• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended Impact of Cold Air Invasions in East Asia in Response to a Warm South China Sea and Philippine Sea

    2023-02-06 06:31:02MarcoLEUNGDongxiaoWANGWenZHOUandYuntaoJIAN
    Advances in Atmospheric Sciences 2023年3期

    Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, and Yuntao JIAN

    1School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

    2Department of Atmospheric and Oceanic Sciences &Institute of Atmospheric Sciences,Fudan University, Shanghai 200438, China

    3Guy Carpenter Asia-Pacific Climate Impact Centre, Center for Ocean Research in Hong Kong and Macau (CORE),School of Energy and Environment, City University of Hong Kong, Hong Kong, China

    ABSTRACT During boreal winter, the invasion of cold air can lead to remarkable temperature drops in East Asia which can result in serious socioeconomic impacts. Here, we find that the intensity of strong synoptic cold days in the East China Sea and Indochina Peninsula are increasing. The enhanced synoptic cold days in these two regions are attributed to surface warming over the South China Sea and Philippine Sea (SCSPS). The oceanic forcing of the SCSPS on the synoptic cold days in the two regions is verified by numerical simulation. The warming of the SCSPS enhances the baroclinicity, which intensifies meridional wind and cold advection on synoptic timescales. This leads to a more extended region that is subject to the influence of cold invasion.

    Key words: ocean warming, extra-tropical cyclones, baroclinicity, temperature whiplash

    1. Introduction

    Cold surges are a prominent phenomenon in East Asia during boreal winter. Cold air originating from Siberia periodically migrates southeastward, leading to profound drops in temperature over East Asia on synoptic timescales. The invasion of cold surges can be associated with significant socioeconomic impacts and mortality (Zhou et al., 2011; Sun et al.,2022). Hence, previous studies have investigated the influence of cold events in East Asia and their possible causes(Zhou et al., 2009; Cheung et al., 2016; Zhang et al., 2021b;Bueh et al., 2022; Zhang et al., 2022).

    Temperature variations on synoptic timescales in East Asia are closely related to horizontal temperature advection in the lower troposphere in conjunction with the passage of extra-tropical cyclones, which is accompanied by altered wind direction and temperature advection on synoptic tempo-spatial scales (Leung et al., 2015; Leung and Zhou 2016a; Song et al., 2016; Ma and Zhu 2021). Extra-tropical cyclone genesis often occurs on the leeward side of mountains in Mongolia and the Tibetan Plateau, whose evolution is aided by the strong surface temperature gradient over the Kuroshio Current (Cho et al., 2018; Lee et al., 2020). In the developing stage, the intensification of extra-tropical cyclones is modulated by baroclinic instability, diabatic processes, and the efficiency of eddy growth, which contribute to seasonal variations in the intensity of extra-tropical cyclones (Chang and Song, 2006; Leung and Zhou, 2016b;Schemm and Rivière, 2019; Liu et al., 2020; Yang et al.,2022). Therefore, extra-tropical cyclones are modulated by low-frequency variations in atmospheric and oceanic circulations.

    The El Ni?o/Southern Oscillation (ENSO) can induce anomalous atmospheric circulation in East Asia through airsea interactions during boreal winter (Wang et al., 2000).Recent studies have demonstrated ENSO forcing on the intensity of synoptic temperature variation in eastern China(Leung and Zhou, 2016b; Jian et al., 2021a). However, it has also been pointed out that ENSO forcing on synopticscale temperatures in China is substantially weaker after the 1980s, in association with a change in the teleconnection pattern of ENSO after the 1980s (Jian et al., 2021b). Consequently, ENSO-related temperature patterns and baroclinicity in East Asia are also altered. Additionally, interannual variability in sea surface temperature over the Kuroshio Current could influence the seasonal prediction of the life cycle of baroclinic wave activity in the Northwest Pacific (Zhang et al., 2021a). Therefore, a multi-scale change in the upper ocean could be crucial to synoptic temperature variations in East Asia. In addition, the effects of local oceanic forcing on the variation in East Asia remain uncertain.

    Anthropogenic forcing is likely to drive ocean warming by changing the radiative forcing. Observational data indicate a considerable spatial difference in the rate of ocean warming(Wang et al., 2016). For instance, the tropical western Pacific warms substantially faster than the eastern Pacific because of strengthening trade winds and the cooling effect of upwelling in the eastern Pacific (Amaya et al., 2015; Seager et al., 2019). It is also noted that the warming rate in the offshore China seas accelerated after 2011, along with the Interdecadal Oscillation (Tang et al., 2020). Warming of the offshore China seas and the western Pacific may enhance baroclinicity in the lower troposphere, which may, in turn, affect extra-tropical cyclones in East Asia.

