• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Ni?a Event?

    2023-02-08 08:16:24XianghuiFANGFeiZHENGKexinLIZengZhenHUHongliRENJieWUXingrongCHENWeirenLANYuanYUANLichengFENGQifaCAIandJiangZHU
    Advances in Atmospheric Sciences 2023年1期

    Xianghui FANG, Fei ZHENG, Kexin LI, Zeng-Zhen HU, Hongli REN, Jie WU, Xingrong CHEN,Weiren LAN, Yuan YUAN, Licheng FENG, Qifa CAI, and Jiang ZHU

    1Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,Fudan University, Shanghai 200438, China

    2International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology, Nanjing 210044, China

    4Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD 20740, USA

    5State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

    6National Climate Center, Beijing 100081, China

    7National Marine Environmental Forecasting Center, Beijing 100081, China

    8Mailbox 5111, Beijing 100094, China

    ABSTRACT Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI) and the China Multi-Model Ensemble (CMME) El Ni?o-Southern Oscillation (ENSO) Outlook issued in April 2022, La Ni?a is favored to continue through the boreal summer and fall, indicating a high possibility of a three-year La Ni?a (2020-23).It would be the first three-year La Ni?a since the 1998-2001 event, which is the only observed three-year La Ni?a event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022, it can be seen that while the thermocline depths were near average, the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March, we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Ni?a, and both the anomalous easterly and southerly wind stress components are important and contribute~50% of the third-year La Ni?a growth, respectively.Additionally, the possible global climate impacts of this event are discussed.

    Key words: El Ni?o-Southern Oscillation, three-year La Ni?a, strongest southeasterly wind, air-sea interaction

    El Ni?o-Southern Oscillation (ENSO) is the largest interannual climate variability in the tropics.Although its evolution takes place in the tropical Pacific region, it has far-reaching impacts on climate and society around the world (McPhaden et al., 2006).Meanwhile, ENSO signals also provide very important information for other short-term climate predictions.Therefore, a successful ENSO forecast is of great importance.In fact, both statistical and physical forecast models could successfully predict ENSO evolution with lead times of 6 to 12 months by the late 20th century (Latif et al., 1994).Despite this progress,the complexity of ENSO has always been an important obstacle restricting ENSO forecasting (Zheng et al., 2016; Timmermann et al., 2018; Fang and Xie, 2020; Chen et al., 2022).ENSO exhibits a high degree of complexity both spatially and temporally.For example, there are central Pacific (CP) and eastern Pacific (EP) types of El Ni?o (Ashok et al., 2007; Kao and Yu,2009), there are differences in amplitude and spatial asymmetry between El Ni?o and La Ni?a (An and Jin, 2004), and La Ni?a events can span two or three consecutive years (Hu et al., 2014; Zheng et al., 2015; DiNezio et al., 2017; Wu et al.,2021).These complexities undoubtedly bring significant challenges to simulating and predicting ENSO (DiNezio et al.,2017; Wu et al., 2021).

    By analyzing historical data, it has been noted that, compared with El Ni?o, the complexity of La Ni?a is more reflected in time than space.For example, of the 16 La Ni?as that have occurred from 1980 to the present, 13 have lasted for at least two years, and 1998-2001 was a three-year La Ni?a event.Recently, 2021-22 has been officially identified as a La Ni?a year, which makes 2020-22 a two-year La Ni?a event (Li et al., 2022).Furthermore, this La Ni?a did not quickly decay after its peak.Instead, it persisted as a moderate La Ni?a and even recently rebounded.According to the latest Climate Prediction Center and International Research Institute for Climate and Society (CPC/IRI) ENSO Outlook issued in April 2022 (Fig.1a; http://iri.columbia.edu/climate/ENSO/currentinfo/update.html), La Ni?a is favored to continue through boreal summer (59% chance during June-August 2022), with a 50%-55% chance of continuing through fall.

