• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不對(duì)稱故障下考慮電壓跌落程度的新能源逆變器控制策略

    2023-01-31 06:56:06粟時(shí)平唐銘澤蘇乾坤胥朝夫
    關(guān)鍵詞:負(fù)序參考值控制策略

    李 紅,粟時(shí)平,唐銘澤,蘇乾坤,胥朝夫

    不對(duì)稱故障下考慮電壓跌落程度的新能源逆變器控制策略

    李 紅1,粟時(shí)平1,唐銘澤1,蘇乾坤1,胥朝夫2

    (1.長(zhǎng)沙理工大學(xué),湖南 長(zhǎng)沙 410114;2.國(guó)網(wǎng)湖南省電力有限公司岳陽供電分公司,湖南 岳陽 414000)

    電網(wǎng)發(fā)生不對(duì)稱故障會(huì)影響新能源并網(wǎng)系統(tǒng)可靠運(yùn)行,嚴(yán)重情況下還會(huì)存在切機(jī)風(fēng)險(xiǎn)。針對(duì)上述問題,提出一種不對(duì)稱故障下考慮電壓跌落程度的電壓支撐策略。首先根據(jù)逆變器在不對(duì)稱故障下的輸出特性,分析了對(duì)公共連接點(diǎn)(point of common coupling, PCC)電壓的支撐原理。然后推導(dǎo)了任意不對(duì)稱故障下PCC電壓幅值的通式,進(jìn)而分析了改變無功電流注入方式的臨界點(diǎn)。最后在上述基礎(chǔ)上,以逆變器輸出電流峰值和已利用容量為約束條件,分別對(duì)3種典型的不對(duì)稱故障進(jìn)行了分析。確定了每種故障在不同電壓跌落階段的最優(yōu)無功電流,并推導(dǎo)了各電壓跌落階段的電流參考值計(jì)算公式。仿真驗(yàn)證了所提控制策略的有效性與優(yōu)越性。

    不對(duì)稱故障;不同電壓跌落階段;最優(yōu)電壓支撐;逆變器;低壓穿越

    0 引言

    隨著“雙碳”目標(biāo)的提出,光伏、風(fēng)電等新能源的發(fā)展被提高到戰(zhàn)略高度,同時(shí)也加快了構(gòu)建新型電力系統(tǒng)的速度[1-3]。在新能源大規(guī)模接入電網(wǎng)時(shí),其出力波動(dòng)性與隨機(jī)性不僅影響了電網(wǎng)的穩(wěn)定運(yùn)行,電網(wǎng)發(fā)生不對(duì)稱故障也影響了新能源的可靠并網(wǎng)[4-7]。并網(wǎng)標(biāo)準(zhǔn)規(guī)定:并網(wǎng)逆變器在不對(duì)稱故障期間應(yīng)具備低壓穿越能力[8-9],因此研究不對(duì)稱故障下的逆變器控制策略、提升逆變器低壓穿越性能顯得尤為重要。