    The frequency of cold events is expected to decrease with global warming, but extreme cold events may still occur as a result of natural variability in the climate system(Qian et al., 2018; Hu et al., 2020). Apart from extreme temperatures, recent studies have shown that the magnitude of temperature fluctuations could influence public health and agriculture (Ikram et al., 2015; Xu et al., 2020). Thus, there is a pressing need to investigate the mechanism controlling the intensity of strong synoptic cold days. This study aims to identify the trend in the intensity of strong synoptic cold days in East Asia during boreal winter and the degree to which ocean warming contributes to this trend.

    The remainder of this paper is organized as follows. Section 2 presents the data and methods, section 3 presents the results. Section 4 provides a discussion before a conclusion is presented in section 5.

    2. Data and methods

    This study employs the 2-meter air temperature (T2m)and 10-meter meridional wind (V10m) of the ERA-5 reanaly-sis (Hersbach et al., 2020). Daily values are obtained by averaging the hourly temperatures. For the sea surface temperature (SST), ERSSTv5 data are utilized (Huang et al., 2017).To identify a strong cold air invasion, a cold surge is traditionally defined as a temperature drop exceeding a specific threshold. In this study, we quantify the intensity of strong cold synoptic days using the average of the lowest 10% synoptic T2m (L10ST) for every winter. A Lanczos filter is first applied to T2m to extract the synoptic signal (≤ 14 days)(Duchon, 1979). The filter is also applied to the synoptic V10m. The study period includes winters from 1979/80 to 2020/21 (December to February). Winters are labeled according to the year of their December; for example, the 1979 winter denotes the 1979/80 winter.

    To investigate the variation in L10ST along with oceanic forcing, we use a simplified atmospheric general circulation model, SPEEDY, from the International Centre for Theoretical Physics (Molteni, 2003; Kucharski et al., 2006,2013). This model is widely used to study the atmospheric response to anomalous sea surface temperature (Jian et al.,2020; Leung et al., 2020, 2022a, b; Cheung et al., 2021;Feng et al., 2022). It is a hydrostatic model with a semiimplicit treatment of gravity waves, eight vertical levels in σcoordinates, and T30 spectral truncation resolution. The model is driven first by the climatological mean sea surface temperature. Subsequently, anomalously warm and cold sea surface temperature is prescribed to drive the sensitivity simulations. To mitigate the influence of specific initial conditions on the simulations, a composite of 135 different initial conditions is computed and investigated. Additionally, the output of the simulations is examined by a paired z-test.

    3. Results

    The climatological mean of winter L10ST over East Asia is shown in Fig. 1a. It is noted that L10ST is relatively stronger in the midlatitudes of East Asia, except for a center of local maximum in Southeast China (SEC; 25°—35°N and 110°—120°E). For the linear trend in L10ST (Fig. 1b), a significant decreasing trend is found in the East China Sea (ECS;25°—35°N and 125°—135°E) and the Indochina Peninsula(ICP; 15°—25°N and 95°—110°E). The negative trend in the East China Sea and the Indochina Peninsula indicate stronger synoptic cold days in the two regions. This also implies that the center of the local L10ST minimum in Southeast China extends northeastward and southwestward, possibly subjecting this area to the influence of cold invasion.

    The time series of areal averaged L10ST in the three regions are presented in Fig. 1c. The decreasing L10ST trend in Southeast China is approximately equivalent to that in the East China Sea and Indochina Peninsula. However,the trend in Southeast China cannot pass the significance test (Fig. 1c) because of the stronger interannual variation of L10ST in Southeast China relative to the East China Sea and the Indochina Peninsula. This results in a relatively lower signal-to-noise ratio for the decreasing trend of L10ST in Southeast China.

    Fig. 1. (a) Climatological mean L10ST (units: K). (b) Linear trend in L10ST, in units of K (10 yr—1); the yellow contour lines indicate p-values = 0.05. (c) Dashed lines show the time series of the area-averaged L10ST over the SEC, ECS, and ICP; solid lines show their corresponding linear trend.