    A similar advisory can also be found in the China Multi-Model Ensemble (CMME; https://cmdp.ncc-cma.net/pred/cn_cmme.php?FromYear=2022&FromMonth=4&Search=%BF%AA%CA%BC%BC%EC%CB%F7&Elem=CMMEENSO&source_from=), i.e., a platform organized by the National Climate Center of China Meteorological Administration to release monthly forecasts from various ENSO forecast models in China since March 2020.The corresponding predictions for the same period are also shown in Fig.1b.It can be seen that there are large differences among the models in CMME, in which both the intermediate coupled models (ICMs) and statistical models (SAMs) call for a La Ni?a advisory, the coupled general circulation models (CGCMs) indicate a neutral state, and the hybrid dynamic and statistical models (HDSMs) predict an El Ni?o state.To sum up the predictions of the two platforms, it seems another three-year La Ni?a (2020-23) will emerge, being the first since 1998-2001.Based on an ENSO statistical forecast model, the possible reasons for this potential La Ni?a occurrence will be investigated.

    Another obstacle of ENSO prediction is the so-called spring predictability barrier (SPB), i.e., the prediction skill will drop significantly when it strides over the spring regardless of when a prediction is made (Webster and Yang, 1992; Mu et al., 2007; Zheng and Zhu, 2010; Fang et al., 2019; Hu et al., 2019).In addition, another important feature associated with ENSO seasonal variation is seasonal phase locking, i.e., ENSO events normally mature in winter and decay quickly in the following spring.Using the empirical orthogonal function analysis method to quantitatively analyze this characteristic from 1980 to 2018, Fang and Zheng (2021) pointed out that a typical ENSO evolution can explain 90% of the total variance.The corresponding principal component is nearly identical to the October-December (OND) mean Ni?o-3.4 (5°S-5°N, 170°-120°W) sea surface temperature (SST) index.Thus, an accurate prediction of ENSO evolution can potentially be provided if the OND mean Ni?o-3.4 index is well predicted (Fang and Mu, 2018; Fang and Zheng, 2021).Based on this hypothesis,Fang and Zheng (2021) explored the possibility of using March data to predict the subsequent ENSO evolution using a statistical model, which can also quantitatively reflect the relative contributions of the predictors.In the present study, their model will be utilized to explore the important contribution of the historic southeasterly winds over the equatorial Pacific in March 2022 to the possible third-year La Ni?a event.

    For this purpose, four physically oriented variables are used to establish the connection between the March air-sea fields and the subsequent ENSO evolution.They are the equatorial mean thermocline depth (TCD) anomalies (TCDa_M),the zonal wind stress anomaly in the western Pacific (Tauxa_W), the zonal gradient of the TCD anomalies in the equatorial Pacific (TCDa_G), and the mean meridional wind stress anomalies over the eastern equatorial Pacific (Tauya_E).The first two variables are associated with the recharge oscillator theory (Jin, 1997).TCDa_G reflects the see-saw oscillation of the thermocline between the western and eastern Pacific (e.g., Kumar and Hu, 2014) or the eastward propagation of Kelvin wave-like signals (Tseng et al., 2017).Tauya_E is linked to the meridional processes that have been emphasized in studying ENSO complexity (Hu and Fedorov, 2018; Xie et al., 2018).Specifically, the meridional processes in the eastern Pacific region, which were less often considered in classical ENSO theories, were verified to be important in depicting the following ENSO evolution from March (Hu and Fedorov, 2018; Xie et al., 2018).

    Based on the above physical parameter selection, a quaternary linear regression equation is used to study the relationship between the March air-sea fields and the OND mean ENSO property as follows:

    Figures 1c-d show the anomalous surface wind stress, SST, and TCD in March 2022.The equatorial central to eastern Pacific still maintains cold conditions, with a large area colder than -1°C.Correspondingly, the thermocline depth shows generally shallow anomalies in the east and deep anomalies in the west, a so-called tilt or dipole mode that is in phase with theENSO cycle (Kumar and Hu, 2014).Meanwhile, the southeasterly wind over the equatorial Pacific is appreciable.Such wind field distributions favor the induction of La Ni?a-like evolution through zonal Bjerknes feedback and meridional physical processes, such as the incursion of off-equatorial subsurface cold water (Zheng et al., 2015; Zhu et al., 2016).