    對(duì)于不對(duì)稱故障下的逆變器控制,已有大量學(xué)者進(jìn)行了相關(guān)研究。文獻(xiàn)[10-11]基于瞬時(shí)功率理論分析了不對(duì)稱故障下常用的5種控制策略:瞬時(shí)有功-無功控制、平均有功-無功控制、正序分量瞬時(shí)控制、平衡正序分量控制和正負(fù)序分量補(bǔ)償控制。文獻(xiàn)[12-13]在上述5種控制的基礎(chǔ)上引入控制參數(shù),實(shí)現(xiàn)了多目標(biāo)協(xié)調(diào)控制,但未考慮逆變器輸出電流峰值越限。為解決上述問題,文獻(xiàn)[14]以有功功率波動(dòng)和輸出電流峰值為約束條件,繪制了并網(wǎng)逆變器的運(yùn)行韌性區(qū)間并擴(kuò)展了逆變器的最大有功功率輸出能力。值得注意的是,新能源并網(wǎng)系統(tǒng)進(jìn)行低壓穿越不僅要考慮逆變器的運(yùn)行性能,還需具備電壓支撐能力,提高故障期間的不脫網(wǎng)運(yùn)行時(shí)間。文獻(xiàn)[15]在正負(fù)序分量補(bǔ)償控制中引入了多個(gè)調(diào)節(jié)參數(shù),不僅能對(duì)輸出電流峰值和功率波動(dòng)進(jìn)行抑制,還能根據(jù)電壓跌落程度向電網(wǎng)提供無功支撐。文獻(xiàn)[16]根據(jù)并網(wǎng)標(biāo)準(zhǔn)中的低壓穿越曲線要求,以配電網(wǎng)的阻抗比來分配有功電流和無功電流,解決了中低壓電網(wǎng)對(duì)于無功支撐要求的空缺。由于文獻(xiàn)[15-16]未考慮PCC電壓與電網(wǎng)電壓之間的阻抗,仍不能有效支撐PCC電壓。于是,文獻(xiàn)[17]以相電壓幅值為控制目標(biāo),以輸出電流峰值為約束條件,實(shí)現(xiàn)了正序電壓的最大化支撐,但在負(fù)序電壓較大的情況下仍存在缺陷。文獻(xiàn)[18]以正序電壓最優(yōu)支撐為首要目標(biāo),在逆變器容量允許范圍內(nèi)再進(jìn)行負(fù)序電壓最優(yōu)抑制,能同時(shí)實(shí)現(xiàn)支撐PCC電壓和降低電壓不平衡度,但會(huì)引起較大的有功功率波動(dòng)。文獻(xiàn)[19]通過設(shè)置相電壓上下限值得到了正負(fù)序電壓參考值,并結(jié)合無功補(bǔ)償裝置,能在電流峰值不越限情況下有效支撐PCC電壓,但逆變器容量不足或者電壓跌落程度較大時(shí),此方法并不是最優(yōu)解。不同故障時(shí),正負(fù)序電壓相位不一樣,不同電壓跌落程度時(shí),滿足支撐PCC電壓要求的正負(fù)序電流大小也不一樣,所以根據(jù)故障類型和電壓跌落程度來支撐PCC電壓是最優(yōu)解。文獻(xiàn)[20]在電流參考值計(jì)算公式中設(shè)置正、負(fù)序分量加權(quán)分配因子,能根據(jù)電壓故障類型輸出相應(yīng)的無功電流,但只考慮了對(duì)稱故障與不對(duì)稱故障,沒有對(duì)不對(duì)稱故障進(jìn)行具體分析、并且設(shè)計(jì)方法單一,此方法仍具有局限性。

    對(duì)此,本文提出了一種不對(duì)稱故障下考慮電壓跌落程度的電壓支撐策略。首先分析了不對(duì)稱故障下逆變器對(duì)PCC電壓的支撐原理;然后根據(jù)PCC電壓幅值的表達(dá)式,得到了改變無功電流注入方式的臨界點(diǎn);最后以逆變器電流峰值和已利用容量為約束條件,對(duì)3種典型的不對(duì)稱故障進(jìn)行了分析,推導(dǎo)了不同電壓跌落階段的最優(yōu)電流參考值計(jì)算公式。仿真驗(yàn)證了所提控制策略的有效性與優(yōu)越性。

    1 不對(duì)稱故障下逆變器輸出特性分析

    圖1 新能源并網(wǎng)拓?fù)浣Y(jié)構(gòu)

