• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OrganometaIIic L-AIanine Cadmium Iodide CrystaIs for OpticaI Device Fabrication

    2023-01-13 01:56:26KathiravanVaiyapuriThangaveISubramaniAshokKumarRajamaniMuthuLakshmiThangaveISatheeshKumarGanesanSeIvarajanPaIanisamyKumaresavanjiMaIaiveIusamy

    Kathiravan Vaiyapuri | ThangaveI Subramani | Ashok Kumar Rajamani | Muthu Lakshmi ThangaveI | Satheesh Kumar Ganesan | SeIvarajan PaIanisamy | Kumaresavanji MaIaiveIusamy

    Abstract—Single crystals of L-alanine cadmium iodide (LACI) were grown by the slow evaporation technique at room temperature.A single-crystal X-ray diffraction (SXRD) model was used to evaluate the crystal structure of the as-grown LACI crystal.The energy dispersive X-ray (EDX) analysis and ultraviolet-visible-near infrared (UV-vis-NIR)transmittance studies were carried out,and the results reveal the presence of elements in the title compound.From the transmittance data,the optical bandgap as a function of photon energy was estimated,and the different optical constants were calculated.A fluorescence study was performed for the LACI crystal.Thermogravimetric and differential thermal analyses have also been studied to investigate the thermal property of the LACI crystal.The efficiency of the second harmonic generation (SHG) of the title crystal was investigated.The magnetic and electrical properties were estimated by the vibrating sample magnetometer (VSM) analysis and impedance study,respectively.

    1.Introduction

    Semi-organic non-linear optical (NLO) crystals are used for various applications,such as frequency conversion,frequency doubling,frequency tripling,and optical switching.Amino acid-based semi-organic crystals have good exposure as conceivable possible second-order NLO materials.Photonic crystals are used in image processing techniques.These materials show NLO impacts,and thus there is a tremendous requirement for high-quality single crystals[1]-[3].Much work has gone into combining amino acids with interesting inorganic materials to create better materials that can compete with conventional inorganic materials,like niobates,borates,and potassium dihydrogen phosphate (KDP)[4],[5].The advancement of science in a few areas of the modern world has been cultivated through the production of single crystals.Because of the higher NLO coefficient,which favors mechanical and thermal stability and a high degree of chemical inertness,inorganic materials in combination with amino acids are widely used in various applications.In recent years,researchers are focusing their efforts on discovering new artificial NLO materials in a single-crystal form,which have high optical transparency,physico-chemical solid properties,high laser damage thresholds,and high efficiency of the second harmonic generation (SHG)[6],[7].Since they include both the proton-donor carboxyl acid (-COO) and the proton-acceptor amino (-NH2) groups,amino acid-based organic materials are fascinating for NLO applications[8].The existence of dipole gives amino acids some unusual characteristics,such as sub-atomic chirality,which ensures acentric structures,and the non-appearance of unequivocally shaped bonds,which results in wide visible (vis) and ultraviolet (UV)ranges.The zwitterionic nature of the molecule makes crystals easier to work with.

    L-alanine is an excellent organic NLO substance belonging to the amino acid category,with a melting point of 297 °C and belonging to the orthorhombic crystal structure with the space group of P212121.With a molecular weight of 89.09 g/mol,L-alanine is one of the smallest chiral naturally-occurring amino acids[9],[10].Many researchers have carried out studies on L-alanine complex crystals[11]-[18].By using the slow evaporation process,L-alanine is combined with cadmium iodide to produce L-alanine cadmium iodide (LACI) crystals.This paper is focused on the growth and characterization of the LACI crystal.

    2.ExperimentaI Procedure: CrystaI Growth

    LACI was made by combining L-alanine and cadmium iodide in a 3:1 molar ratio in double-distilled water.A magnetic stirrer was used to continuously stir the prepared solution for 6 h at room temperature (30oC).The solution was then filtered using the Whatman filter paper,and it was kept in the growth vessel covered with a perforated sheet.Due to slow evaporation,spontaneous nucleation resulted in tiny seed crystals with excellent transparency.In the solution,a defectfree seed crystal was suspended and allowed to evaporate at room temperature.Following completion of the nucleation and growth processes,monomers from the mother solution were collected at the seed-crystal locations,resulting in large single crystals.After a 21-day growing period,LACI crystals were harvested through slow solvent evaporation.Fig.1 illustrates the picture of the as-grown LACI crystal.

    Fig.1.As-grown LACI crystal.