    To quantify the contributions to the possible third-year La Ni?a, Figs.2a-d show the time series of TCDa_M, TCDa_G,Tauxa_W, and Tauya_E in March during 1980-2022, which are normalized by their standard deviations.For comparison,March 2000 (i.e., the last year of the latest three-year La Ni?a) is marked by blue dots, while March 2022 is marked by reddots.As seen, neither of the thermocline variables (TCDa_M and TCDa_G) are significantly abnormal this year, indicating a challenge in predicting the subsequent ENSO evolution from the ENSO recharge-discharge theory and other classical ENSO theories that emphasize the variations in thermocline depth, i.e., zonal oceanic dynamics.In contrast, the atmospheric variables exhibit appreciable anomalies, with the easterly wind stress being comparable to that of 2000 and the southerly wind stress reaching its largest amplitude since 1980.Except for the strong easterly wind, the air-sea fields from 2000 are quite different from those in 2022.Namely, the former exhibits a large negative TCDa_G (i.e., the TCD was deeper in the west and shallower in the east) and anomalous northerly wind stress.

    Fig.2.Normalized indices for (a) TCDa_M, (b) TCDa_G, (c) Tauxa_W, and (d) Tauya_E in March.In each panel, the blue and red dots represent 2000 and 2022, respectively.(e) The relationships between the reconstructed and observed OND mean Ni?o-3.4 index during 1980-2021.Their correlation coefficient (R)is 0.86.The reconstructed indices are obtained by Eq.(1) utilizing the TCDa_M, TCDa_G, Tauxa_W, and Tauya_E indices in March.The red, blue, and black dots represent El Ni?o, La Ni?a, and neutral years,respectively.(f) The coefficients (bars) and their 10% significance intervals by Student’s t test (error bars) of the four variables.They are calculated by the product of the regression coefficients and the corresponding standard deviations.

    To quantify the contributions of each variable to ENSO, Fig.2e presents the reconstructed OND mean Ni?o-3.4 index by utilizing the quaternary regression and the four variables from March in 1980-2021.The correlation coefficient between the reconstructed and observed indices is 0.86.Additionally, all La Ni?a events can be accurately captured (i.e., the blue dots are in the third quadrant).Moreover, the coefficients (Fig.2f) of the regression suggest that the TCDa_M and Tauxa_W indices play dominant roles in ENSO development.The negative coefficients of the other two variables (i.e.,TCDa_G and Tauya_E) indicate that the positive (negative) zonal gradient of the TCD or the northerly (southerly) wind stress in the eastern Pacific favors the warming (cooling) of the eastern equatorial Pacific, illustrating the phase transition and the importance of the meridional processes in the eastern Pacific region, respectively.The latter factor (Tauya_E) has received less attention than the zonal Bjerknes feedback in understanding its influence on ENSO evolution from March(Xie et al., 2018; Fang and Xie, 2020; Fang and Zheng, 2021).

    Based on this model, the relative contribution of each variable in March (i.e., TCDa_M, TCDa_G, Tauxa_W, and Tauya_E) to the OND mean Ni?o-3.4 index can be quantitatively estimated (Fig.3).It can be seen that for 2000, it is the strong easterly wind stress that overcame the opposite effects from all the other three variables.It suggests that although the oceanic dynamics (characterized by the thermocline depth distribution) does not support more cooling based on the recharge oscillator and other classical ENSO theories, the abnormally strong easterly wind in the western Pacific can lead to cooling through exciting the upwelling oceanic Kelvin waves and driving the anomalous westward surface currents.However, the situation is quite different in 2022.The anomalous easterly and southerly wind stresses are both important, and each may contribute ~50% toward the pending La Ni?a evolution, while the variables related to the TCD have little effect.The southerly wind is argued to be able to intensify the ocean upwelling south of the equator (Xie et al., 2018) and enhance the incursion of the subsurface cold water on the off-equator into the equatorial area (Zheng et al., 2015), thus acting as an extra cooling effect on the SST variations.Also, as suggested in Fang and Zheng (2021), the role played by the meridional wind on the equatorial eastern Pacific is more important on the following ENSO evolution after 2000 than during 1980-99,which further explains the large difference between these two events.