    當(dāng)電網(wǎng)發(fā)生不對(duì)稱故障時(shí),PCC電壓在兩相靜止坐標(biāo)系上可表示為

    由式(1)可得到逆變器輸出電流為

    由式(1)、式(2)和瞬時(shí)功率理論可得到PCC瞬時(shí)功率各分量的表達(dá)式為

    2 不同故障下的PCC電壓支撐策略分析

    2.1 改變無功電流注入方式的臨界點(diǎn)分析

    圖2 、和的函數(shù)圖像

    圖3 PCC電壓向量圖

    為更具體地分析不同故障下和不同電壓跌落程度下的最優(yōu)電壓支撐策略,下文將以電網(wǎng)中發(fā)生概率較大的單相接地故障、兩相接地故障和兩相短路故障為例進(jìn)行分析。

    2.2 單相接地故障

    基于ABC故障分類法[27-28],忽略相位跳變,可得到A相接地故障下的電網(wǎng)電壓為

    2.3 兩相接地故障

    發(fā)生BC兩相接地故障時(shí),電網(wǎng)電壓可表示為

    2.4 兩相短路故障

    發(fā)生BC兩相短路故障時(shí),電網(wǎng)電壓可由式(27)表示,具體推導(dǎo)過程見附錄A。

    3 仿真分析

    根據(jù)文獻(xiàn)[18]設(shè)置逆變器允許的最大電流峰值為1.2倍額定電流,具體參數(shù)見表1。

    表1 仿真系統(tǒng)參數(shù)

    單相接地故障是發(fā)生概率最大的不對(duì)稱故障,因此根據(jù)A相接地故障時(shí)的電壓跌落程度,設(shè)置3個(gè)場(chǎng)景來驗(yàn)證所提控制策略的有效性與優(yōu)越性,仿真場(chǎng)景設(shè)置如表2所示。

    表2 仿真場(chǎng)景設(shè)置

    仿真設(shè)置在0.2 s時(shí)發(fā)生A相接地故障,0.4 s時(shí)電網(wǎng)恢復(fù)正常。其中,在0.2~0.3 s期間,采用文獻(xiàn)[18]中的控制策略進(jìn)行電壓支撐,電流參考值如表3所示;在0.3~0.4 s期間,切換為本文所提控制策略,電流參考值如表4所示。

    表3 對(duì)比算例的電流參考值設(shè)置

    表4 本文所提控制策略的電流參考值設(shè)置

    3.1 場(chǎng)景1:電壓跌落系數(shù)k為0.65

    圖5 場(chǎng)景1仿真結(jié)果

    3.2 場(chǎng)景2:電壓跌落系數(shù)k為0.4

    圖6 場(chǎng)景2仿真結(jié)果

    3.3 場(chǎng)景3:電壓跌落系數(shù)k為0

    仿真在0.2~0.4 s設(shè)置電網(wǎng)發(fā)生A相接地故障,A相電壓跌落至0,此時(shí)正序電壓為207.33 V,負(fù)序電壓為103.67 V。首先在0.2~0.3 s采用對(duì)比算例的電流參考值進(jìn)行控制,然后在0.3~0.4 s切換為本文所提控制策略的電流參考值進(jìn)行控制,仿真結(jié)果如圖7所示。

    圖7 場(chǎng)景3仿真結(jié)果

    3.4 不對(duì)稱電壓跌落嚴(yán)重時(shí)相比傳統(tǒng)限幅的優(yōu)越性

    表5 不同限幅策略下的電壓支撐效果對(duì)比

    上述仿真驗(yàn)證了本文所提控制策略的有效性與優(yōu)越性,可在電網(wǎng)發(fā)生不對(duì)稱故障期間有效支撐PCC電壓,提升了并網(wǎng)系統(tǒng)不脫網(wǎng)運(yùn)行時(shí)間,有助于繼電保護(hù)裝置清除故障,能進(jìn)一步提高并網(wǎng)系統(tǒng)不脫網(wǎng)持續(xù)運(yùn)行的機(jī)率。