    3.ResuIts and Discussion

    3.1.SingIe-CrystaI X-Ray Diffraction (SXRD) AnaIysis

    With the support of a Bruker Kappa Apex-II diffractometer,the SXRD test was performed on the as-grown LACI crystal.It belongs to the orthorhombic structure with the space group of P212121,according to the findings of the SXRD investigation.The values of lattice parameters are given in Table 1.

    3.2.Energy Dispersive X-Ray (EDX or EDAX)AnaIysis

    The EDX analysis was carried out by using the Vega 3 Tescan scanning electron microscope.The recorded EDX spectrum of the LACI crystal is depicted in Fig.2,which confirms the existence of the title compound.The presence of the elements including carbon (C),oxygen (O),nitrogen (N),cadmium (Cd),and iodide (I) in different proportions is indicated by the respective peaks.The weight and atomic percentages of these elements in the LACI crystal are given in Table 2.It is mentioned here that the atomic percent is based on the number of atoms in a sample,and the weight percent is based on the mass or atomic weight of the elements in the sample.It is possible that the atomic percent can be converted into the weight percent and vice versa.

    Table 1: Values of lattice parameters of the LACI crystal

    Fig.2.EDX spectrum of the LACI crystal.

    Table 2: Weight and atomic percentages of different elements in the LACI crystal

    3.3.Linear OpticaI Studies and ReIevant Constants

    3.3.1.UV-vis-Near Infrared (UV-vis-NIR) Transmission Spectrum Studies

    The linear optical properties of the LACI crystal were analyzed for studying the UV-vis-NIR optical transmission.Fig.3 (a) shows the measured transmittance spectrum of the LACI crystal in the wavelength range of 190 nm to 1100 nm using the Perkin Elmer Lambda 35 UV-visible spectrometer.The title compound has maximum transmittance of 94% in the vis and infrared (IR) regions,with a lower cut-off wavelength of 240 nm.

    Fig.3.Investigation of optical parameters: (a) UV-vis-NIR spectrum and (b) Tauc’s plot of the LACI crystal.

    The optical absorption coefficient (α) can be determined by

    whereTdenotes the transmittance andddenotes the crystal thickness.

    Using the values ofαand the Tauc’s relation in (2),the optical bandgap energy (Eg) can be calculated:

    wherehis the Planck’s constant,νis the frequency,andBis a constant[19].Heren=1/2 or 3/2 for a natural transformation,depending on whether the transition is permitted or prohibited in a quantum mechanical context.Similarly,for indirect permitted and prohibited transitions,n=2 or 3.In direct transitions,there will be a single linear region;in indirect transitions,there will be two linear regions.Fig.3 (b) shows Tauc’s plot of the LACI crystal and a single linear region is observed here.Hence,the LACI crystal can be considered as the direct bandgap material[19].The bandgap energy of the LACI crystal was calculated from the linear part of Tauc’s plot by plotting (αhν)2versus photon energy (hν).Extrapolating the linear portion of the plot to intercept at the photon energy (hν) axis yields the value ofEgas 5.97 eV.The high transmittance in the vis region and defectless concentration in the as-grown crystal are verified by the large bandgap of the LACI crystal[20].As a result,the LACI crystal with a large optical bandgap may be a good candidate for actual applications,such as UV tunable lasers and NLO devices.

    3.3.2.Determination of Optical Constants

    For the applications of NLO crystals,measuring the refractive index (n) is important for frequency doubling experiments and calculating optical parameters.The following theoretical formulae were used to measure the other miscellaneous optical constants.

    The extinction coefficient (k) can be calculated by[21]

    whereλis the wavelength of radiation.The reflectance (R) and refractive index (n) of the as-grown LACI crystal are obtained from the following relations[21]:

    From Fig.4,it is clear that the extinction coefficient (k) and reflectance (R) strongly depend on photon energy in the higher-value range.The internal energy of the system is determined by the absorption coefficient,and the amount of light that reaches the materials is determined by the refractive index (n).

    The refractive index (n) of a substance specifies how much light is bent or refracted as it enters.Since the internal performance of the system is determined by incident photon energy (hν),one may achieve the desired material for fabricating optoelectronic devices by carefully tailoring the value and tuningEgof the material.The change inndenotes that the LACI crystal could cause a normal dispersion behavior in the material,as shown in Fig.4 (c).Due to its high optical clarity and low refractive index in the UV-vis-NIR area,LACI is an excellent material for antireflection coatings in solar thermal devices and NLO applications.