    The differences between March and April 2022 (Fig.4) clearly indicate the persistence of the current La Ni?a condition.More specifically, the TCD is getting shallower in the central to eastern Pacific, the southeasterly wind over the equatorialPacific is still strong and even enhanced over the central tropical Pacific, and the SST is getting colder in the entire basin.Therefore, based on the current air-sea status and the quaternary linear regression model, our perspective is that the historic southeasterly winds over the equatorial Pacific are propitious to the emergence of a third-year La Ni?a event in 2022/23.

    Fig.3.Contribution of each variable in March to the following OND mean Ni?o-3.4 index in 2000 (left) and 2022 (right).The blue, red, yellow, and purple bars represent the contribution percentages from TCDa_M, TCDa_G,Tauxa_W, and Tauya_E, respectively.The black bar is for the total (100%), i.e.,the combination of the four components.

    To investigate the potential impacts of the pending three-year La Ni?a on the climate in 2022, the summer(June-July-August, JJA) mean precipitation and winter (December-January-February, DJF) mean temperature anomalies in 1975 and 2000 are shown in Fig.5 because since 1950, three-year La Ni?a events only existed in 1973-76 and 1998-2001.In the summers of 1975 and 2000, obvious precipitation anomalies were exhibited in the tropical regions related to the westward extension of the cold tongue with similarities and differences.There was less rainfall in southern North America but more rainfall in the southern Maritime Continent regions.However, in the warm pool of the western Pacific, the precipitation is less than usual in JJA 1975 but more than usual in JJA 2000.In China, the summer rainfall was concentrated over Huanghe-Huaihe Plain, China in 2000 but in northern China in 1975, while reduced summer rainfall occurred in southern China in both years.In the winter, a wide range of cold anomalies emerged in Eurasia and North America.More frequent and powerful cold air activities may impact the mid-high latitudes of the Northern Hemisphere, and extreme cold may grip much of the Eurasian or North American continents.In China, cold anomalies and warm anomalies were located in the central-to-eastern and northeast parts, respectively, in 1975, while 2000 had contrary circumstances.The inconsistencies between 1975 and 2000 create much uncertainty in the climate prediction of 2022 in China, and we should pay attention to the abovementioned areas with obvious precipitation anomalies and temperature anomalies in both 1975 and 2000.For example, more potential floods are related to more precipitation in the northern part of China and more possibleheat waves and droughts in southern China in the summer.Meanwhile, in this winter, we need to be aware of the risks of intense cold surges in Eurasia, which could also produce more cold extremes either in eastern or northeastern China.

    Fig.4.Tendency of (a) surface wind stress, (b) SST (contour interval is 0.5°C), and (c) TCD(contour interval is 10 m) between April and March in 2022.

    Fig.5.Precipitation of (a) JJA 1975 and (c) JJA 2000 and surface temperature of (b) DJF 1975 and (d) DJF 2000.Color shadings show the anomaly relative to 1980-2001.Dots are shown where the anomalies are all positive or negative in the three datasets used (i.e., JRA-55, ERA 40, and NCEP/NCAR Reanalyses).

    Acknowledgements.This work is supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(CAS; Grant No.ZDBS-LY-DQC010), the National Natural Science Foundation of China (Grant Nos.41876012; 42175045), the Strategic Priority Research Program of CAS (Grant No.XDB42000000), and Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004).The reanalysis data were downloaded from the NOAA Physical Sciences Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html).

    亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 这个男人来自地球电影免费观看 | 国产精品国产三级国产专区5o| 91精品伊人久久大香线蕉| 久久人人爽av亚洲精品天堂| 亚洲精品国产色婷婷电影| 一本—道久久a久久精品蜜桃钙片| 婷婷色综合大香蕉| 国产黄色免费在线视频| 亚洲精品视频女| 亚洲欧美精品自产自拍| 肉色欧美久久久久久久蜜桃| 黑丝袜美女国产一区| 久久热精品热| 精品久久久久久久久av| 曰老女人黄片| 18+在线观看网站| 大话2 男鬼变身卡| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 麻豆精品久久久久久蜜桃| 成人综合一区亚洲| 亚洲激情五月婷婷啪啪| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 亚洲欧美色中文字幕在线| 免费高清在线观看日韩| 亚洲av成人精品一二三区| 久久久久人妻精品一区果冻| 欧美xxxx性猛交bbbb| 日本欧美视频一区| 满18在线观看网站| 一级毛片电影观看| 免费黄色在线免费观看| 日韩精品免费视频一区二区三区 | 久久久欧美国产精品| 成人毛片60女人毛片免费| 草草在线视频免费看| 日本爱情动作片www.在线观看| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线| 久久久精品94久久精品| 性色av一级| 亚洲人成网站在线观看播放| 国产精品成人在线| 黑人欧美特级aaaaaa片| 在线免费观看不下载黄p国产| 大又大粗又爽又黄少妇毛片口| 中文字幕人妻丝袜制服| 最近最新中文字幕免费大全7| 99久久综合免费| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 免费播放大片免费观看视频在线观看| 久久精品久久精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 国产熟女午夜一区二区三区 | 高清午夜精品一区二区三区| 搡女人真爽免费视频火全软件| 国产高清有码在线观看视频| 人妻系列 视频| 赤兔流量卡办理| 美女大奶头黄色视频| 亚洲国产欧美在线一区| av女优亚洲男人天堂| 久久国产精品男人的天堂亚洲 | 亚洲天堂av无毛| 天堂8中文在线网| 亚洲精品成人av观看孕妇| 久久这里有精品视频免费| 在线看a的网站| 亚洲av福利一区| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 我的老师免费观看完整版| 亚洲国产欧美在线一区| 午夜激情福利司机影院| 麻豆成人av视频| 国产一区二区三区av在线| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 女性生殖器流出的白浆| 我的女老师完整版在线观看| 丝袜脚勾引网站| 午夜免费观看性视频| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 国产成人aa在线观看| 日韩电影二区| 成人手机av| 久久人人爽av亚洲精品天堂| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 成人国产麻豆网| 美女内射精品一级片tv| 日韩视频在线欧美| 一区二区三区精品91| 国产综合精华液| 国产无遮挡羞羞视频在线观看| 亚洲在久久综合| 只有这里有精品99| 久久韩国三级中文字幕| 久久久久久久久久久丰满| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 国产老妇伦熟女老妇高清| 亚洲丝袜综合中文字幕| 制服诱惑二区| 国语对白做爰xxxⅹ性视频网站| tube8黄色片| 久久精品熟女亚洲av麻豆精品| 99国产综合亚洲精品| 满18在线观看网站| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 午夜福利影视在线免费观看| 下体分泌物呈黄色| 美女视频免费永久观看网站| 精品久久久噜噜| 国产精品99久久久久久久久| 久久精品国产a三级三级三级| 亚洲综合精品二区| 亚洲欧美一区二区三区黑人 | 国产免费一区二区三区四区乱码| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 免费黄网站久久成人精品| 婷婷成人精品国产| 亚洲av不卡在线观看| av在线老鸭窝| 欧美变态另类bdsm刘玥| 女人久久www免费人成看片| 欧美最新免费一区二区三区| 汤姆久久久久久久影院中文字幕| 少妇人妻 视频| 啦啦啦在线观看免费高清www| 黑人欧美特级aaaaaa片| 日韩亚洲欧美综合| 欧美亚洲日本最大视频资源| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 丝袜脚勾引网站| 高清视频免费观看一区二区| 国产精品人妻久久久影院| 97精品久久久久久久久久精品| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 