    需要說明的是,本文為更具體地分析電壓支撐策略和便于仿真驗(yàn)證,對(duì)3種典型的不對(duì)稱故障進(jìn)行了分析。但所提控制策略不僅限于上述3種故障引起的不對(duì)稱電壓跌落,類比本文控制策略的思路,也可在其衍生故障(受負(fù)載接線方式和變壓器型號(hào)影響)和隨機(jī)不對(duì)稱電壓跌落下進(jìn)行電壓支撐。

    4 結(jié)論

    針對(duì)不對(duì)稱故障影響新能源并網(wǎng)系統(tǒng)可靠運(yùn)行的問題,本文提出了一種不對(duì)稱故障下考慮電壓跌落程度的電壓支撐策略,通過理論分析和仿真驗(yàn)證得出以下結(jié)論。

    1) 所提控制策略能根據(jù)不對(duì)稱故障類型調(diào)整改變無功電流注入方式的臨界點(diǎn),并以逆變器已利用容量和電流峰值為約束條件,可整定不同電壓跌落程度下的最優(yōu)電流參考值,在保證逆變器安全的基礎(chǔ)上實(shí)現(xiàn)了最優(yōu)電壓支撐。

    2) 所提控制策略在保證最優(yōu)電壓支撐的基礎(chǔ)上,根據(jù)逆變器運(yùn)行約束條件來輸出有功功率,在提升并網(wǎng)系統(tǒng)不脫網(wǎng)運(yùn)行時(shí)間的基礎(chǔ)上,減小了故障下的有功缺額。

    3) 所提控制策略相較于現(xiàn)有控制策略,在電壓跌落程度不大的情況下,減小了輸出電流的不平衡度和PCC有功功率波動(dòng);在電壓跌落程度較大情況下,提升了并網(wǎng)系統(tǒng)不脫網(wǎng)運(yùn)行時(shí)間。

    需要說明的是,本文研究是在提前獲取電壓跌落類型和線路等效阻抗的基礎(chǔ)上進(jìn)行的。雖然國(guó)內(nèi)外對(duì)故障檢測(cè)和電網(wǎng)阻抗在線估計(jì)進(jìn)行了多年研究,但要做到準(zhǔn)確無誤地獲取這些信息還是頗有難度,因此這也是本文方法的不足和挑戰(zhàn)。

    附錄A

    根據(jù)文獻(xiàn)[26-27],忽略相位跳變,可得到兩相短路故障下的電網(wǎng)電壓為

    進(jìn)一步化簡(jiǎn),可得到

    附錄B

    [1] 黃鳴宇, 張慶平, 張沈習(xí), 等. 高比例清潔能源接入下計(jì)及需求響應(yīng)的配電網(wǎng)重構(gòu)[J]. 電力系統(tǒng)保護(hù)與控制, 2022, 50(1): 116-123.

    HUANG Mingyu, ZHANG Qingping, ZHANG Shenxi, et al. Distribution network reconfiguration considering demand-side response with high penetration of clean energy[J]. Power System Protection and Control, 2022, 50(1): 116-123.

    [2] 唐杰, 呂林, 葉勇, 等. 多時(shí)間尺度下主動(dòng)配電網(wǎng)源-儲(chǔ)-荷協(xié)調(diào)經(jīng)濟(jì)調(diào)度[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(20): 53-64.

    TANG Jie, Lü Lin, YE Yong, et al. Source-storage-load coordinated economic dispatch of an active distribution network under multiple time scales[J]. Power System Protection and Control, 2021, 49(20): 53-64.

    [3] 鄭寬, 徐志成, 魯剛, 等. 高比例新能源電力系統(tǒng)演化進(jìn)程中核電與新能源協(xié)調(diào)發(fā)展策略[J]. 中國(guó)電力, 2021, 54(7): 27-35.

    ZHENG Kuan, XU Zhicheng, LU Gang, et al. Coordinated development strategy for nuclear power and new energy in the evolution process of power system with high penetration of new energy[J]. Electric Power, 2021, 54(7): 27-35.