    To investigate the possible cause of decreasing L10ST,a negated time series of L10ST in the East China Sea and Indochina Peninsula is utilized in the regression reanalysis.As shown in Figs. 2a and b, L10ST in the East China Sea and Indochina Peninsula is negatively correlated to the lowest 10% synoptic meridional wind intensity. This indicates that stronger cold synoptic days in these two regions occur along with stronger northerly winds on synoptic timescales. In Fig. 2c, a positive relationship is found between L10ST in the East China Sea, and the winter mean T2m over eastern China and the South China Sea and Philippine Sea (SCSPS;5°S—30°N and 110°—145°E). For the regression of L10ST in the Indochina Peninsula (Fig. 2d), a positive center is found in the SCSPS. Hence, the warmer near-surface air temperature over the SCSPS is concurrent with the stronger synoptic cold days in the two regions, which results in a significantly steeper meridional gradient upstream of the East China Sea(Fig. 2e) and a southward shift of the stronger baroclinic zone in the Indochina Peninsula (Fig. 2f). Thus, the warmer near-surface temperature in the SCSPS may enhance the synoptic meridional wind and synoptic cold days in the two regions by altering regional baroclinicity.

    Fig. 2. Regression of the intensity of synoptic meridional wind onto standardized and negated (a) ECS L10ST and (b)ICP L10ST. Panels (c) and (d), as in (a) and (b), but for near-surface temperature. Panels (e) and (f), as in (a) and (b),but for the meridional temperature gradient (shading). In (e) and (f), dashed and solid contours indicate the seasonal mean of the meridional temperature gradient with values of —1 × 10—5 and —2 × 10—5 K m—1, respectively. For shading,only values exceeding the 0.05 significance level are depicted. Purple and green boxes indicate the regions of ECS and ICP, respectively.

    In this study, as portrayed in Figs. 3a and b, we also examine the regression of sea surface temperature onto negated L10ST in the East China Sea and Indochina Peninsula. There is a significant positive surface temperature anomaly over the SCSPS, which may warm the air above.The area-averaged winter sea surface temperature in the SCSPS is depicted in Fig. 3c. A notable warming trend occurred after the mid-1990s. As mentioned above, a positive relationship exists between the SCSPS sea surface temperature and the intensity of strong synoptic cold days in the East China Sea and the Indochina Peninsula. Hence, the positive trend in the SCSPS sea surface temperature supports the trends in L10ST in the two regions (Figs. 3c and d). To deduce the oceanic forcing of the SCSPS on synoptic cold days, we define warm and cold SCSPS winters as the standardized sea surface temperature in the SCSPS that are > 1 and < —1, respectively. Accordingly, ten warm and cold SCSPS winters are identified, as shown in Fig. 3c.

    Fig. 3. Regression of SST onto the standardized and negated (a) ECS L10ST and (b) ICP L10ST. (c) Average SST in SCSPS (black;units: K); purple dashed lines indicate the range from ±1 standard deviation; red rectangles and blue triangles represent winters with SST larger than 1 standard deviation and less than -1 standard deviation, respectively. (d) Linear trend in SST. In (a), (b), and (d),purple contours indicate p-values = 0.05.

    The L10ST days in Southeast China for positive and negative SCSPS winters are identified. Accordingly, the composite of synoptic T2m and V10m on days —1, 1, and 2 is presented in Fig. 4. For positive SCSPS winters, a cold center is located in northeast Asia on day —1 (Fig. 4a). The negative temperature center migrates southward and extends southwestward and northeastward in the following days in conjunction with the migration of the synoptic meridional wind(Figs. 4b and c). This illustrates the passage of cold air originating from Siberia, which results in near-surface temperature fluctuation on a daily timescale in Southeast China, the East China Sea, and the Indochina Peninsula. For negative SCSPS winters, a similar migration of a negative temperature center from Siberia is observed (Figs. 4d and f). However,notably weaker magnitudes are noted in the East China Sea and Indochina Peninsula when the cold air migrates across East Asia. Therefore, the impact of the cold air invasion widens with warmer sea surface temperatures in the SCSPS.

    The probability distribution function of synoptic temperature in the East China Sea and Indochina Peninsula is presented in Figs. 5a and b. In assessing the difference between warm and cold SCSPS conditions in the two regions, we find that the number of strong synoptic cold days is significantly larger with warm SCSPS, which is associated with a reduction in weak cold days. In addition, strong synoptic warm days in the East China Sea and Indochina Peninsula also increase along with warm SCSPS. Hence, the number of strong synoptic cold days increases along with greater synoptic temperature variation during warm SCSPS events, possi-bly due to the stronger baroclinicity and synoptic meridional wind in South China.