美女国产视频在线观看| 麻豆乱淫一区二区| 国产成人精品在线电影| 久久ye,这里只有精品| 晚上一个人看的免费电影| 黑丝袜美女国产一区| 日韩三级伦理在线观看| 香蕉精品网在线| 国产有黄有色有爽视频| 777米奇影视久久| 日韩一区二区三区影片| 国产有黄有色有爽视频| 观看美女的网站| 十八禁高潮呻吟视频| 久久99一区二区三区| 久久午夜综合久久蜜桃| 国产乱来视频区| 天美传媒精品一区二区| 制服丝袜香蕉在线| 99精国产麻豆久久婷婷| 岛国毛片在线播放| 国产精品一区二区在线观看99| 夜夜爽夜夜爽视频| 亚洲精品av麻豆狂野| videossex国产| 亚洲精品国产av成人精品| 国产精品久久久久久av不卡| 亚洲四区av| 国产亚洲av片在线观看秒播厂| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| 你懂的网址亚洲精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 99久久综合免费| 日韩欧美一区视频在线观看| 日韩av在线免费看完整版不卡| 亚洲欧洲精品一区二区精品久久久 | 日本vs欧美在线观看视频| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 女人久久www免费人成看片| 午夜福利,免费看| 男人操女人黄网站| 在线观看免费高清a一片| 97在线人人人人妻| 国产精品 国内视频| 国产一区亚洲一区在线观看| 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜添av毛片| 久久这里有精品视频免费| 日韩欧美一区视频在线观看| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 亚洲欧美一区二区三区黑人 | 街头女战士在线观看网站| 欧美bdsm另类| 精品一区二区免费观看| 搡老乐熟女国产| av电影中文网址| 成人二区视频| 亚洲美女黄色视频免费看| 精品少妇久久久久久888优播| 晚上一个人看的免费电影| 成人亚洲精品一区在线观看| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 在线播放无遮挡| 观看av在线不卡| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 午夜日本视频在线| 天堂8中文在线网| 欧美丝袜亚洲另类| 久久久久国产网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人a∨麻豆精品| 一区二区三区免费毛片| 99热全是精品| 91成人精品电影| av电影中文网址| 久久人人爽av亚洲精品天堂| 啦啦啦中文免费视频观看日本| 国产精品嫩草影院av在线观看| 天堂俺去俺来也www色官网| 99久久人妻综合| 精品一品国产午夜福利视频| 看十八女毛片水多多多| 亚洲精品久久久久久婷婷小说| 亚洲天堂av无毛| tube8黄色片| 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 岛国毛片在线播放| 午夜福利网站1000一区二区三区| 日产精品乱码卡一卡2卡三| 精品国产一区二区久久| 国产男女内射视频| 王馨瑶露胸无遮挡在线观看| 夜夜骑夜夜射夜夜干| 嘟嘟电影网在线观看| 一个人免费看片子| 久久鲁丝午夜福利片| 美女大奶头黄色视频| 最近最新中文字幕免费大全7| 免费观看的影片在线观看| 两个人免费观看高清视频| 国产一区二区三区av在线| 国产亚洲最大av| 老女人水多毛片| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 成人黄色视频免费在线看| 久久97久久精品| 91成人精品电影| 亚洲精品亚洲一区二区| 免费观看无遮挡的男女| 精品久久久噜噜| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 欧美一级a爱片免费观看看| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 欧美97在线视频| 制服诱惑二区| 国产精品熟女久久久久浪| 国产成人精品在线电影| 男女高潮啪啪啪动态图| 99久久人妻综合| 中文天堂在线官网| 啦啦啦在线观看免费高清www| 亚洲欧洲日产国产| 插逼视频在线观看| 国产一区二区三区av在线| xxx大片免费视频| 日韩强制内射视频| 99久久综合免费| 另类精品久久| 亚洲三级黄色毛片| 全区人妻精品视频| 69精品国产乱码久久久| 九色成人免费人妻av| 99九九在线精品视频| 亚洲人成网站在线播| 久久狼人影院| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| 亚洲国产色片| 成人综合一区亚洲| av.在线天堂| 日韩大片免费观看网站| av卡一久久| 精品视频人人做人人爽| 少妇人妻久久综合中文| 高清毛片免费看| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 国产精品.