劉屹巍,王重陽(yáng)
持續(xù)電流作用下金屬間化合物NiAl薄板熱彎成形
劉屹巍1,王重陽(yáng)2
(1.空軍裝備部駐大連地區(qū)軍事代表室,遼寧 大連 116000;2.哈爾濱工業(yè)大學(xué) 機(jī)電工程學(xué)院,哈爾濱 150001)
為了解決和克服現(xiàn)有耐高溫金屬間化合物成形難、傳統(tǒng)等溫?zé)岢尚涡屎湍茉蠢寐实偷膯栴},開發(fā)持續(xù)電流作用下金屬間化合物薄板熱彎成形新技術(shù)。首先,對(duì)NiAl板材進(jìn)行系統(tǒng)的升溫實(shí)驗(yàn),確定熱彎成形的電流密度。然后對(duì)NiAl板材進(jìn)行三點(diǎn)彎曲實(shí)驗(yàn),確定凸模下壓速度。最后,在自行設(shè)計(jì)并制作的可實(shí)現(xiàn)電與載荷持續(xù)復(fù)合作用的熱彎成形裝置和陶瓷絕緣模具上對(duì)板材進(jìn)行熱彎成形實(shí)驗(yàn)。在電流密度為8.5 A/mm2、加熱溫度為1 300 ℃、凸模下壓速度為0.5 mm/min的實(shí)驗(yàn)條件下,成形后的熱彎件尺寸精度良好、厚度均勻,無開裂和回彈產(chǎn)生。該方法主要針對(duì)熱彎曲成形工藝,解決了金屬間化合物難變形及傳統(tǒng)脈沖電流輔助熱成形難以在變形過程中持續(xù)通電的問題,改善了金屬間化合物成形時(shí)產(chǎn)生的開裂和回彈。
金屬間化合物;鎳鋁;脈沖電流;熱成形
新一代高推重比航空航天發(fā)動(dòng)機(jī)熱端部件對(duì)超高溫結(jié)構(gòu)材料性能要求十分苛刻,具有優(yōu)良高溫性能和低密度的金屬間化合物被廣泛關(guān)注[1-2]。與傳統(tǒng)金屬相比,金屬間化合物中既有金屬鍵,又有共價(jià)鍵,共價(jià)鍵的存在增強(qiáng)了原子間的結(jié)合力,使得材料內(nèi)部的化學(xué)鍵十分穩(wěn)定,因此,金屬間化合物具有熔點(diǎn)高、耐磨性好、抗氧化能力和耐腐蝕能力強(qiáng)等優(yōu)點(diǎn),在航空航天等國(guó)防技術(shù)領(lǐng)域具有十分廣泛的應(yīng)用前景[3-6]。
金屬間化合物,如鎳鋁、鈦鋁、鈮硅、鈮鎢等具有較高的高溫強(qiáng)度,高溫變形抗力較大,成形困難[7-12]。在金屬間化合物板材成形前,通常將板材放入加熱爐內(nèi)加熱到成形溫度后,再對(duì)其進(jìn)行熱成形加工。然而傳統(tǒng)的板材熱成形設(shè)備比較復(fù)雜,包括熱成形模具、壓力載荷平臺(tái)和加熱爐等,還涉及到板材加熱后轉(zhuǎn)移過程所需的設(shè)備,十分占用空間。該過程不僅系統(tǒng)龐雜、操作難度大,而且有加熱效率低、能耗大、轉(zhuǎn)移板材過程中熱量損失嚴(yán)重等缺點(diǎn)[13-15]。另外,還存在所需加熱時(shí)間較長(zhǎng),以及容易發(fā)生板材內(nèi)部晶粒顯著長(zhǎng)大、材料力學(xué)性能下降明顯、表面氧化嚴(yán)重等缺陷。
脈沖電流輔助加熱系統(tǒng)具有可持續(xù)通電、加熱迅速、占地較少、節(jié)能環(huán)保、熱量損失小、組織性能好、氧化少及可實(shí)現(xiàn)自動(dòng)化等優(yōu)點(diǎn)。近年來,隨著新材料、新工藝研究不斷地深入發(fā)展,特別是高密度脈沖電流在材料制備及加工過程中的應(yīng)用越來越受到重視,脈沖電流輔助熱成形技術(shù)被廣泛應(yīng)用在熱沖壓、鍛造等領(lǐng)域[16-21]。