• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Customer Churn Prediction Model Based on User Behavior Sequences

    2023-01-11 03:14:56ZHAICuiyan翟翠艷ZHANGManman張嫚嫚XIAXiaoling夏小玲MIAOYiwei繆藝瑋CHENHao

    ZHAI Cuiyan(翟翠艷), ZHANG Manman(張嫚嫚), XIA Xiaoling(夏小玲), MIAO Yiwei(繆藝瑋), CHEN Hao(陳 豪)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Customer churn prediction model refers to a certain algorithm model that can predict in advance whether the current subscriber will terminate the contract with the current operator in the future. Many scholars currently introduce different depth models for customer churn prediction research, but deep modeling research on the features of historical behavior sequences generated by users over time is lacked. In this paper, a customer churn prediction model based on user behavior sequences is proposed. In this method, a long-short term memory (LSTM) network is introduced to learn the overall interest preferences of user behavior sequences. And the multi-headed attention mechanism is used to learn the collaborative information between multiple behaviors of users from multiple perspectives and to carry out the capture of information about various features of users. Experimentally validated on a real telecom dataset, the method has better prediction performance and further enhances the capability of the customer churn prediction system.

    Key words: multi-headed attention mechanism; long-short term memory (LSTM); customer churn prediction

    Introduction

    In recent years, with the major operators in marketing, technology promotion and development, the customer growth rate in e-market has become significantly slower[1]. At the same time, there is few differences in the way that each operator runs, and it will not have a significant advantage in the competition for new customers. Therefore, reducing the churn of on-net customers is an important means to protect the overall customer base of the operator. The current main method is to collect information about the features of churn customers, analyze and learn from the customers currently on the network through relevant algorithms and models, identify customers who will terminate their contracts with operators, and realize the prediction of churn customers. In the actual production environment, a large amount of human and material resources needs to be employed to remedy the identified churn customers, so the accuracy of model prediction becomes critical and has attracted the attention of academia and industry.

    Early research focused on traditional machine learning to learn user behavior and basic feature information to achieve customer churn prediction. Verbekeetal.[2]and Kimetal.[3]both based on logistic regression models for customer churn prediction. Coussementetal.[4]introduced support vector machine (SVM) for customer churn prediction and also compared it with two algorithms based on interaction verification and grid search. Huangetal.[5]applied random forest algorithm to churn prediction of customers. De Caignyetal.[6]used decision tree algorithms and a logistic regression model algorithm to predict churn customers.

    Later on, with the wide application of deep learning in telecommunication research, more and more studies started to introduce neural network models in customer churn prediction models, which achieved better results compared with traditional machine learning. Hungetal.[7]performed customer churn prediction by introducing back-propagation neural(BPN) networks, and the proposed method had outperformed machine learning models such as decision trees in terms of accuracy. Tsaietal.[8]combined two neural network techniques, namely the back-propagation artificial neural network (ANN) and self-organizing mapping (SOM), to perform customer churn prediction. Agrawaletal.[9]built a multilayer neural network for modeling learning by means of a nonlinear model. Huetal.[10]proposed a product-based recurrent neural network (RNN) to predict the churn of telecommunication customers. Pustokhinaetal.[11]used long-short term memory (LSTM) and stacked autoencode (SAE) models for customer churn prediction. Mitrovicetal.[12]and Almuqrenetal.[13]introduced social network analysis algorithms and social media mining models to churn analysis in telecommunications, respectively.

    Current research in customer churn prediction has tried to introduce many deep models, but the current research is based on basic feature data for modeling analysis, without mining from the perspective of the overall user behavior sequences. To address the above issues, we propose a customer churn prediction model on user behavior sequences. For simplicity, we name the proposed multi-headed attention and long-short term memory network model as MALSTMN. We explore the interaction and correlation between multiple user behaviors, focus on the long- and short-term interest changes of each user, capture long- and short-term interests, and extract multi-angle feature information by introducing LSTM networks and multi-headed attention to user behavior sequences. All the learned feature representations and the user base information are combined by neural networks to obtain the final user representation and realize the customer churn prediction. The main contributions of this work are as follows.

    (1) We delve into modeling user behavior sequences and propose a new model based on multi-headed attention mechanism and LSTM networks.