    Fig.4.Determination of optical constants: (a) extinction coefficient (k),(b) reflectance (R),(c) refractive index (n),and(d) optical conductivity (σop) versus incident photon energy (hν) for the LACI crystal.

    When a material is irradiated with light,its photoresponse of optical conductivity (σop) is related to the refractive index (n) and the speed of light (c) in the following way[22]:

    For the LACI crystal,Fig.4 (d) depicts the variation of optical conductivity (σop) as a function of photon energy.As indicated by (6),the optical conductivity of a material depends onα,which is dependent on the wavelength.Hence,the optical conductivity relates to photon energy.

    The optical conductivity of the LACI crystal remains constant up to 5.97 eV,and a steep increase of the optical conductivity is noticed.The high magnitude of optical conductivity (1012s-1) of the LACI crystal confirms the high photoresponse of the material.This property enhances the material’s suitability for information processing and computer device applications.

    The relationship for the electrical conductivity(σele) with the optical conductivity (σop) and absorption coefficient (α) can be expressed as[23]

    As shown in Fig.5,the electrical conductivity of the LACI crystal varies with photon energy.The electrical conductivity decreases as photon energy increases.Equation (7) indicates that the electrical conductivity depends on the optical conductivity and the wavelength of radiation.The low electrical conductivity value demonstrates the dielectric nature of the material.

    Fig.5.Electrical conductivity as a function of photon energy for the LACI crystal.

    Fig.6.Fluorescence spectrum of the LACI crystal.

    3.4.FIuorescence Studies

    The fluorescence emission spectrum of the LACI crystal was recorded using a Perkin Elmer LS 45 fluorescence spectrophotometer,and the result ranging from 490 nm to 560 nm is shown in Fig.6.A peak is observed at 530 nm in the emission spectrum,indicating the emission of green fluorescence.Hence,the as-grown crystal is suitable for optoelectronic devices[24].

    3.5.NLO Studies

    The Kurtz and Perry method was employed to study the SHG behavior of the crystal[25].In this process,an Nd:YAG laser (λ=1064 nm) with a pulse length of 6 ns was passed through the as-grown sample.The output laser with green emission at the wavelength of 532 nm was achieved,confirming the SHG behavior of the crystal.Therefore,it has the ability to be used in frequency conversion.For the input energy of 0.64 J,a 19-mV SHG signal for the LACI crystal was obtained.For the same input energy,the standard KDP crystal generated an SHG signal of 35 mV.As a result,the SHG efficiency of the as-grown LACI crystal is 0.54 times higher than that of the standard KDP crystal.

    3.6.ThermaI Properties

    The thermal analysis is an effective method for determining the thermal stability of the crystal[26].The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques were used in this investigation.The experiment was carried out in the temperature range of 27 °C to 600 °C at a moderate heating rate of 10 K/min in the nitrogen atmosphere using the NETZCHSTA449F3 simultaneous TGA/DTA analyzer.For the measurement,a sample weighing 3.635 mg was taken.The thermogram of the LACI crystal is illustrated in Fig.7.

    It can be seen from the TGA curve that the loss begins at 235 °C.Dehydration induces the decomposition stage.However,no weight loss is observed in the temperature range of 0 to 235 °C.The lack of the weight loss in the LACI crystal up to 100 °C indicates the absence of a water molecule during the crystallization process.Hence,the title compound is stable up to 235 °C.In the DTA curve,the endothermic peak at 281 °C is observed.The sharpness of the endothermic peaks points out that the LACI crystal has a good degree of crystallinity[27].According to the finding,the LACI crystal is suitable for the fabrication of optoelectronic devices up to the temperature of 235 °C.

    Fig.7.TGA/DTA thermogram of the LACI crystal.

    3.7.Impedance AnaIysis

    The impedance was measured at room temperature using an impedance analyzer (Model: Versa STAT MC).In terms of the complex impedance (Z*),the frequency-dependent electrical property is expressed asZ′-jZ′,where j is the imaginary element;Z′andZ′are the real and imaginary components of the impedance,respectively,which are shown in Fig.8.

    Fig.8.Impedance analysis: (a) real (Z′) and (b) imaginary (Z′) parts of impedance versus log ν for the LACI crystal at room temperature.