    [4] OGHORADA O J K, ZHANG Li, HAN Huang, et al. Inter-cluster voltage balancing control of a delta connected modular multilevel cascaded converter under unbalanced grid voltage[J]. Protection and Control of Modern Power Systems, 2021, 6(3): 289-299.

    [5] GOMES L D N, ABRANTES-FERREIRA A J G, DIAS R F D S, et al. Synchronverter-based STATCOM with voltage imbalance compensation functionality[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4836-4844.

    [6] 張運(yùn)洲, 魯剛, 王芃, 等. 能源安全新戰(zhàn)略下能源清潔化率和終端電氣化率提升路徑分析[J]. 中國(guó)電力, 2020, 53(2): 1-8.

    ZHANG Yunzhou, LU Gang, WANG Peng, et al. Analysis on the improvement path of non-fossil energy consumption proportion and terminal electrification rate under the new energy security strategy[J]. Electric Power, 2020, 53(2): 1-8.

    [7] 劉暢, 黃楊, 楊昕然, 等. 計(jì)及儲(chǔ)能及負(fù)荷轉(zhuǎn)供協(xié)同調(diào)度的城市電網(wǎng)彈性運(yùn)行策略[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(6): 56-66.

    LIU Chang, HUANG Yang, YANG Xinran, et al. Flexible operation strategy of an urban transmission network considering energy storage systems and load transfer characteristics[J]. Power System Protection and Control, 2021, 49(6): 56-66.

    [8] 中國(guó)電力企業(yè)聯(lián)合會(huì). 光伏發(fā)電站接入電力系統(tǒng)技術(shù)規(guī)定: GB/T 19964—2012[S]. 北京: 中國(guó)電力企業(yè)聯(lián)合會(huì), 2012.

    China Electricity Council. Technical regulations for connecting photovoltaic power stations to power system: GB/T 1996—2012[S]. Beijing: China Electricity Council, 2012.

    [9] GARNICA M, DE VICU?A L G, MIRET J, et al. Optimal voltage-support control for distributed generation inverters in RL grid-faulty networks[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8405-8415.

    [10] 劉軍, 趙晨聰, 謝宙樺, 等. 不平衡電網(wǎng)電壓下基于量子粒子群并網(wǎng)變流器功率/電流協(xié)調(diào)控制[J]. 控制與決策, 2021, 36(4): 901-908.

    LIU Jun, ZHAO Chencong, XIE Zhouhua, et al. Coordinate control of grid-connected converter based on QPSO under unbalanced grid voltage[J]. Control and Decision, 2021, 36(4): 901-908.

    [11] WANG Fei, DUARTE J L, HENDRIX M A M. Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dip[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1511-1521.

    [12] 萬曉鳳, 郗瑞霞, 胡海林, 等. 基于果蠅算法的電網(wǎng)不平衡時(shí)并網(wǎng)逆變器多目標(biāo)優(yōu)化控制研究[J]. 電網(wǎng)技術(shù), 2018, 42(5): 1628-1635.

    WAN Xiaofeng, XI Ruixia, HU Hailin, et al. Research on multi-objective optimization control of grid-connected inverter under unbalanced grid voltage based on fruit fly algorithm[J]. Power System Technology, 2018, 42(5): 1628-1635.

    [13] GUO Xiaoqiang, LIU Wenzhao, ZHANG Xue, et al. Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1773-1778.

    [14] 王祺, 秦文萍, 張宇, 等. 不平衡工況下新能源并網(wǎng)變換器韌性分析及優(yōu)化控制[J]. 電網(wǎng)技術(shù), 2020, 44(11): 4337-4346.

    WANG Qi, QIN Wenping, ZHANG Yu, et al. Toughness analysis and optimal control of renewable energy grid- connected converters under unbalanced voltage condition[J]. Power System Technology, 2020, 44(11): 4337-4346.