    (2) For the aspect of temporal feature modeling, we introduce LSTM networks to predict temporal feature data and effectively solve the gradient disappearance and gradient explosion problems. For feature extraction, we introduce attention mechanism to learn collaborative information.

    (3) We carry out the capture of information between different features of users and focus on different information perspectives through multiple self-attention mechanisms.

    (4) We perform experiments on real datasets and the results show that our model achieves better results compared to the underlying neural network model.

    1 Model Method

    In this section, the MALSTMN model is presented in detail. The model consists of five main components. The input layer feeds user data into the model; the embedding layer converts sparse and high-dimensional user behavior data and user base information data into a low-dimensional dense matrix; the feature attention layer learns inter-feature dependencies and temporal relationships; the feature extraction layer is used for final feature extraction from multiple angles; the prediction layer is used for the final results. Figure 1 shows the complete model structure.

    Fig. 1 General architecture of proposed model

    1.1 Input layer

    All user data inputs can be represented asS={S1,S2, …,Si, …,St}, wheretis the number of all users, andSi∈Stis the user data of theith user. Data of each user are composed of user historical behavior characteristic sequence data and user basic characteristic data. For user dataS, this can be specifically expressed asS=[X,P], whereXis the user historical behavior sequence data, andXi∈Xis the historical behavior sequence data of theith feature of the user;Pis the user base characteristic data, andPj∈Pis thejth user base characteristic information data of the user.

    1.2 Embedding layer

    Since both the user historical behavior characteristic sequence data and user basic characteristic data have very sparse and high-dimensional feature representations, we convert the high-dimensional sparse user history feature sequence data and user base information feature data into the corresponding low-dimensional dense matrix by the embedding layer. The specific implementation of the embedding layer is shown in the following equation:

    ei=Embedding(Xi),

    whereEmbeddingdenotes the operation of matrix multiplication between a row vector and its weights.

    1.3 Feature correlation layer

    The input gate is used to control whether the current unit is affected by the input of the current user behavior information, the output gate is used to control whether the output information of the current unit affects the subsequent units, and the forgetting gate is used to control whether the previous user information state is forgotten, so as to dynamically adjust the user behavior data and achieve the mastery of the user’s overall interest preference.

    Fig. 2 Structure of LSTM storage cell

    1.4 Feature extraction layer

    The output obtained from the feature attention layer isH. The feature extraction layer from multi-angle learns user behavior data among multiple features, and to realize the deep mining of user behavior data.

    1.4.1Scaleddot-productattention

    We employ self-attention mechanism to capture the dependencies between multiple user behaviors. In practice, we simultaneously calculate the attention function of a set of user behavior feature queries by transforming the user’s historical behavior sequence dataXthrough the feature embedding layer and the feature association layer, and then multiplying them by the weight matricesWQ,WK, andWV, respectively. We can obtain three matricesQ,K, andV[16].Qcan be understood as the query word;KandVare the information contents. Through Eq. (1), we can get the matching results.

    (1)

    1.4.2Multi-headedattention

    The multi-headed attention mechanism, which enables the model to jointly pay attention to information in different representation subspaces at different locations, captures multi-perspective information among different behavioral features of users.

    The specific implementation is to use key-value attention mechanism to identify the feature combinations and find the valuable forms of feature combinations. Taking as an example, we first define the correlation between featurewand featurebunder a specific attention headhas follows[16]:

    (2)

    (3)

    (4)

    In addition, the same user behavior profile may be combined with multiple other user behavior profiles in distributed interactions. We use multiple heads to create different subspaces by introducing multi-headed attention mechanism to distribute the learning of different feature interaction combinations. The output values of thedmodeldimension are generated by executing the attention function in parallel, and these data are concatenated and projected again[16]to obtain the final values.

    MultiHead(Q,K,V)=Concat(head1,head2, …,headh)WO,

    (5)

    1.5 Prediction layer

    U=MLP(D).

    (6)

    2 Experiments

    In this section, we describe the actual telecom customer dataset, and the relevant settings of the parameters in the experiments, the comparison experiments with the time-series prediction base model, the ablation experiments, and the evaluation methods.