    The DC conductivity (σDC) of the crystal can be calculated by

    whereArepresents the crystal surface area andRbis the bulk resistance.Fig.9 shows the Nyquist plot of the LACI crystal.The DC conductivity of the LACI crystal was found to be 5.9631×10-6(Ω·m)-1at room temperature.A single semicircular arc is obtained from Fig.9,and this semicircle demonstrates that the electrical properties of the material are primarily determined by bulk effects[28],which yieldsRb=8447 Ω.

    Fig.9.Nyquist plot for the LACI crystal.

    3.8.Vibrating SampIe Magnetometer (VSM)AnaIysis

    The applied field dependence of magnetization is measured for the LACI crystal using VSM at room temperature (Lakeshore model 7404),and the result is shown in Fig.10.When the applied field is increased,the magnetization increases sharply,and at the higher field,the magnetization values decrease.These results exhibit that the sample is ferromagnetic at the lower applied field and diamagnetic at a higher field.Such a hysteresis behavior indicates that the diamagnetic property is reduced in the LACI crystal and induces a shortrange ferromagnetic order.Magnetism in transition metal halides,such as cadmium iodide,is caused by the angular momentum of partially filled d-orbitals.The interaction with the coordinating anions splits the five d-orbitals into a variety of energy levels in an octahedral coordination.Hund’s rule indicates that the d-orbital electrons initially fill the levels singly,with their spins parallel.Along with the spin,electrons in levels have orbital angular momentum.As a result,the LACI crystal exhibits magnetism and hysteresis behaviors[29].

    Fig.10.Magnetization versus magnetic field for the LACI crystal.

    We have estimated the saturation magnetization(Ms),retentivity (Mr),coercivity (Hc),and squareness ratio (Mr/Ms) from the hysteresis curve,and the obtained values are displayed in Table 3.The value of the squareness ratio near 0.5 confirms a shortrange ferromagnetic order in the LACI crystal with a larger grain size.

    Table 3: Magnetic parameters of the LACI crystal

    4.ConcIusion

    The slow evaporation technique was used to grow an optically excellent LACI crystal at room temperature.The lattice parameter values were determined using the SXRD study.The various elements presented in the LACI crystal were identified using the EDAX analysis.From the UV-vis-NIR transmittance study,the bandgap energy was found to be 5.97 eV.The optical constants,like the extinction coefficient,reflectance,refractive index,optical conductivity,and electrical conductivity,as a function of photon energy were also calculated from the transmittance data,confirming its suitability for optical device fabrication.The fluorescence spectrum ensures that the crystal has the emission of green fluorescence.The improved Kurtz-Perry powder technique was used to observe the NLO property of the LACI crystal using green radiation with the Nd:YAG laser as a source.The thermal analysis reveals that the sample is thermally stable and has a high degree of crystallinity.The DC conductivity of the as-grown LACI crystal was calculated from the Nyquist plot.The coercivity and retentivity of the LACI crystal were measured from the hysteresis curve as 154.667 Oe and 2.3056×10-7emu/g,respectively.Based on our findings,the LACI crystal appears to be a good candidate for NLO systems due to their excellent optical quality,moderate thermal stability,and increased SHG performance.

    AcknowIedgment

    The authors are grateful for the support from the research centers including the Sophisticated Analytical Instruments Facility (SAIF),Indian Institute of Technology (IIT),Madras;the Archbishop Casimir Instrumentation Centre (ACIC),St.Joseph’s College,Tiruchirappalli;the National College Instrumentation Facility (NCIF),National College,Tiruchirappalli;Alagappa University,Karaikudi.The authors would like to acknowledge the support extended to this research by Abraham Panampara Research Centre (APRC),Sacred Heart College,Tirupattur;the Central Instrumentation Facility (CIF),Pondicherry University,Pondicherry;Indian Institute of Science (IISC),Bangalore for their full-fledged help in carrying out the characterization measurement.

    DiscIosures

    The authors declare no conflicts of interest.