    To verify the forcing of sea surface temperature in the SCSPS on the size of the cold air invasion in East Asia, two numerical simulations are carried out using the ICTP AGCM. By considering a similar regression pattern in Figs. 3a and b, the two simulations are driven by the regression pattern of sea surface temperature in SCSPS (Pos_Run;black box in Fig. 3b) and its negated pattern (Neg_Run),respectively.

    The difference in near-surface L10ST between the two simulations (Pos_Run — Neg_Run) is presented in Fig. 6a.Notably, significant negative differences are found in the East China Sea and the Indochina Peninsula. This demonstrates that warmer sea surface temperatures can induce significantly stronger synoptic cold days in the SCSPS. In addition, warmer sea surface temperature also results in colder temperatures in South China and a negative difference in the meridional temperature gradient (a steeper gradient)extending from the East China Sea to the Indochina Peninsula(Figs. 6b and c). Therefore, the results of the numerical simulation prove that warm sea surface temperatures in the SCSPS heat the near-surface air, leading to a stronger landsea thermal contrast and baroclinicity. This ultimately induces a change in the synoptic meridional wind intensity and an extension of the cold air invasion into East Asia(Fig. 6a).

    Fig. 4. (a—c) Composite of T2m (shading; units: K) and V10m at the levels of —1.5 and 1.5 (contours; units:m s—1) on days —1, 1, and 2, corresponding to L10ST days in South China, for positive SCSPS winters. Panels(d—f), as in (a—c), but for negative SCSPS winters. The gray box indicates the region of SEC.

    Fig. 5. Probability distribution function of synoptic temperature in a warm SCSPS (dashed red line) and a cold SCSPS(dashed blue line) in the (a) ECS and (b) ICP, with the difference between warm and cold SCSPS (green bars);black stars indicate differences exceeding the 0.05 significance level. Solid red and blue vertical lines indicate the average of the first decile of synoptic temperature for warm and cold SCSPS, respectively.

    Fig. 6. (a) Difference in L10ST between Pos_Run and Neg_Run simulations; Panels (b) and (c), as in (a), but for near-surface temperature and its meridional gradient; yellow contours indicate a z-score = 1.96.

    4. Summary and discussion

    The variation in the intensity of strong synoptic cold days in East Asia is documented in this study. Significant decreasing temperature trends in the East China Sea and Indochina Peninsula imply larger areas of cold air invasion in East Asia. These trends are attributed to sea surface warming over the South China Sea and Philippine Sea. This warming heats the air near the surface, which enhances the landsea thermal contrast between East Asia and the western Pacific, which leads to a steeper meridional temperature gradient near the surface, extending from the East China Sea to the Indochina Peninsula. This induces changes in the synoptic meridional wind intensity and L10ST. The forcing by a warm SCSPS on L10ST in the East China Sea and Indochina Peninsula is generally reproduced by a simplified atmospheric general circulation model. Apart from the change in synoptic meridional wind intensity, the stronger near-surface temperature gradient in Southeast Asia, on a seasonal timescale concurrent with a warm SCSPS, could enhance horizontal temperature advection and the subsequent invasion of cold air.

    Previous studies show that the influence of cold surges in East Asia is determined by their intensity, pathway, and frequency. As indicated by Leung et al. (2019), the intensity of synoptic temperature variations in the Indochina Peninsula is modulated by the strength of extra-tropical eddies, along with variation in baroclinic energy conversion from eddy potential energy to eddy kinetic energy. Thus, this study points out the importance of oceanic forcing in lower tropospheric baroclinicity and the size of cold air invasion in East Asia. In addition, this study suggests that the synergy between the intensity, frequency, and size of cold air invasions should be considered when evaluating their socioeconomic impacts in association with climate change. On the other hand, extra-tropical cyclones could reduce the warm sea surface temperature in SCSPS via sensible and latent heat fluxes, which play a negative feedback role in anomalous temperature in SCSPS (Abdillah et al., 2017; Dacre et al.,2020). Therefore, the intensity of strong synoptic cold days is determined, in part, by the ocean heat content in the upper SCSPS.

    Based on numerical simulations, the forcing of the SCSPS sea surface temperature on the intensity of strong synoptic cold days in East Asia is examined. The results suggest that a warm SCSPS can induce stronger-than-normal synoptic cold days in the East China Sea and Indochina Peninsula. In addition, the SCSPS sea surface temperature demonstrates a robust, increasing trend. Previous studies have attributed the interdecadal variation and trend in the SCSPS sea surface temperature to changes in ocean advection, which are driven by a weakening East Asian winter monsoon and a strengthening western North Pacific subtropical high (Wang et al., 2002;Qu et al., 2005; Cai et al., 2017; Tan et al., 2021; Liang et al., 2022). Hence, these variations in atmospheric and oceanic circulations could influence the intensity of strong synoptic cold days in East Asia by altering the sea surface temperature in the SCSPS.