    2.1 Datasets

    In order to evaluate the validity of the MALSTMN model proposed in this paper, we used real telecom data of customers from July, 2019 to July, 2021. This dataset contains customer historical behavior data of temporal type and customer basic information data of non-temporal type (after desensitization). Customer historical behavior sequence data are the stitching of monthly behavior data generated by customers from July, 2019 to July, 2021 in the order of time size. The total current dataset is 1.05 million. Among them, customer behavior data mainly include: monthly_rent, arpu(average revenue per user), dou(dataflow of usage: average data flow per one month per one user), all_voice(user monthly voice allowance), sms_count(number of user sms per month), and call_voice(user monthly call voice volume). Customers base information data mainly include age, sex, and basic information on the network.

    2.2 Experimental setup

    The hyperparameters set for the experiments are lr: 0.001, batch_size: 200, hidden_units: 128, where lr is the learning rate, batch_size is the batch size, and hidden_units is the hidden layer unit size. We use Adam as the model optimizer in the experiments.

    2.3 Evaluation metrics

    To evaluate the effectiveness of the proposed MALSTMN model, the specific performance metrics to measure the model are the area under the receiver operating characteristic curve AUC, accuracy, precision, and F1_score. F1_score is a statistical indicator used to measure the accuracy of dichotomy models. It combines both the precision and recall of the classification model. The F1-score can be viewed as a harmonic average of the model precision and recall, with a maximum of 1 and a minimum of 0.

    2.4 Comparison methods

    We compare the model on the dataset with the following models.

    (1) BaseModel[16]. It only uses the most basic self-attentive mechanism to model the user historical behavior characteristic sequence data for learning.

    (2) Recurrent neural network(RNN)[17]. It is the most primitive RNN, which is essentially a fully connected network. Just to consider the past information, the output depends not only on the current input but also on the previous information. That is, the output is determined by the previous information (that is the state) and the input at this time.

    (3) LSTM[14]. To solve problems such as gradient disappearance and explosion, and to get better prediction and classification of sequence data, RNN is gradually transformed into LSTM.

    (4) Gate recurrent unit(GRU)[18]. GRU is also very popular because the training speed of LSTM is slow. GRU can be much faster with a slight modification on it, and the accuracy remains basically the same.

    From the experimental results in Table 1, our proposed model is the best result among all methods. It can be seen that the proposed MALSTMN model achieves the best overall performance, and the effects such as AUC and accuracy ACC improve about 7.0% compared to those of the base attention model, and also about 0.2% compared to those of LSTM. Our model digs deeper into the customer behavior feature data than other models. On the basis of the RNN focused on temporal order, combined with the multi-headed attention mechanism to capture the impact of the overall behavior from multiple perspectives separately, the most suitable results are obtained.

    In addition, it can be found that in terms of user behavior sequence modeling, RNN has better results.

    Table 1 Experimental results of different models on real telecom user datasets

    Also to further validate and gain insight into the proposed model, we performed an ablation study and compared the following variants of MALSTMN.

    (1) MALSTMN-M. The effectiveness of the multi-headed attention mechanism module is demonstrated by removing the multi-headed attention mechanism and modeling the user behavior sequence using LSTM and self-attentive mechanism.

    (2) MALSTMN-L. The effectiveness of the LSTM module is demonstrated by removing the LSTM module and modeling the user behavior sequence using only the multi-headed attention mechanism.

    (3) MARNNN. The LSTM superiority is demonstrated by replacing the LSTM module with an RNN module to model the user behavior sequence.

    (4) MAGRUN. The LSTM superiority is demonstrated by replacing the LSTM module with the GRU module to model the user behavior sequence.

    The specific ablation experimental results are shown in Table 2. By removing the multi-headed attention module and LSTM module by MALSTMN-M and MALSTMN-L, respectively, the effect decreases compared to the complete MALSTMN model, which proves the effectiveness of the multi-headed attention module and LSTM module. By comparing the actual effect of MARNNN, MAGRUN, and MALSTMN, the experiments prove the effectiveness of LSTM in comparison to other RNNs.