久久久| 精品少妇久久久久久888优播| 午夜福利视频在线观看免费| 午夜av观看不卡| 国产视频内射| 成年美女黄网站色视频大全免费 | 天天影视国产精品| 亚洲欧洲国产日韩| 亚洲成人一二三区av| 天堂中文最新版在线下载| 久久影院123| 亚洲人成网站在线观看播放| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 亚洲国产成人一精品久久久| 日本av免费视频播放| av女优亚洲男人天堂| av有码第一页| 日日爽夜夜爽网站| 赤兔流量卡办理| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 在线天堂最新版资源| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 免费观看a级毛片全部| 在线观看www视频免费| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 精品一区二区三卡| 成年美女黄网站色视频大全免费 | 成年女人在线观看亚洲视频| 日韩伦理黄色片| 午夜激情福利司机影院| 在线看a的网站| 人人妻人人添人人爽欧美一区卜| 日韩成人伦理影院| 一边亲一边摸免费视频| 老女人水多毛片| 观看av在线不卡| av国产久精品久网站免费入址| 国产免费现黄频在线看| 久久综合国产亚洲精品| 日韩精品免费视频一区二区三区 | 亚洲av国产av综合av卡| 2021少妇久久久久久久久久久| 国产精品一区二区三区四区免费观看| 多毛熟女@视频| 人妻 亚洲 视频| 桃花免费在线播放| 亚洲人成网站在线播| 最新中文字幕久久久久| 韩国av在线不卡| 制服丝袜香蕉在线| 能在线免费看毛片的网站| 久久久欧美国产精品| 国产亚洲最大av| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花| 日韩欧美精品免费久久| 国产探花极品一区二区| 国产高清国产精品国产三级| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 性色av一级| av网站免费在线观看视频| 午夜91福利影院| 在线观看人妻少妇| 日韩不卡一区二区三区视频在线| 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 99热这里只有是精品在线观看| 亚洲国产精品一区二区三区在线| 最后的刺客免费高清国语| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 欧美老熟妇乱子伦牲交| 亚洲内射少妇av| 久久久a久久爽久久v久久| 国产熟女午夜一区二区三区 | 亚洲在久久综合| av一本久久久久| 日韩成人伦理影院| 97在线视频观看| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 建设人人有责人人尽责人人享有的| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 黄色一级大片看看| av电影中文网址| 五月开心婷婷网| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 在线观看国产h片| av专区在线播放| 亚州av有码| 亚洲国产精品国产精品| xxx大片免费视频| 精品亚洲成a人片在线观看| 少妇丰满av| 亚洲精品456在线播放app| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 精品人妻偷拍中文字幕| 女性被躁到高潮视频| 国产av码专区亚洲av| 大香蕉97超碰在线| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 免费看光身美女| 激情五月婷婷亚洲| 国产av一区二区精品久久| 9色porny在线观看| 亚洲欧美成人精品一区二区| 一级毛片电影观看| 大又大粗又爽又黄少妇毛片口| 国产亚洲午夜精品一区二区久久| 日本欧美视频一区| 国产一区亚洲一区在线观看| 欧美精品高潮呻吟av久久| 色哟哟·www| 少妇精品久久久久久久| 成人国产av品久久久| 免费观看的影片在线观看| 久久精品国产a三级三级三级| 亚洲图色成人| 永久网站在线| 在线观看国产h片| 成人漫画全彩无遮挡| 如何舔出高潮| 亚洲国产精品一区二区三区在线| 久久影院123| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 亚洲久久久国产精品| 一本—道久久a久久精品蜜桃钙片| 亚洲精品456在线播放app| 街头女战士在线观看网站| 在线免费观看不下载黄p国产| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 亚洲国产av影院在线观看| 自线自在国产av| 亚洲精品自拍成人| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 