    Acknowledgements.This study was jointly supported by the National Natural Science Foundation of China (Grant Nos.42120104001, 41805042), the Science and Technology Program of Guangzhou, China (Grant No. 202102020939), and the Fundamental Research Funds for the Central University, Sun Yat-Sen University (Grant No. 22qntd2202), and a project of the Center for Ocean Research in Hong Kong and Macau (CORE).

    欧美激情高清一区二区三区| 一个人免费在线观看的高清视频 | 成年美女黄网站色视频大全免费| 国产精品成人在线| 国产激情久久老熟女| 精品久久久精品久久久| 亚洲 国产 在线| 免费在线观看完整版高清| 高清黄色对白视频在线免费看| 亚洲国产av新网站| av国产精品久久久久影院| 国产精品1区2区在线观看. | 下体分泌物呈黄色| 久久久国产欧美日韩av| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 精品国产乱子伦一区二区三区 | 国产黄频视频在线观看| 大片电影免费在线观看免费| 高清欧美精品videossex| 久久久久久久国产电影| 亚洲男人天堂网一区| 老鸭窝网址在线观看| 亚洲精品乱久久久久久| 我要看黄色一级片免费的| 黑人巨大精品欧美一区二区蜜桃| 精品乱码久久久久久99久播| 最新的欧美精品一区二区| 大陆偷拍与自拍| 黄色视频,在线免费观看| 人成视频在线观看免费观看| 国产黄色免费在线视频| 日韩欧美一区二区三区在线观看 | 人人澡人人妻人| av网站在线播放免费| 亚洲精品国产一区二区精华液| 亚洲第一欧美日韩一区二区三区 | 超色免费av| 国产伦人伦偷精品视频| 免费观看人在逋| 国产一卡二卡三卡精品| 欧美97在线视频| 久久亚洲精品不卡| 国产又色又爽无遮挡免| www.av在线官网国产| 午夜福利在线免费观看网站| 两性夫妻黄色片| 国产高清videossex| 9热在线视频观看99| 精品亚洲成国产av| 欧美xxⅹ黑人| 美女扒开内裤让男人捅视频| 亚洲专区国产一区二区| 欧美黄色片欧美黄色片| a在线观看视频网站| 多毛熟女@视频| 欧美性长视频在线观看| 欧美97在线视频| 中文字幕人妻丝袜制服| av又黄又爽大尺度在线免费看| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| 性色av乱码一区二区三区2| 亚洲成国产人片在线观看| 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| 国产精品久久久久久人妻精品电影 | 亚洲天堂av无毛| 天堂8中文在线网| 建设人人有责人人尽责人人享有的| 国产免费av片在线观看野外av| 国产成人精品无人区| 国产男人的电影天堂91| 老熟妇乱子伦视频在线观看 | 精品国产一区二区久久| 王馨瑶露胸无遮挡在线观看| 天堂俺去俺来也www色官网| 超碰成人久久| 大香蕉久久网| 欧美日韩亚洲高清精品| 无遮挡黄片免费观看| 99国产精品免费福利视频| 久久久久久久久久久久大奶| 99热网站在线观看| 成人18禁高潮啪啪吃奶动态图| 女人爽到高潮嗷嗷叫在线视频| 最新在线观看一区二区三区| 国产欧美日韩精品亚洲av| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区| 亚洲专区字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 50天的宝宝边吃奶边哭怎么回事| 日本av手机在线免费观看| 国产一区二区 视频在线| 国精品久久久久久国模美| av不卡在线播放| 一级a爱视频在线免费观看| 成年av动漫网址| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 亚洲国产中文字幕在线视频| 色视频在线一区二区三区| 在线观看舔阴道视频| 中国国产av一级| 黑人欧美特级aaaaaa片| 人人妻人人添人人爽欧美一区卜| 欧美乱码精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 秋霞在线观看毛片| 日韩 欧美 亚洲 中文字幕| h视频一区二区三区| 亚洲精品一二三| 女人久久www免费人成看片| 亚洲av电影在线进入| 国产福利在线免费观看视频| 国产一区二区三区av在线| 汤姆久久久久久久影院中文字幕| 日本av免费视频播放| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 99九九在线精品视频| 黄色视频在线播放观看不卡| 乱人伦中国视频| 亚洲第一av免费看| 欧美日本中文国产一区发布| 少妇裸体淫交视频免费看高清 | 国产老妇伦熟女老妇高清| 精品久久久精品久久久| 国产亚洲一区二区精品| 丝瓜视频免费看黄片| 