    Table 2 Comparative study of ablation performance of MALSTMN modules

    3 Conclusions

    In this paper, we propose a user off-grid prediction model based on user behavior sequences. We fully model and analyze the behavioral data generated by the user over a long period of time, and do not just replace the overall features of the user with the behavioral feature data at a certain time, taking into account the long-term data of the user and mining more information about the user compared to traditional prediction models. Specifically, we learn the modeling of interest evolution of user behavior sequence data through the LSTM networks in the temporal prediction model to master users’ long short-term interest preferences as a whole, and then capture information from multiple perspectives across multiple user features through the multi-headed attention mechanism to find the similarity among users and user feature data. An extensive experimental analysis confirms the superiority of our proposed model MALSTMN over traditional timing prediction methods. In future work, we plan to fully model user base information, mine more user base information, and explore more similarities between user behaviors and between users so that the model can learn more useful information and improve the accuracy of the user off-grid prediction system.

    亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久午夜电影| 99国产精品一区二区蜜桃av| 99久久精品国产亚洲精品| 久久人妻av系列| 又黄又爽又免费观看的视频| 丁香欧美五月| 色播亚洲综合网| bbb黄色大片| 中文在线观看免费www的网站 | 国产成人精品无人区| 国产亚洲欧美98| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 老汉色av国产亚洲站长工具| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 小说图片视频综合网站| 黄片小视频在线播放| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 久久婷婷人人爽人人干人人爱| 国产高清有码在线观看视频 | 麻豆久久精品国产亚洲av| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片| 男人舔女人的私密视频| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| 亚洲av片天天在线观看| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| 老司机福利观看| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 亚洲九九香蕉| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产三级中文精品| 日韩欧美国产一区二区入口| 亚洲九九香蕉| 亚洲精品国产一区二区精华液| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠躁躁| or卡值多少钱| 婷婷丁香在线五月| 无限看片的www在线观看| 亚洲乱码一区二区免费版| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 久久 成人 亚洲| 日韩欧美 国产精品| 老汉色av国产亚洲站长工具| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 精品人妻1区二区| 听说在线观看完整版免费高清| 午夜激情福利司机影院| 欧美 亚洲 国产 日韩一| 国产在线观看jvid| 日韩av在线大香蕉| 