楊以鵬[22]研究了不同曲率半徑TC4圓弧件的自阻加熱拉壓復(fù)合成形工藝,證實(shí)了成形工藝的可行性。肖寒等[23]利用自阻加熱成形裝置進(jìn)行了5A90 Al-Li合金桁條零件的成形實(shí)驗(yàn),結(jié)果表明,室溫下成形的零件表面有裂紋,而利用脈沖電流將合金加熱到340 ℃后成形的零件質(zhì)量良好、成形時(shí)間短、能耗低,極大地提高了成形效率。而且設(shè)計(jì)的新型電流自阻加熱成形裝置能有效克服絕緣和板材夾持問題,并易于實(shí)現(xiàn)自動(dòng)化。Yanagimoto等[24]采用電流加熱方法對(duì)板材進(jìn)行了熱軋制成形,加熱速度快且能耗低,成形后的零件質(zhì)量良好。Mori等[25]采用自阻加熱的方法,研究了高強(qiáng)鋼板SPF590Y、780Y的高溫彎曲工藝,提高了成形效率,并解決了回彈問題。
大多數(shù)電流輔助成形都是將材料加熱到成形溫度后斷電,再進(jìn)行成形。在成形過程中,材料溫度會(huì)逐漸下降,導(dǎo)致板材成形困難,出現(xiàn)開裂情況,回彈也比較明顯。文中設(shè)計(jì)并制作了熱彎成形裝置和陶瓷絕緣模具,采用成形過程中電與載荷持續(xù)復(fù)合作用的新方法,對(duì)NiAl板材進(jìn)行熱彎成形實(shí)驗(yàn),以獲得尺寸精度良好的熱彎件,并解決金屬間化合物常規(guī)熱彎成形開裂和回彈的問題。
利用電流的焦耳熱效應(yīng)能實(shí)現(xiàn)金屬板材的快速升溫,可迅速達(dá)到成形溫度、降低能耗、有效減少板材表面氧化,采用自阻加熱成形零件的方法能實(shí)現(xiàn)快速加熱成形,從而縮短成形周期,簡(jiǎn)化實(shí)驗(yàn)裝置。在NiAl板材電流自阻加熱彎曲實(shí)驗(yàn)之前,對(duì)板材坯料進(jìn)行電加熱升溫實(shí)驗(yàn),用以確定較為合適的升溫保溫電流參數(shù),確保迅速有效地達(dá)到板材彎曲溫度。電流自阻加熱升溫實(shí)驗(yàn)裝置如圖1所示,其由高頻開關(guān)電源、紫銅電路、柔性?shī)A持裝置、紅外測(cè)溫?cái)z像頭和電腦等組成,加熱過程的溫度數(shù)據(jù)可以被實(shí)時(shí)記錄下來。實(shí)驗(yàn)所用NiAl板材是通過線切割在粉末冶金方法自制的NiAl塊體上切割獲得的,升溫實(shí)驗(yàn)所用NiAl板材尺寸為95 mm×9 mm×4 mm,如圖2所示。
圖1 電流加熱升溫實(shí)驗(yàn)裝置
圖2 電流加熱NiAl板材
為了得到NiAl板材在熱彎曲實(shí)驗(yàn)的凸模下壓速率,在AG-X Plus 250 kN電子萬能實(shí)驗(yàn)機(jī)(圖3)上對(duì)NiAl板材進(jìn)行高溫下的三點(diǎn)彎曲實(shí)驗(yàn)。實(shí)驗(yàn)溫度為1 000 ℃,壓頭加載速率分別為0.5、0.7 mm/min。
熱彎曲實(shí)驗(yàn)中所用NiAl板材尺寸為55 mm× 15 mm×1 mm。實(shí)驗(yàn)所用脈沖電流輔助熱彎實(shí)驗(yàn)裝置如圖4所示,裝置由載荷平臺(tái)、紫銅電路、陶瓷凸模、陶瓷凹模等構(gòu)成。該裝置的設(shè)計(jì)創(chuàng)新點(diǎn):通過陶瓷凸模、陶瓷凹模來實(shí)現(xiàn)電路與載荷平臺(tái)的絕緣,位于兩側(cè)的電極可以連接紫銅電路。
圖3 AG?X Plus 250 kN電子萬能實(shí)驗(yàn)機(jī)
