimated phase retardation and high frequency jitter in SMO can cause inaccurate position observation. Therefore, to address the inaccuracy of the position signal caused by the estimated phase delay of SMO, this paper proposes a sensorless control strategy of the PMSM based on error compensation, aiming to realize the sensorless control technology in the full-speed range for PMSMs.

      Firstly, the mechanism of position observation error generation of SMO using phase locked loop was analyzed, and the position information estimation errors caused by different factors were discussed. A method of position compensation angle calculation and phase delay compensation based on SMO estimation error feedback was proposed to solve the cause of error, and a feedforward phase compensator was designed using a first order filter, which could directly phase shift the counter-electromotive force observed by SMO, so that the estimated speed and angle could be compensated at the same time.

      Secondly, based on the analysis of the effect of SMO response speed on the observation performance, an optimized critical saturation switching function was designed, outputting a sine wave with boundary layer fixed at 1, which kept the convergence speed of SMO basically constant and weakened the jitter, thus the performance of SMO was improved.

      Thirdly, a reference speed generator was designed to replace the reference speed from a step signal to a gradient-variable ramp signal for motor start-up and low-speed operation, which facilitated the control of the motor over the full speed range.

      Finally, the feasibility of the proposed method was verified experimentally by using the constructed PMSM pair-tow platform with model predictive current control as the modulation of the voltage vector. In the steady-state comparison experiments, the average rotor position angle estimation error of the proposed method was 0.07rad, which was 89.64% less than that of the conventional method of 0.73rad under the same operating conditions. In the variable speed experiment, the motor was adjusted from negative to positive rated speed under no load. In the variable load experiment, the maximum error of rotor position angle estimated by sudden unloading was 0.34rad, and the maximum error of rotor position angle estimated by sudden increasing load was 0.41rad. The experimental results showed that the proposed method could effectively compensate the rotor position error, and the operation of the motor has good steady-state and dynamic performance.

      Permanent magnet synchronous motor, sensorless control, sliding mode observer, compensation of position estimated error

      TM351

      10.19595/j.cnki.1000-6753.tces.211876

      江蘇省“六大人才高峰”高層次人才項(xiàng)目(GDZB-138)和江蘇省自然科學(xué)基金項(xiàng)目(BK20210475)資助。

      2021-11-17

      2021-12-27

      梅三冠 男,1996年生,碩士研究生,研究方向?yàn)橛来磐诫姍C(jī)無(wú)位置傳感器控制。

      E-mail: a16578123@gmail.com

      樊啟高 男,1986年生,博士,副教授,研究方向?yàn)楦咚匐姍C(jī)控制技術(shù)、智能傳感及機(jī)電一體化技術(shù)。

      E-mail: qgfan@jiangnan.edu.cn(通信作者)

      (編輯 崔文靜)

      猜你喜歡
      反電動(dòng)勢(shì)同步電機(jī)觀測(cè)器
      永磁同步電機(jī)兩種高頻信號(hào)注入法的比較
      基于改進(jìn)滑模觀測(cè)器的BLDCM無(wú)傳感器控制
      溫度對(duì)永磁同步電機(jī)反電動(dòng)勢(shì)值的影響
      永磁同步電機(jī)調(diào)速系統(tǒng)的自抗擾控制
      基于觀測(cè)器的列車(chē)網(wǎng)絡(luò)控制
      基于非線性未知輸入觀測(cè)器的航天器故障診斷
      基于干擾觀測(cè)器的PI控制單相逆變器
      一種同步電機(jī)參數(shù)識(shí)別的簡(jiǎn)便算法
      采用干擾觀測(cè)器PI控制的單相SPWM逆變電源
      基于SVPWM的永磁直線同步電機(jī)直接推力控制系統(tǒng)
      宜宾县| 肥乡县| 邻水| 长兴县| 芮城县| 股票| 香河县| 始兴县| 鹿邑县| 罗山县| 新晃| 东丰县| 洛南县| 武平县| 分宜县| 新平| 邵阳县| 梅河口市| 阿荣旗| 灵丘县| 汉中市| 甘谷县| 丹江口市| 永吉县| 山西省| 清水河县| 什邡市| 平顶山市| 常熟市| 徐水县| 饶阳县| 台东县| 招远市| 高淳县| 芜湖市| 辉县市| 资源县| 龙口市| 平度市| 时尚| 稻城县|