    久久6这里有精品| 亚洲三级黄色毛片| 久久久成人免费电影| 精品人妻一区二区三区麻豆| 99久久精品热视频| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 久久久色成人| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 内地一区二区视频在线| 久久久久久久久大av| 国产av在哪里看| 日韩,欧美,国产一区二区三区 | 欧美一区二区亚洲| 免费人成在线观看视频色| 精品午夜福利在线看| 国产一区亚洲一区在线观看| 一本久久精品| 日韩欧美在线乱码| 午夜福利高清视频| 国产精品av视频在线免费观看| 日日撸夜夜添| 久久久色成人| 午夜福利高清视频| 成人无遮挡网站| 小说图片视频综合网站| 久久久色成人| 91久久精品电影网| av视频在线观看入口| 日韩一本色道免费dvd| 老司机福利观看| 婷婷色综合大香蕉| 成人一区二区视频在线观看| 日韩成人av中文字幕在线观看| 免费观看在线日韩| 国产久久久一区二区三区| 听说在线观看完整版免费高清| 中文字幕av成人在线电影| 国产免费又黄又爽又色| 一级毛片久久久久久久久女| 国产黄片美女视频| 国产成人aa在线观看| av又黄又爽大尺度在线免费看 | 日本-黄色视频高清免费观看| 日本一二三区视频观看| 欧美精品一区二区大全| 国产精品久久久久久久久免| av又黄又爽大尺度在线免费看 | 毛片女人毛片| 看十八女毛片水多多多| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄 | av在线观看视频网站免费| 国产人妻一区二区三区在| 免费观看a级毛片全部| 久久久久久久久久久丰满| 村上凉子中文字幕在线| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区 | 禁无遮挡网站| 国产乱人视频| 六月丁香七月| 日产精品乱码卡一卡2卡三| 国产色爽女视频免费观看| 免费不卡的大黄色大毛片视频在线观看 | 人人妻人人澡欧美一区二区| 色哟哟·www| 午夜激情欧美在线| 99在线人妻在线中文字幕| 免费观看在线日韩| 国产av一区在线观看免费| 久久综合国产亚洲精品| 久久这里有精品视频免费| 高清av免费在线| 亚洲中文字幕日韩| 日韩视频在线欧美| 天天躁日日操中文字幕| 日韩精品青青久久久久久| 午夜激情欧美在线| 村上凉子中文字幕在线| 亚洲av成人精品一区久久| 成人午夜高清在线视频| 欧美又色又爽又黄视频| 非洲黑人性xxxx精品又粗又长| 成人国产麻豆网| 中国美白少妇内射xxxbb| av卡一久久| 国产精品国产高清国产av| 能在线免费看毛片的网站| 亚洲最大成人手机在线| 亚洲成人av在线免费| 日韩高清综合在线| 欧美日本视频| 午夜免费激情av| 欧美潮喷喷水| 日日摸夜夜添夜夜爱| 国产三级在线视频| 麻豆一二三区av精品| 久久久亚洲精品成人影院| 国产亚洲av嫩草精品影院| 九草在线视频观看| 欧美zozozo另类| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 午夜福利网站1000一区二区三区| 欧美色视频一区免费| 在线免费观看的www视频| 亚洲精品乱码久久久久久按摩| 国产成人午夜福利电影在线观看| 麻豆乱淫一区二区| 少妇裸体淫交视频免费看高清| 国产精品,欧美在线| 亚洲四区av| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看 | 97人妻精品一区二区三区麻豆| 久久久久久久久中文| 成年免费大片在线观看| 欧美成人a在线观看| 国产成人福利小说| 26uuu在线亚洲综合色| 国产免费福利视频在线观看| 欧美日本视频| 99久久人妻综合| 国产在视频线精品| 久久久久久国产a免费观看| 波野结衣二区三区在线| 欧美97在线视频| 三级国产精品片| 久久午夜福利片| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品自产自拍| 国产免费男女视频| 国产一区有黄有色的免费视频 | 99久久精品一区二区三区| 热99re8久久精品国产| 国产国拍精品亚洲av在线观看| 亚洲成人精品中文字幕电影| 中文字幕久久专区| 国产美女午夜福利| 一个人免费在线观看电影| 免费观看在线日韩| 国产精品电影一区二区三区| 久久草成人影院| 久久久久九九精品影院| 国产亚洲午夜精品一区二区久久 | 亚洲成人av在线免费| 精品久久久久久久久久久久久| 亚洲国产成人一精品久久久| 岛国在线免费视频观看| 精品一区二区免费观看| 精品人妻偷拍中文字幕| 欧美激情国产日韩精品一区| 