    [15] 楊超穎, 王金浩, 楊赟磊, 等. 不對(duì)稱故障條件下并網(wǎng)光伏逆變器峰值電流抑制策略[J]. 電力系統(tǒng)保護(hù)與控制, 2018, 46(16): 103-111.

    YANG Chaoying, WANG Jinhao, YANG Yunlei, et al. Control strategy to suppress peak current for grid-connected photovoltaic inverter under unbalanced voltage sags[J]. Power System Protection and Control, 2018, 46(16): 103-111.

    [16] CHARALAMBOUS A, HADJIDEMETRIOU L, KYRIAKIDES E. Voltage support scheme for low voltage distribution grids under voltage sags[C] // 2019 IEEE Milan PowerTech, June 23-27, 2019, Milan, Italy: 1-6.

    [17] 施佳斌, 季亮, 常瀟, 等. 不對(duì)稱電壓跌落下考慮場(chǎng)景區(qū)分的逆變型分布式電源控制策略研究[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(20): 9-17.

    SHI Jiabin, JI Liang, CHANG Xiao, et al. Control strategy for inverter-interfaced distributed generation during unbalanced voltage sag considering scenario classification[J]. Power System Protection and Control, 2020, 48(20): 9-17.

    [18] CAMACHO A,CASTILLA M, Miret J, et al. Positive and negative sequence control strategies to maximize the voltage support in resistive-inductive grids during grid faults[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5362-5373.

    [19] 包正楷, 季亮, 常瀟, 等. 不平衡電壓跌落下新能源場(chǎng)站的主動(dòng)電壓支撐控制[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(16): 161-169.

    BAO Zhengkai, JI Liang, CHANG Xiao, et al. Active voltage support control strategy for a renewable generation farm during unbalanced voltage sags[J]. Power System Protection and Control, 2021, 49(16): 161-169.

    [20] 歐陽森, 馬文杰. 考慮電壓故障類型的光伏逆變器低電壓穿越控制策略[J]. 電力自動(dòng)化設(shè)備, 2018, 38(9): 21-26.

    OUYANG Sen, MA Wenjie. Low voltage ride through control strategy of photovoltaic inverter considering voltage fault type[J]. Electric Power Automation Equipment, 2018, 38(9): 21-26.

    [21] 謝少軍, 季林, 許津銘. 并網(wǎng)逆變器電網(wǎng)阻抗檢測(cè)技術(shù)綜述[J]. 電網(wǎng)技術(shù), 2015, 39(2): 320-326.

    XIE Shaojun, JI Lin, XU Jinming. Review of grid impedance estimation for grid-connected inverter[J]. Power System Technology, 2015, 39(2): 320-326.

    [22] GHAHDERIJANI M M, CAMACHO A, MOREIRA C, et al. Imbalance-voltage mitigation in an inverter-based distributed generation system using a minimum current- based control strategy[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1399-1409.

    [23] SHABESTARYM M, MOHAMED Y A I. Asymmetrical ride-through and grid support in converter-interfaced DG units under unbalanced conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1130-1141.

    [24] VIDAL A, YEPES A G, FREIJEDO F D, et al. A method for identification of the equivalent inductance and resistance in the plant model of current-controlled grid-tied converters[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 7245-7261.

    [25] ASIMINOAEI L, TEODORESCU R, BLAABJERG F, et al. Implementation and test of an online embedded grid impedance estimation technique for PV inverters[J]. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1136-1144.

    [26] ISLAM M, NADARAJAH M, HOSSAIN M J. A grid- support strategy with PV units to boost short-term voltage stability under asymmetrical faults[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1120-1131.

    [27] BOLLEN M H J, ZHANG L D. Different methods for classification of three-phase unbalanced voltage dips due to faults[J]. Electric Power Systems Research, 2003, 66(1): 59-69.

    [28] BOLLEN M H J. Characterisation of voltage sags experienced by three-phase adjustable-speed drives[J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1666-1671.