日韩 欧美 亚洲 中文字幕| 国产主播在线观看一区二区| 人人妻人人爽人人添夜夜欢视频| 狠狠婷婷综合久久久久久88av| 国产一区二区三区av在线| 99热网站在线观看| 91精品国产国语对白视频| 美女国产高潮福利片在线看| 午夜激情av网站| 国产精品影院久久| 日韩精品免费视频一区二区三区| 国产一卡二卡三卡精品| 80岁老熟妇乱子伦牲交| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| 国产真人三级小视频在线观看| 国产一区二区三区综合在线观看| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 国产精品免费大片| 亚洲色图综合在线观看| 秋霞在线观看毛片| 欧美黑人精品巨大| 国产精品国产av在线观看| 亚洲九九香蕉| 美女脱内裤让男人舔精品视频| 亚洲九九香蕉| 国产福利在线免费观看视频| 国产欧美日韩综合在线一区二区| 91麻豆av在线| 50天的宝宝边吃奶边哭怎么回事| 日日爽夜夜爽网站| 欧美日韩av久久| 亚洲国产看品久久| 啦啦啦 在线观看视频| 国产成人精品在线电影| 又大又爽又粗| 亚洲av男天堂| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区免费欧美 | 老熟女久久久| 热re99久久精品国产66热6| 日韩制服丝袜自拍偷拍| videos熟女内射| 国产精品香港三级国产av潘金莲| 99re6热这里在线精品视频| 少妇裸体淫交视频免费看高清 | 久久久久久久精品精品| 在线观看舔阴道视频| 国产视频一区二区在线看| 久久人人爽人人片av| 国产精品99久久99久久久不卡| 少妇精品久久久久久久| 亚洲人成电影观看| 亚洲国产欧美网| 国产精品久久久av美女十八| 后天国语完整版免费观看| 精品高清国产在线一区| 精品视频人人做人人爽| 99热国产这里只有精品6| 一本久久精品| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频 | 亚洲精品在线美女| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看 | 午夜影院在线不卡| 一区在线观看完整版| 亚洲欧美一区二区三区久久| 日韩 欧美 亚洲 中文字幕| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片| 欧美精品啪啪一区二区三区 | 中文精品一卡2卡3卡4更新| 午夜视频精品福利| 俄罗斯特黄特色一大片| av一本久久久久| 欧美亚洲日本最大视频资源| 永久免费av网站大全| 精品第一国产精品| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 黑人操中国人逼视频| 日韩 欧美 亚洲 中文字幕| 大香蕉久久成人网| 99国产精品一区二区三区| 另类亚洲欧美激情| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 黄色视频不卡| 男女国产视频网站| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 免费av中文字幕在线| 12—13女人毛片做爰片一| 日韩欧美免费精品| 黄色怎么调成土黄色| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影 | 亚洲一区二区三区欧美精品| 女人爽到高潮嗷嗷叫在线视频| 国产不卡av网站在线观看| 国产成人av教育| 手机成人av网站| 亚洲精品美女久久久久99蜜臀| 99热网站在线观看| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 久久久久精品国产欧美久久久 | 亚洲av日韩在线播放| 久久久久久久久免费视频了| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 狂野欧美激情性bbbbbb| 欧美激情高清一区二区三区| 啦啦啦在线免费观看视频4| 久久狼人影院| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 国产亚洲欧美在线一区二区| 91大片在线观看| 亚洲欧美色中文字幕在线| 波多野结衣一区麻豆| 一区二区三区乱码不卡18| 国产免费av片在线观看野外av| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 一本久久精品| 亚洲男人天堂网一区| 亚洲第一欧美日韩一区二区三区 | 人人妻,人人澡人人爽秒播| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 老鸭窝网址在线观看| 丰满少妇做爰视频| 90打野战视频偷拍视频| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 夫妻午夜视频| 日韩视频在线欧美| 成人国产av品久久久| av天堂在线播放| 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 欧美激情极品国产一区二区三区| av天堂久久9| 午夜免费成人在线视频| 