丝袜喷水一区| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 中国国产av一级| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩卡通动漫| 国产在线免费精品| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 一本久久精品| 天堂中文最新版在线下载| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 日韩人妻高清精品专区| 狠狠精品人妻久久久久久综合| av免费观看日本| 久久久a久久爽久久v久久| 色婷婷av一区二区三区视频| 少妇的逼水好多| 日韩强制内射视频| 国产白丝娇喘喷水9色精品| 黄色毛片三级朝国网站| 97超碰精品成人国产| 国产成人a∨麻豆精品| 免费观看在线日韩| 在线 av 中文字幕| av免费观看日本| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 亚洲精华国产精华液的使用体验| 中国国产av一级| 老司机影院毛片| 男男h啪啪无遮挡| 交换朋友夫妻互换小说| 久久精品夜色国产| 亚洲欧美成人综合另类久久久| av线在线观看网站| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 一区二区三区四区激情视频| 久久精品人人爽人人爽视色| 亚洲高清免费不卡视频| 91午夜精品亚洲一区二区三区| 黄色视频在线播放观看不卡| 久久久久精品久久久久真实原创| av黄色大香蕉| 成人18禁高潮啪啪吃奶动态图 | 男女边吃奶边做爰视频| 国产一区二区三区综合在线观看 | 成人漫画全彩无遮挡| 99热这里只有精品一区| 久久久精品区二区三区| .国产精品久久| 人人澡人人妻人| av视频免费观看在线观看| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 美女内射精品一级片tv| 十八禁网站网址无遮挡| 18禁在线播放成人免费| h视频一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲欧美色中文字幕在线| 美女国产视频在线观看| 成人二区视频| 最新的欧美精品一区二区| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 热re99久久国产66热| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 中文字幕精品免费在线观看视频 | 久久精品国产亚洲网站| 这个男人来自地球电影免费观看 | 日韩中字成人| 午夜精品国产一区二区电影| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 在线看a的网站| 91精品国产国语对白视频| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 国产成人freesex在线| 啦啦啦中文免费视频观看日本| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频 | 国产爽快片一区二区三区| 五月伊人婷婷丁香| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| 国产成人aa在线观看| 国产成人精品无人区| 黄色视频在线播放观看不卡| 日本黄大片高清| 国模一区二区三区四区视频| 国产av码专区亚洲av| 99九九在线精品视频| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| 插阴视频在线观看视频| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 黑丝袜美女国产一区| 热re99久久国产66热| 插逼视频在线观看| 亚洲高清免费不卡视频| 国产成人午夜福利电影在线观看| 9色porny在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老女人水多毛片| 亚洲国产欧美在线一区| 五月开心婷婷网| 亚洲成人手机| 成人手机av| 日韩视频在线欧美| 黄片播放在线免费| 欧美精品一区二区大全| 亚洲成人一二三区av| 日本猛色少妇xxxxx猛交久久| 人人妻人人爽人人添夜夜欢视频| a级毛片黄视频| 蜜臀久久99精品久久宅男| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 久久久久久久久久成人| 国产片特级美女逼逼视频| 黄片无遮挡物在线观看| av专区在线播放| 亚洲精品久久午夜乱码| a级毛片在线看网站| 亚洲精品一区蜜桃| 丰满乱子伦码专区| 久久人妻熟女aⅴ| 日韩一区二区三区影片| 亚洲综合色网址| 一个人免费看片子| 久久 成人 亚洲| 最新的欧美精品一区二区| 乱人伦中国视频| 日本爱情动作片www.在线观看| 最近中文字幕2019免费版| 如何舔出高潮|