將模具安裝在熱成形壓力機(jī)上,將NiAl板材放在凹模上,加載電流前,凸模先對(duì)NiAl板材施加一定載荷以保證板材貼合電極,避免在電流加熱板材時(shí)造成板材與電極接觸不良而產(chǎn)生加熱不均或無法加熱等現(xiàn)象。然后接通電路,將板材加熱至成形溫度,凸模下壓,當(dāng)板材和凹模貼合后,保壓30 s,減小電流,凸模上升,成形過程結(jié)束。整個(gè)成形過程中,要保持電路持續(xù)通電,以保證板材一直處于高溫狀態(tài),便于熱彎曲成形。當(dāng)壓力機(jī)的壓頭抬起后,隨著溫度下降,熱彎件和模具之間由于熱膨脹系數(shù)差異會(huì)自動(dòng)分離。
圖5a—c是NiAl板材從通電到升溫至成形溫度的整個(gè)過程。從圖中可以看出,通入電流后,板材中間部位升溫最快,然后兩端開始升溫,最后整個(gè)板材達(dá)到同樣的溫度。這是因?yàn)閷?shí)驗(yàn)中的夾持裝置材質(zhì)是不銹鋼,和板材的導(dǎo)熱系數(shù)不同,使局部溫度較低,因此會(huì)大大降低板材兩端的溫度,導(dǎo)致中間部位升溫快,兩端升溫慢。對(duì)比傳統(tǒng)加熱方式,電流輔助加熱可以實(shí)現(xiàn)材料溫度迅速升高到指定溫度。
圖4 脈沖電流輔助熱彎實(shí)驗(yàn)裝置
圖5 NiAl板材電流輔助加熱升溫過程
實(shí)驗(yàn)采用連接有鉑銠熱電偶的三通道測(cè)溫儀器,在升溫過程中每隔10 s測(cè)量一次板材的實(shí)時(shí)溫度,誤差不超過±10 ℃。實(shí)驗(yàn)設(shè)置了4種不同大小的電流密度,分別是6、8、8.5、10 A/mm2,不同電流密度下達(dá)到的平衡溫度及達(dá)到平衡溫度所需的時(shí)間如表1所示。
表1 不同電流密度下的平衡溫度及達(dá)到平衡溫度所需時(shí)間
Tab.1 The equilibrium temperature and the time to reach the equilibrium temperature at different current densities
從表1可以看出,當(dāng)電流密度為6 A/mm2時(shí),升溫速率較慢,且溫度不能達(dá)到成形溫度。當(dāng)電流密度為10 A/mm2時(shí),升溫極其迅速,容易產(chǎn)生局部急劇升溫,達(dá)到NiAl金屬間化合物的熔點(diǎn)而發(fā)生熔斷,也容易超過測(cè)溫儀器量程而損壞儀器。綜上分析可以得出,電流密度為8.5 A/mm2左右是最合適的電流密度,且能達(dá)到后續(xù)電流加熱輔助成形所需溫度(1 300 ℃)。
在熱彎曲成形前,先對(duì)NiAl板材進(jìn)行高溫三點(diǎn)彎曲實(shí)驗(yàn),實(shí)驗(yàn)后得到的力-位移曲線如圖6所示??梢钥闯?,當(dāng)凸模位移速率為0.5 mm/min時(shí),材料的最大位移為1.45 mm,計(jì)算后的彎曲強(qiáng)度為650.6 MPa;當(dāng)凸模位移速率為0.7 mm/min時(shí),材料的最大位移為1.24 mm,計(jì)算后的彎曲強(qiáng)度為664.4 MPa。由此可見,0.5 mm/min為合理的凸模位移速率。
圖6 不同位移速率下的力-位移曲線
對(duì)于金屬間化合物,成形困難是限制其應(yīng)用的主要因素。NiAl金屬間化合物的成形溫度高達(dá)1 250~ 1 350 ℃,實(shí)驗(yàn)采用成形過程中持續(xù)通電的新技術(shù),設(shè)置電流密度為8.5 A/mm2,在溫度為1 300℃、凸模位移速率為0.5 mm/min的條件下對(duì)NiAl金屬間化合物板材進(jìn)行熱彎成形,其成形過程如圖7所示。隨著加熱時(shí)間的增加,板材溫度持續(xù)升高,當(dāng)板材溫度達(dá)到預(yù)定加熱溫度后進(jìn)行熱彎曲成形實(shí)驗(yàn)。成形后零件如圖8所示,成形后的熱彎件尺寸精度良好、厚度均勻,無開裂和回彈產(chǎn)生。