男女那种视频在线观看| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 国产熟女xx| 国产av在哪里看| 国产精品av久久久久免费| 国产区一区二久久| 欧美日韩瑟瑟在线播放| 久久中文看片网| 男人的好看免费观看在线视频 | 亚洲人成77777在线视频| 日本一区二区免费在线视频| 久久久久久久久中文| 亚洲精品一区av在线观看| 国产精品av久久久久免费| www国产在线视频色| 亚洲av中文字字幕乱码综合| av免费在线观看网站| 在线观看66精品国产| 亚洲乱码一区二区免费版| 免费观看人在逋| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 成人一区二区视频在线观看| 色在线成人网| 99国产精品一区二区蜜桃av| 国产人伦9x9x在线观看| 99久久久亚洲精品蜜臀av| 19禁男女啪啪无遮挡网站| 狂野欧美白嫩少妇大欣赏| 午夜日韩欧美国产| 国产高清激情床上av| 18美女黄网站色大片免费观看| 欧美大码av| 亚洲精品中文字幕在线视频| 极品教师在线免费播放| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 久久久水蜜桃国产精品网| 女警被强在线播放| 超碰成人久久| 久久这里只有精品中国| 国产成人影院久久av| 精品久久久久久久久久免费视频| 一区二区三区高清视频在线| 欧美日韩乱码在线| 正在播放国产对白刺激| 又粗又爽又猛毛片免费看| 丝袜美腿诱惑在线| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 两个人视频免费观看高清| 久久伊人香网站| 日韩中文字幕欧美一区二区| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 色噜噜av男人的天堂激情| 这个男人来自地球电影免费观看| 亚洲一码二码三码区别大吗| 首页视频小说图片口味搜索| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 他把我摸到了高潮在线观看| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女| 欧美日韩中文字幕国产精品一区二区三区| 精品久久蜜臀av无| 国产99白浆流出| 国产一区二区三区在线臀色熟女| 亚洲欧洲精品一区二区精品久久久| 日本黄大片高清| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 身体一侧抽搐| 亚洲av成人精品一区久久| 欧美日韩黄片免| 色综合站精品国产| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 嫩草影院精品99| 亚洲男人的天堂狠狠| 亚洲电影在线观看av| 国产亚洲欧美在线一区二区| 国产v大片淫在线免费观看| av免费在线观看网站| 免费高清视频大片| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| e午夜精品久久久久久久| 精品福利观看| 久久精品综合一区二区三区| 国产久久久一区二区三区| 不卡一级毛片| 免费看美女性在线毛片视频| 国产成人av激情在线播放| 欧美又色又爽又黄视频| 日韩高清综合在线| 欧美日韩国产亚洲二区| 亚洲av成人av| 美女扒开内裤让男人捅视频| 97碰自拍视频| 午夜福利视频1000在线观看| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 久久精品成人免费网站| 国产精品美女特级片免费视频播放器 | 日韩欧美免费精品| 脱女人内裤的视频| 久久99热这里只有精品18| 久久久国产成人免费| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| av有码第一页| 精品欧美一区二区三区在线| 国产99白浆流出| 免费观看人在逋| 男女那种视频在线观看| 国产成人欧美在线观看| 熟女电影av网| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久| 亚洲专区中文字幕在线| 99久久无色码亚洲精品果冻| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 免费看日本二区| 亚洲精品在线美女| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 欧美成人免费av一区二区三区| 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 精品第一国产精品| 国产不卡一卡二| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 久久久久久大精品| 人妻丰满熟妇av一区二区三区| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 国产午夜精品久久久久久| 校园春色视频在线观看| 男女午夜视频在线观看| 亚洲精品中文字幕一二三四区| 欧美另类亚洲清纯唯美| 看黄色毛片网站| 久久久久亚洲av毛片大全| av超薄肉色丝袜交足视频| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片| 日本一区二区免费在线视频| 国产精品98久久久久久宅男小说| av在线天堂中文字幕| 91大片在线观看| 村上凉子中文字幕在线| 最近在线观看免费完整版| 国产精品一区二区三区四区免费观看 | 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 