国产精品永久免费网站| 国产一区二区在线av高清观看| 国产三级中文精品| 高清视频免费观看一区二区 | 国产午夜精品久久久久久一区二区三区| 国产伦理片在线播放av一区| 国产av一区在线观看免费| 秋霞在线观看毛片| 亚洲va在线va天堂va国产| 在线观看美女被高潮喷水网站| 丰满人妻一区二区三区视频av| 人妻夜夜爽99麻豆av| 99视频精品全部免费 在线| 看十八女毛片水多多多| 免费看光身美女| 免费av观看视频| 成人综合一区亚洲| 99久久人妻综合| 欧美极品一区二区三区四区| 99热6这里只有精品| 国产淫片久久久久久久久| 国产美女午夜福利| 三级国产精品片| 少妇熟女欧美另类| 免费看日本二区| 非洲黑人性xxxx精品又粗又长| 美女高潮的动态| 在线免费观看不下载黄p国产| 禁无遮挡网站| 亚洲高清免费不卡视频| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜爱| 舔av片在线| 国产高清国产精品国产三级 | 精品无人区乱码1区二区| 综合色av麻豆| 日产精品乱码卡一卡2卡三| 午夜福利高清视频| 精品熟女少妇av免费看| 一个人看视频在线观看www免费| 亚洲三级黄色毛片| 天堂网av新在线| 国产精品久久久久久久久免| 免费黄色在线免费观看| 久久久色成人| 美女内射精品一级片tv| 91在线精品国自产拍蜜月| 嫩草影院精品99| av又黄又爽大尺度在线免费看 | 久久欧美精品欧美久久欧美| 亚洲第一区二区三区不卡| 亚洲成人av在线免费| 国产精品1区2区在线观看.| 国产又黄又爽又无遮挡在线| 麻豆乱淫一区二区| 国产精品一区www在线观看| 亚洲av电影在线观看一区二区三区 | 国产毛片a区久久久久| 久久久a久久爽久久v久久| 免费黄网站久久成人精品| 日本黄色片子视频| 久久久久性生活片| 三级毛片av免费| 午夜爱爱视频在线播放| 精品一区二区三区视频在线| 国产免费视频播放在线视频 | 国模一区二区三区四区视频| 亚洲av福利一区| 男女下面进入的视频免费午夜| 日本色播在线视频| 中文天堂在线官网| 网址你懂的国产日韩在线| 特级一级黄色大片| 日韩欧美在线乱码| 小蜜桃在线观看免费完整版高清| 秋霞伦理黄片| 丝袜喷水一区| 在线免费观看不下载黄p国产| 免费看av在线观看网站| 熟女人妻精品中文字幕| 亚洲国产最新在线播放| 国产精品久久久久久av不卡| 欧美性猛交╳xxx乱大交人| 高清日韩中文字幕在线| www日本黄色视频网| 久久欧美精品欧美久久欧美| 身体一侧抽搐| 日本免费在线观看一区| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 色尼玛亚洲综合影院| 精品99又大又爽又粗少妇毛片| 成人鲁丝片一二三区免费| 桃色一区二区三区在线观看| 国产精品国产三级国产专区5o | videos熟女内射| 亚洲av不卡在线观看| 成人二区视频| 老司机福利观看| 国产精品蜜桃在线观看| 国产精品久久久久久久久免| 国产v大片淫在线免费观看| 精品无人区乱码1区二区| 国产成人aa在线观看| 欧美色视频一区免费| 一区二区三区免费毛片| 少妇猛男粗大的猛烈进出视频 | 天美传媒精品一区二区| 99在线人妻在线中文字幕| 有码 亚洲区| 亚洲欧洲日产国产| 男女国产视频网站| 日韩强制内射视频| 亚洲av福利一区| a级毛片免费高清观看在线播放| 久久久久久国产a免费观看| 精品久久久久久久久亚洲| 草草在线视频免费看| 亚洲乱码一区二区免费版| 久久久午夜欧美精品| 高清午夜精品一区二区三区| 久久久久久久久久成人| 亚洲最大成人中文| 麻豆成人av视频| 免费看光身美女| 成人高潮视频无遮挡免费网站| 亚洲av中文字字幕乱码综合| 久久这里有精品视频免费| 国产成人精品一,二区| 亚洲天堂国产精品一区在线| 国产乱人偷精品视频| 国产大屁股一区二区在线视频| 国产在视频线在精品| 国产黄色视频一区二区在线观看 | 人妻系列 视频| 久久精品夜色国产| 久久精品久久久久久久性| 中文字幕制服av| 最近的中文字幕免费完整| 国内精品一区二区在线观看| 亚洲欧美精品综合久久99| 一级黄片播放器| a级毛色黄片| 女人被狂操c到高潮| 春色校园在线视频观看| 春色校园在线视频观看| 好男人视频免费观看在线| 成人性生交大片免费视频hd| 狂野欧美白嫩少妇大欣赏| 六月丁香七月| 久久久久久久亚洲中文字幕| 久久久久久久亚洲中文字幕| 国产久久久一区二区三区| 久久热精品热| 日韩在线高清观看一区二区三区| 一级爰片在线观看| 亚洲人成网站高清观看| 中文字幕久久专区| 国产成人午夜福利电影在线观看| 中文字幕av在线有码专区| 国产精品麻豆人妻色哟哟久久 | 国产精品爽爽va在线观看网站| 