圖7 NiAl板材熱彎成形過程
圖8 NiAl板材熱彎成形件
1)研究了NiAl金屬間化合物板材的持續(xù)電加熱升溫規(guī)律,通過比較4組不同大小的電流密度對(duì)平衡溫度和升溫速度的影響規(guī)律,熱彎實(shí)驗(yàn)確定選擇的電流密度為8.5 A/mm2。
2)進(jìn)行了NiAl金屬間化合物板材高溫三點(diǎn)彎曲實(shí)驗(yàn),確定了合適的凸模位移速率為0.5 mm/min。
3)開發(fā)了一種金屬間化合物的電流輔助熱彎成形裝置及其成形方法,通過在成形過程中持續(xù)通入電流的熱成形新方法,保證了板材的成形溫度。在電流密度8.5 A/mm2、成形溫度1 300 ℃、凸模位移速率0.5 mm/min的條件下,對(duì)NiAl板材進(jìn)行熱彎成形,成形后的熱彎件尺寸精度良好、厚度均勻,無開裂和回彈產(chǎn)生。
[1] SONG Hui, WANG Zhong-jin, HE Xiao-dong. Improving in Plasticity of Orthorhombic Ti2AlNb-Based Alloys Sheet by High Density Electropulsing[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 32-37.
[2] LI Shi-qiong, ZHANG Jian-wei, CHENG Yun-jun, et al. Current Status on Development of Ti3Al and Ti2AlNb Intermetallic Structural Material[J]. Rare Metal Materials and Engineering, 2005, 34: 104.
[3] NOEBE R D, BOWMAN R R, NATHAL M V. Physical and Mechanical Property of the B2 Compound NiAl[J]. International Materials Reviews, 1993, 38(4): 193-232.
[4] BROSSMANN U, OEHRING M, APPLE F. Microstructure and Chemical Homogeneity of High Nb Gamma Based TiAl Alloys in Different Conditions of Processing [C]// International Symposium on Structural Intermetallics. The Minerals, Metals & Materials Society, 2001: 191-200.
[5] 林有智, 曹睿, 李雷, 等. 全層TiAl基合金室溫?cái)嗔褭C(jī)制的研究[J]. 稀有金屬, 2007, 31(2): 148-153.
LIN You-zhi, CAO Rui, LI Lei, et al. Investigation of Fracture Mechanism of Fully Lamellar TiAl Alloy at Room Temperature[J]. Chinese Journal of Rare Metals, 2007, 31(2): 148-153.