国产成人精品久久二区二区免费| 哪里可以看免费的av片| 久久午夜综合久久蜜桃| 午夜a级毛片| 很黄的视频免费| 国产亚洲精品久久久久久毛片| 久久中文字幕一级| 日日爽夜夜爽网站| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品综合久久久久久久免费| 高清毛片免费观看视频网站| 搞女人的毛片| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 亚洲最大成人中文| 我要搜黄色片| 亚洲av片天天在线观看| 男女床上黄色一级片免费看| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 99国产精品99久久久久| 亚洲成人国产一区在线观看| 欧美中文综合在线视频| 亚洲乱码一区二区免费版| 一级作爱视频免费观看| 国产精品99久久99久久久不卡| 国产精品精品国产色婷婷| 久久久久久久久免费视频了| 香蕉av资源在线| 中出人妻视频一区二区| 国产av在哪里看| 麻豆成人午夜福利视频| 夜夜夜夜夜久久久久| 少妇粗大呻吟视频| 欧美乱妇无乱码| 曰老女人黄片| 亚洲一码二码三码区别大吗| 国产精品乱码一区二三区的特点| 免费观看人在逋| 波多野结衣巨乳人妻| 欧美黄色片欧美黄色片| 最近最新中文字幕大全电影3| av国产免费在线观看| 免费在线观看成人毛片| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 久久精品91蜜桃| 欧美zozozo另类| 在线观看舔阴道视频| 波多野结衣高清作品| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 黄色片一级片一级黄色片| 欧美日韩黄片免| 亚洲精品久久国产高清桃花| 欧美精品亚洲一区二区| av超薄肉色丝袜交足视频| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 国产激情偷乱视频一区二区| 女生性感内裤真人,穿戴方法视频| 制服人妻中文乱码| 香蕉av资源在线| 国产激情久久老熟女| 日韩欧美精品v在线| 日本一区二区免费在线视频| 男人舔女人的私密视频| 狂野欧美白嫩少妇大欣赏| 三级国产精品欧美在线观看 | 亚洲人成网站高清观看| 88av欧美| 高潮久久久久久久久久久不卡| 99久久精品热视频| 在线播放国产精品三级| 久久天堂一区二区三区四区| 一本精品99久久精品77| 一进一出好大好爽视频| 亚洲欧洲精品一区二区精品久久久| 国产一区二区在线观看日韩 | 亚洲九九香蕉| 99精品在免费线老司机午夜| 长腿黑丝高跟| 制服诱惑二区| 999精品在线视频| 国产精华一区二区三区| 一区二区三区激情视频| 欧美成人一区二区免费高清观看 | 久久这里只有精品中国| 日本在线视频免费播放| 国产欧美日韩一区二区三| 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲| 日韩欧美在线二视频| 亚洲国产看品久久| 女人被狂操c到高潮| 午夜福利在线在线| 国产97色在线日韩免费| 嫩草影视91久久| 在线观看免费午夜福利视频| 嫩草影视91久久| bbb黄色大片| 日本免费一区二区三区高清不卡| 制服诱惑二区| 日本黄色视频三级网站网址| 一本一本综合久久| 99久久久亚洲精品蜜臀av| 后天国语完整版免费观看| 精品国产亚洲在线| 99在线视频只有这里精品首页| 不卡一级毛片| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 黄片大片在线免费观看| 身体一侧抽搐| 黄色片一级片一级黄色片| 91字幕亚洲| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 国产熟女午夜一区二区三区| 精品电影一区二区在线| 18禁黄网站禁片午夜丰满| 久久精品人妻少妇| 99久久精品国产亚洲精品| 国产男靠女视频免费网站| 国产视频内射| 丁香欧美五月| 国产精品 欧美亚洲| 黄色女人牲交| 91大片在线观看| 免费在线观看完整版高清| 亚洲人成网站高清观看| 九色成人免费人妻av| 国产激情欧美一区二区| 麻豆国产97在线/欧美 | 亚洲av成人av| 久久久久久久久中文| 久久久精品欧美日韩精品| 中文资源天堂在线| 男女之事视频高清在线观看| 国产乱人伦免费视频| 一个人观看的视频www高清免费观看 | 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 一本久久中文字幕| 午夜视频精品福利| 在线看三级毛片| 亚洲成人精品中文字幕电影| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 床上黄色一级片| 久久久久久久久中文| 国产精品精品国产色婷婷| 亚洲国产欧美网| 免费观看人在逋| 成人国产综合亚洲| 午夜免费激情av| 人妻夜夜爽99麻豆av| 亚洲人成电影免费在线| 国产av在哪里看| 可以免费在线观看a视频的电影网站| 久久欧美精品欧美久久欧美| 精品欧美一区二区三区在线| 他把我摸到了高潮在线观看| 国产99久久九九免费精品| 国产精品九九99| 国产亚洲精品综合一区在线观看 | 国产精品久久久久久久电影 | 高清毛片免费观看视频网站| 成人av一区二区三区在线看| 夜夜夜夜夜久久久久| 啦啦啦免费观看视频1| 久久伊人香网站| 免费在线观看完整版高清| 国产99久久九九免费精品| 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久久末码| 