国产亚洲午夜精品一区二区久久 | 日韩大片免费观看网站 | 亚洲自拍偷在线| 国产精品久久久久久久电影| 伦理电影大哥的女人| 久久久久国产网址| 天天一区二区日本电影三级| 久久鲁丝午夜福利片| 国产免费男女视频| 男女那种视频在线观看| 欧美成人午夜免费资源| 午夜福利成人在线免费观看| 国产精品伦人一区二区| 久久久久性生活片| 亚洲国产精品国产精品| 丝袜喷水一区| 亚洲人成网站高清观看| 精品久久久久久成人av| 欧美成人午夜免费资源| 国产成人a区在线观看| av黄色大香蕉| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 欧美成人精品欧美一级黄| 国产在视频线在精品| 99热这里只有是精品50| 久久草成人影院| 中文字幕制服av| 国产精品美女特级片免费视频播放器| 久久久久性生活片| 又爽又黄a免费视频| 真实男女啪啪啪动态图| 精品国内亚洲2022精品成人| 国产精品乱码一区二三区的特点| 国语自产精品视频在线第100页| 久久精品91蜜桃| 22中文网久久字幕| 久久99热这里只有精品18| 乱人视频在线观看| 春色校园在线视频观看| 日韩一区二区三区影片| 国产色爽女视频免费观看| 亚洲性久久影院| 成年女人看的毛片在线观看| 精品久久久久久久久亚洲| 免费看美女性在线毛片视频| 日日干狠狠操夜夜爽| 一区二区三区乱码不卡18| 成人性生交大片免费视频hd| 国产视频内射| 亚洲av电影不卡..在线观看| 精品久久久久久久久久久久久| 久久久精品大字幕| 国产精品不卡视频一区二区| 黄色一级大片看看| 三级经典国产精品| 全区人妻精品视频| 国产精品福利在线免费观看| 久久这里只有精品中国| 日本猛色少妇xxxxx猛交久久| 综合色av麻豆| 69av精品久久久久久| 亚洲国产精品成人久久小说| 精品久久久久久成人av| 久久精品熟女亚洲av麻豆精品 | 在线观看av片永久免费下载| 日韩成人伦理影院| 国产精品.久久久| 久久精品久久久久久噜噜老黄 | 级片在线观看| av天堂中文字幕网| 精品一区二区免费观看| 综合色丁香网| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 如何舔出高潮| 亚洲色图av天堂| 日韩精品有码人妻一区| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| av国产免费在线观看| 欧美一区二区国产精品久久精品| av国产久精品久网站免费入址| 超碰97精品在线观看| 欧美+日韩+精品| 国产爱豆传媒在线观看| 久久久成人免费电影| 激情 狠狠 欧美| 两个人视频免费观看高清| 日韩高清综合在线| 又黄又爽又刺激的免费视频.| 日本熟妇午夜| 婷婷色麻豆天堂久久 | 男插女下体视频免费在线播放| 免费看av在线观看网站| 亚洲三级黄色毛片| 一级黄色大片毛片| eeuss影院久久| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 99久国产av精品| 国产成人一区二区在线| 日本免费一区二区三区高清不卡| 97超视频在线观看视频| 高清av免费在线| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 中国美白少妇内射xxxbb| 波多野结衣高清无吗| or卡值多少钱| 国内精品宾馆在线| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 欧美日韩在线观看h| 男女国产视频网站| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 成人亚洲欧美一区二区av| 亚洲av免费在线观看| 国产精品久久久久久精品电影小说 | 少妇裸体淫交视频免费看高清| av在线老鸭窝| 国产免费一级a男人的天堂| 日本黄色视频三级网站网址| 91狼人影院| 色综合色国产| 国产精品国产三级专区第一集| 精品久久久久久久久av| 日本一二三区视频观看| 成年av动漫网址| 国产毛片a区久久久久| 91av网一区二区| 亚洲怡红院男人天堂| 日日干狠狠操夜夜爽| 一级av片app| 国产精品99久久久久久久久| 人人妻人人澡欧美一区二区| 亚洲最大成人av| 麻豆乱淫一区二区| 成年版毛片免费区| 一级黄色大片毛片| 亚洲av成人精品一二三区| 两个人视频免费观看高清| 女人被狂操c到高潮| 亚洲无线观看免费| 只有这里有精品99| 亚洲最大成人av| 国产精品一二三区在线看| 欧美日韩国产亚洲二区| 91aial.com中文字幕在线观看| 舔av片在线| 国产精品国产三级国产专区5o | 如何舔出高潮| 天天一区二区日本电影三级| 