波多野结衣一区麻豆| 欧美日韩精品网址| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| av欧美777| 热99re8久久精品国产| 亚洲精品成人av观看孕妇| 国产av精品麻豆| 国产一区二区 视频在线| 国产精品久久久av美女十八| 一进一出抽搐动态| 国产精品久久久久久精品古装| 成年美女黄网站色视频大全免费| 热re99久久国产66热| 黄片小视频在线播放| 成人国语在线视频| 纯流量卡能插随身wifi吗| 日韩人妻精品一区2区三区| 精品国产国语对白av| 高清视频免费观看一区二区| 国产精品欧美亚洲77777| 亚洲精品一区蜜桃| 99热国产这里只有精品6| 一级黄色大片毛片| 老司机影院毛片| 久久久久久久久免费视频了| 国产精品久久久人人做人人爽| 亚洲av男天堂| 自线自在国产av| 亚洲五月婷婷丁香| 一二三四在线观看免费中文在| 天天添夜夜摸| 精品国内亚洲2022精品成人 | 91九色精品人成在线观看| 十八禁网站免费在线| 亚洲avbb在线观看| 久久精品熟女亚洲av麻豆精品| 国产97色在线日韩免费| 亚洲伊人色综图| 久久香蕉激情| 12—13女人毛片做爰片一| 久久精品成人免费网站| 国产日韩欧美视频二区| av网站免费在线观看视频| 不卡av一区二区三区| 亚洲人成77777在线视频| 窝窝影院91人妻| 99re6热这里在线精品视频| av天堂久久9| 少妇被粗大的猛进出69影院| 国产精品欧美亚洲77777| 国产精品香港三级国产av潘金莲| 高清av免费在线| 天天影视国产精品| 色综合欧美亚洲国产小说| 国产精品麻豆人妻色哟哟久久| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 亚洲国产av影院在线观看| 久久久久久久大尺度免费视频| 久久性视频一级片| 国产亚洲av高清不卡| 久久免费观看电影| 黑人巨大精品欧美一区二区mp4| 一级片免费观看大全| 在线十欧美十亚洲十日本专区| 免费女性裸体啪啪无遮挡网站| 咕卡用的链子| 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 国产精品二区激情视频| 一级毛片女人18水好多| videosex国产| 在线观看舔阴道视频| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 色94色欧美一区二区| 大片免费播放器 马上看| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频| 肉色欧美久久久久久久蜜桃| 岛国在线观看网站| 精品国产乱码久久久久久男人| 一本久久精品| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 国产av国产精品国产| 欧美变态另类bdsm刘玥| 亚洲精品久久久久久婷婷小说| 成年人午夜在线观看视频| 久久99一区二区三区| 久久综合国产亚洲精品| 黄片小视频在线播放| 十分钟在线观看高清视频www| 亚洲午夜精品一区,二区,三区| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 十八禁网站网址无遮挡| 欧美中文综合在线视频| 午夜福利乱码中文字幕| av片东京热男人的天堂| 日韩 欧美 亚洲 中文字幕| 一区二区av电影网| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 精品第一国产精品| 久久久久精品人妻al黑| 欧美国产精品一级二级三级| 人妻一区二区av| 老司机午夜福利在线观看视频 | 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 国产成人a∨麻豆精品| 考比视频在线观看| 免费在线观看完整版高清| 欧美在线一区亚洲| 天天操日日干夜夜撸| 精品久久久久久电影网| 高潮久久久久久久久久久不卡| 国产一级毛片在线| 国产有黄有色有爽视频| 一区在线观看完整版| 久久久久国产精品人妻一区二区| 人妻 亚洲 视频| 久久天躁狠狠躁夜夜2o2o| 777米奇影视久久| 99国产精品一区二区三区| 波多野结衣av一区二区av| 亚洲精品美女久久久久99蜜臀| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 最近最新免费中文字幕在线| 老司机午夜十八禁免费视频| 热re99久久国产66热| 91九色精品人成在线观看| 国产不卡av网站在线观看| 成年女人毛片免费观看观看9 | 精品第一国产精品| 丝袜在线中文字幕| 亚洲精品粉嫩美女一区| 一区二区av电影网| 一区二区三区乱码不卡18| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 丝袜人妻中文字幕| 免费在线观看日本一区| 国产高清视频在线播放一区 | 人人妻人人爽人人添夜夜欢视频| 美国免费a级毛片| 亚洲国产毛片av蜜桃av| 日本一区二区免费在线视频| 97在线人人人人妻| 99久久国产精品久久久| 免费少妇av软件| 99香蕉大伊视频| 91九色精品人成在线观看| 久久精品国产亚洲av高清一级| 亚洲 欧美一区二区三区| 午夜免费成人在线视频| 