999精品在线视频| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 男男h啪啪无遮挡| 香蕉丝袜av| 白带黄色成豆腐渣| 一本一本综合久久| 亚洲真实伦在线观看| 成人三级做爰电影| 欧美乱码精品一区二区三区| 国产成人精品无人区| 欧美成人午夜精品| 午夜福利在线观看吧| xxxwww97欧美| 欧美在线黄色| 日本三级黄在线观看| 久久中文看片网| 成人欧美大片| 一夜夜www| 国产黄片美女视频| tocl精华| 男女午夜视频在线观看| 国产精品永久免费网站| 国产欧美日韩精品亚洲av| 亚洲午夜理论影院| 99re在线观看精品视频| 99热这里只有精品一区 | 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 久久性视频一级片| 日本五十路高清| 国产成人影院久久av| 国产精品综合久久久久久久免费| 国产成人欧美在线观看| 宅男免费午夜| 亚洲av成人一区二区三| 欧美黑人巨大hd| 亚洲中文字幕一区二区三区有码在线看 | 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 人妻久久中文字幕网| 黄片小视频在线播放| 中文字幕高清在线视频| 大型av网站在线播放| 日本黄色视频三级网站网址| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 热99re8久久精品国产| 国产一区在线观看成人免费| 久久国产精品人妻蜜桃| 久久久久久大精品| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 欧美日本亚洲视频在线播放| 亚洲欧洲精品一区二区精品久久久| 九色成人免费人妻av| 搞女人的毛片| 国产亚洲av嫩草精品影院| 午夜免费成人在线视频| 黄色丝袜av网址大全| 女生性感内裤真人,穿戴方法视频| 老司机深夜福利视频在线观看| www.www免费av| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久亚洲精品国产蜜桃av| 香蕉av资源在线| 成人精品一区二区免费| 69av精品久久久久久| 亚洲一区二区三区色噜噜| 亚洲成a人片在线一区二区| 99久久精品热视频| 亚洲中文日韩欧美视频| 亚洲精华国产精华精| 亚洲专区中文字幕在线| www.精华液| 国产午夜精品久久久久久| 精品国产乱子伦一区二区三区| 亚洲av电影在线进入| 午夜激情av网站| 99在线视频只有这里精品首页| 无遮挡黄片免费观看| 欧美最黄视频在线播放免费| а√天堂www在线а√下载| 欧美三级亚洲精品| e午夜精品久久久久久久| 欧美午夜高清在线| 国产亚洲精品综合一区在线观看 | 久久久久久久久中文| 99国产精品一区二区蜜桃av| 午夜视频精品福利| 99热这里只有精品一区 | 极品教师在线免费播放| 午夜两性在线视频| 亚洲成a人片在线一区二区| 亚洲激情在线av| 露出奶头的视频| 国产黄片美女视频| 真人一进一出gif抽搐免费| 在线视频色国产色| 人妻丰满熟妇av一区二区三区| 黄频高清免费视频| 黄色 视频免费看| 国产v大片淫在线免费观看| 亚洲精品美女久久久久99蜜臀| 不卡av一区二区三区| 后天国语完整版免费观看| av国产免费在线观看| 国产探花在线观看一区二区| 69av精品久久久久久| 国产爱豆传媒在线观看 | 丰满人妻一区二区三区视频av | 欧美一级毛片孕妇| 日韩三级视频一区二区三区| 午夜激情av网站| 国产成人一区二区三区免费视频网站| 色综合亚洲欧美另类图片| 国产精品一区二区三区四区久久| 国产熟女xx| 毛片女人毛片| 美女午夜性视频免费| 日韩大尺度精品在线看网址| cao死你这个sao货| 此物有八面人人有两片| 国内久久婷婷六月综合欲色啪| 视频区欧美日本亚洲| 三级男女做爰猛烈吃奶摸视频| 国产日本99.免费观看| 宅男免费午夜| 99国产精品一区二区三区| 麻豆成人午夜福利视频| 欧美黑人精品巨大| 中文字幕高清在线视频| 俺也久久电影网| 美女大奶头视频| 啦啦啦韩国在线观看视频| 男女视频在线观看网站免费 | 国产精品 欧美亚洲| 亚洲狠狠婷婷综合久久图片| 久久精品91蜜桃| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 一级黄色大片毛片| 欧美黄色淫秽网站| 变态另类丝袜制服| 国产精品98久久久久久宅男小说| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 国产精品美女特级片免费视频播放器 | 日韩大尺度精品在线看网址| 别揉我奶头~嗯~啊~动态视频| 欧美黑人精品巨大| 搡老熟女国产l中国老女人| 后天国语完整版免费观看| 欧美黑人精品巨大| 国产免费男女视频| 色精品久久人妻99蜜桃| 久久婷婷成人综合色麻豆| 国产日本99.免费观看| 啦啦啦免费观看视频1| 成人三级做爰电影| 精品乱码久久久久久99久播| 久久 成人 亚洲| 香蕉丝袜av| 国产精品99久久99久久久不卡| 两性夫妻黄色片| 国产av在哪里看| 日本三级黄在线观看| 天堂√8在线中文| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看 | 两人在一起打扑克的视频| 两个人免费观看高清视频| 国产99久久九九免费精品| 国内毛片毛片毛片毛片毛片| av福利片在线观看| 99在线视频只有这里精品首页| 午夜影院日韩av| 正在播放国产对白刺激| 欧美一区二区国产精品久久精品 | 两个人免费观看高清视频| 可以在线观看毛片的网站|