久久99蜜桃精品久久| 我要搜黄色片| 国产黄色视频一区二区在线观看 | 亚洲精品aⅴ在线观看| 色综合亚洲欧美另类图片| 97热精品久久久久久| 级片在线观看| 亚洲第一区二区三区不卡| 99久久中文字幕三级久久日本| 男女边吃奶边做爰视频| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 日本五十路高清| 亚洲av一区综合| 中文字幕免费在线视频6| 精品一区二区三区人妻视频| 精品久久久久久久久av| 99久国产av精品| 成人亚洲欧美一区二区av| 日日啪夜夜撸| 欧美一区二区亚洲| 亚洲人成网站在线播| 在线播放无遮挡| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 中文字幕人妻熟人妻熟丝袜美| 日本免费在线观看一区| 久久这里只有精品中国| 舔av片在线| 老司机福利观看| 成年版毛片免费区| 美女黄网站色视频| 舔av片在线| 亚洲四区av| 欧美3d第一页| 免费观看精品视频网站| 国产免费又黄又爽又色| 国产精品.久久久| 精品国产三级普通话版| 中文字幕熟女人妻在线| videossex国产| 成人亚洲精品av一区二区| 黄色配什么色好看| 国产一区二区在线观看日韩| 狠狠狠狠99中文字幕| 啦啦啦啦在线视频资源| 日韩成人伦理影院| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品sss在线观看| 在线观看美女被高潮喷水网站| 久久久国产成人精品二区| 中文资源天堂在线| 少妇人妻一区二区三区视频| 99九九线精品视频在线观看视频| 麻豆精品久久久久久蜜桃| 小蜜桃在线观看免费完整版高清| 国内少妇人妻偷人精品xxx网站| 淫秽高清视频在线观看| 成年免费大片在线观看| 在线播放无遮挡| 成人三级黄色视频| 一个人观看的视频www高清免费观看| 99久久人妻综合| 亚洲电影在线观看av| 国产高清有码在线观看视频| 亚洲久久久久久中文字幕| 久久久久免费精品人妻一区二区| 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 久久久久九九精品影院| 久久久久久久久久久丰满| 黄色一级大片看看| 少妇丰满av| 69人妻影院| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 国产乱来视频区| 亚洲精品亚洲一区二区| 日韩高清综合在线| 国产精品一区二区在线观看99 | 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 一个人看视频在线观看www免费| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 免费播放大片免费观看视频在线观看 | 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 色吧在线观看| 亚洲国产精品国产精品| 日韩中字成人| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 国产精品美女特级片免费视频播放器| 午夜福利在线观看免费完整高清在| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 日本免费a在线| av福利片在线观看| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 国产精品国产三级国产专区5o | 国产精品国产三级国产专区5o | 成年免费大片在线观看| 欧美日韩精品成人综合77777| av线在线观看网站| 国产精品一区二区三区四区久久| 有码 亚洲区| 免费一级毛片在线播放高清视频| 最近最新中文字幕免费大全7| 日本三级黄在线观看| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 国产精品麻豆人妻色哟哟久久 | 国产极品天堂在线| 热99re8久久精品国产| 午夜福利高清视频| 成人av在线播放网站| 男的添女的下面高潮视频| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 成人av在线播放网站| 亚洲精品久久久久久婷婷小说 | 欧美日韩国产亚洲二区| 欧美性感艳星| 欧美日本视频| 搡老妇女老女人老熟妇| 日本熟妇午夜| 一夜夜www| 久久久久国产网址| 一二三四中文在线观看免费高清| 国产精品.久久久| 97热精品久久久久久| 亚洲中文字幕日韩| 1024手机看黄色片| 日本-黄色视频高清免费观看| 在现免费观看毛片| 国产免费一级a男人的天堂|