亚洲avbb在线观看| 国产xxxxx性猛交| 法律面前人人平等表现在哪些方面 | 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 丝袜脚勾引网站| 国产成人精品在线电影| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 91老司机精品| 久久国产精品大桥未久av| 两个人看的免费小视频| 国产成人精品在线电影| 老熟妇乱子伦视频在线观看 | 9色porny在线观看| 久久精品国产亚洲av香蕉五月 | 天天操日日干夜夜撸| 欧美乱码精品一区二区三区| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 超色免费av| 亚洲专区中文字幕在线| 国产成人欧美在线观看 | 午夜福利视频精品| 亚洲av日韩在线播放| 久热爱精品视频在线9| 精品免费久久久久久久清纯 | 性少妇av在线| 妹子高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 婷婷成人精品国产| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 精品人妻一区二区三区麻豆| 少妇人妻久久综合中文| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 性色av一级| tocl精华| 国产免费视频播放在线视频| 国产一区二区 视频在线| 日韩制服丝袜自拍偷拍| 性色av乱码一区二区三区2| av一本久久久久| 一个人免费看片子| 色精品久久人妻99蜜桃| 免费日韩欧美在线观看| 又大又爽又粗| 一级黄色大片毛片| 伊人亚洲综合成人网| 不卡一级毛片| 91av网站免费观看| 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 国产亚洲精品久久久久5区| av电影中文网址| 免费看十八禁软件| 成年人午夜在线观看视频| 免费观看人在逋| 久久国产精品影院| 十八禁人妻一区二区| 91字幕亚洲| 成人黄色视频免费在线看| av在线app专区| 操美女的视频在线观看| 日韩欧美国产一区二区入口| 日韩中文字幕视频在线看片| 一个人免费看片子| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 国产亚洲精品一区二区www | 啦啦啦中文免费视频观看日本| 1024香蕉在线观看| 亚洲国产中文字幕在线视频| 亚洲精品美女久久av网站| 久久国产精品人妻蜜桃| 国内毛片毛片毛片毛片毛片| 亚洲欧美清纯卡通| 青草久久国产| 日韩一区二区三区影片| 日韩一卡2卡3卡4卡2021年| 乱人伦中国视频| 欧美成狂野欧美在线观看| 国产精品久久久久久精品古装| 黄频高清免费视频| 国产成人免费观看mmmm| 国产黄色免费在线视频| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 日韩有码中文字幕| 成人av一区二区三区在线看 | 99久久精品国产亚洲精品| 老熟妇乱子伦视频在线观看 | 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 精品亚洲成国产av| 啪啪无遮挡十八禁网站| 精品少妇久久久久久888优播| 在线亚洲精品国产二区图片欧美| 丝袜美腿诱惑在线| 超碰成人久久| 日本精品一区二区三区蜜桃| 精品熟女少妇八av免费久了| 少妇猛男粗大的猛烈进出视频| 91字幕亚洲| bbb黄色大片| 午夜激情av网站| 99精品欧美一区二区三区四区| 国产97色在线日韩免费| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 亚洲国产av影院在线观看| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 悠悠久久av| 免费在线观看黄色视频的| 国产在线一区二区三区精| 叶爱在线成人免费视频播放| 国产精品久久久久成人av| 中文欧美无线码| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片| 精品乱码久久久久久99久播| av不卡在线播放| 最近最新中文字幕大全免费视频| 纯流量卡能插随身wifi吗| 男女高潮啪啪啪动态图| 久久亚洲国产成人精品v| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 国产三级黄色录像| 亚洲欧美一区二区三区久久| 成年人黄色毛片网站| 一边摸一边做爽爽视频免费| 亚洲av男天堂| 亚洲国产看品久久| 丁香六月欧美| 国产精品自产拍在线观看55亚洲 | 精品久久久久久电影网| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜添小说| 男女边摸边吃奶| 欧美 日韩 精品 国产| 欧美少妇被猛烈插入视频| 99精国产麻豆久久婷婷| 老熟妇乱子伦视频在线观看 | 一本久久精品| 国产色视频综合| 欧美97在线视频| 国产人伦9x9x在线观看| 国产一区二区激情短视频 | 国产成人免费无遮挡视频| 男人爽女人下面视频在线观看| av超薄肉色丝袜交足视频|