    Control strategy of renewable energy inverter considering voltage sag degree under asymmetric faults

    LI Hong1, SU Shiping1, TANG Mingze1, SU Qiankun1, XU Chaofu2

    (1. Changsha University of Science and Technology, Changsha 410114, China; 2. Yueyang Power Supply Branch,State Grid Hunan Electric Power Co., Ltd., Yueyang 414000, China)

    The occurrence of asymmetric faults in the power grid will affect the reliable operation of the new energy grid-connected system, and there will be a risk of shutdown in severe cases. Given this, this paper proposes a voltage support strategy considering the degree of voltage sag under asymmetric faults. First, according to the output features of the inverter under asymmetric faults, the support principle of the point of common coupling (PCC) voltage is analyzed. Then the general formula of the PCC voltage amplitude under any asymmetrical fault is deduced, and after that the critical point of changing the reactive current injection mode is analyzed. Finally, considering the peak value of the inverter output current and the used capacity as constraints, three typical asymmetric faults are analyzed on the above groundwork. The optimal reactive current of each type of fault in a variety of voltage sag stages is determined, and the calculation formula of current reference value in each voltage sag stage is deduced. The effectiveness and superiority of the proposed control strategy is verified by the simulation results.

    asymmetric fault; different voltage sag stage; optimal voltage support; inverter; low voltage ride through

    10.19783/j.cnki.pspc.220490

    國(guó)家自然科學(xué)基金項(xiàng)目資助(51708194)

    This work is supported by the National Natural Science Foundation of China (No. 51708194).

    2022-04-08;

    2022-06-20

    李 紅(1996—),女,碩士,研究方向?yàn)殡娏﹄娮釉陔娏ο到y(tǒng)中的應(yīng)用;E-mail: 1311174736@qq.com

    粟時(shí)平(1963—),男,通信作者,博士,教授,研究方向?yàn)樾履茉床⒕W(wǎng)、電能質(zhì)量分析;E-mail: 2217894289@ qq.com

    唐銘澤(1998—),男,碩士,研究方向?yàn)榻恢绷骰旌衔㈦娋W(wǎng)。E-mail: 1485622015@qq.com

    (編輯 周金梅)

    猜你喜歡
    負(fù)序參考值控制策略
    汽輪發(fā)電機(jī)不同阻尼系統(tǒng)對(duì)負(fù)序能力的影響
    考慮虛擬慣性的VSC-MTDC改進(jìn)下垂控制策略
    能源工程(2020年6期)2021-01-26 00:55:22
    中國(guó)健康成年人甘油三酯參考值的空間變異特征
    妊娠婦女甲狀腺功能血清指標(biāo)參考值的建立
    工程造價(jià)控制策略
    山東冶金(2019年3期)2019-07-10 00:54:04
    單三相組合式同相供電系統(tǒng)的負(fù)序影響研究
    瞬時(shí)對(duì)稱分量法在負(fù)序電流檢測(cè)中的應(yīng)用與實(shí)現(xiàn)
    現(xiàn)代企業(yè)會(huì)計(jì)的內(nèi)部控制策略探討
    容錯(cuò)逆變器直接轉(zhuǎn)矩控制策略
    上海地區(qū)胃蛋白酶原參考值的建立及臨床應(yīng)用
    林州市| 安福县| 大荔县| 清苑县| 房产| 喀喇| 定襄县| 莲花县| 清丰县| 乐至县| 云龙县| 正阳县| 汝南县| 洛南县| 泰来县| 麟游县| 武功县| 颍上县| 托克逊县| 乾安县| 蒙城县| 上饶县| 虹口区| 大石桥市| 张掖市| 弥勒县| 富蕴县| 兰西县| 聂拉木县| 长乐市| 皋兰县| 南靖县| 宁津县| 简阳市| 方城县| 高雄市| 通辽市| 双桥区| 镇原县| 清涧县| 宽甸|