[6] 曹睿, 朱浩, 陳劍虹, 等. TiAl基合金雙態(tài)組織平板拉伸連續(xù)卸載試驗(yàn)的研究[J]. 稀有金屬, 2008, 32(1): 13-16.
CAO Rui, ZHU Hao, CHEN Jian-hong, et al. Repeated Tension Test of Duplex Structure TiAl Based Alloys[J]. Chinese Journal of Rare Metals, 2008, 32(1): 13-16.
[7] WANG Lei, SHEN Jun, ZHANG Yun-peng, et al. Microstructure Evolution and Room Temperature Fracture Toughness of As-Cast and Directionally Solidified Novel NiAl-Cr(Fe) Alloy[J]. Intermetallics, 2017, 84: 11-19.
[8] NOSEWICZ S, ROJEK J, CHMIELEWSKI M, et al. Discrete Element Modeling and Experimental Investigation of Hot Pressing of Intermetallic NiAl Powder[J]. Advanced Powder Technology, 2017, 28(7): 1745-1759.
[9] BELOMYTTSEV M Y, LAPTEV A I, EZHOV I P, et al. Strength and Creep of Structural Materials Based on Intermetallic Compound NiAl[J]. The Physics of Metals and Metallography, 2006, 101 (4): 397-403.
[10] AZIMI M, TOROGHINEJAD M R, SHAMANIAN M, et al. Grain and Texture Evolution in Nano/Ultrafine- Grained Bimetallic Al/Ni Composite during Accumulative Roll Bonding[J]. Metals, 2018, 53(17): 12553- 12569.
[11] 吳靚, 段震, 張汭, 等. 稀土金屬Y對(duì)Ni-Cr-Al多孔材料高溫抗氧化性能的影響[J]. 精密成形工程, 2021, 13(2): 48-55.
WU Liang, DUAN Zhen, ZHANG Rui, et al. Effect of Rare Earth Metal Y on High Temperature Oxidation Resistance of Ni-Cr-Al Porous Materials[J]. Journal of Netshape Forming Engineering, 2021, 13(2): 48-55.
[12] 孫營(yíng), 林鵬, 苑世劍. 超高溫NiAl合金錐形薄殼件制備成形一體化新工藝[J]. 推進(jìn)技術(shù), 2021, 42(11): 2617-2624.
SUN Ying, LIN Peng, YUAN Shi-jian. A New Integrated Process of Forming and Reaction Synthesis for Ultra-High Temperature NiAl Alloy Thin-Walled Conical Components[J]. Journal of Propulsion Technology, 2021, 42(11): 2617-2624.
[13] SUN Hong-tu, HU Ping, MA Ning, et al. Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact[J]. Chinese Journal of Mechanical Engineering, 2010, 23(2): 252.
[14] 李超, 張凱鋒, 蔣少松. Ti-6Al-4V合金雙半球結(jié)構(gòu)脈沖電流輔助超塑成形[J]. 稀有金屬材料與工程, 2012, 41(8): 1400-1404.
LI Chao, ZHANG Kai-feng, JIANG Shao-song. Pulse Current Auxiliary Superplastic Forming of Ti-6Al-4V Alloy Double Hemisphere Structure[J]. Rare Metal Materials and Engineering, 2012, 41(8): 1400-1404.
[15] 張凱鋒. 板材自阻加熱成形中電流的熱效應(yīng)與極性效應(yīng)研究進(jìn)展[J]. 鍛壓技術(shù), 2018, 43(7): 71-90.
ZHANG Kai-feng. Study Progress on Heat and Polarity Effects of Current in Sheet Metal Forming with Resistance Heating[J]. Forging & Stamping Technology, 2018, 43(7): 71-90.
[16] 劉超, 孫祥云, 周金盛, 等. 脈沖電流作用下GH4169合金拉伸塑性及再結(jié)晶行為[J]. 塑性工程學(xué)報(bào), 2021, 28(8): 169-174.
LIU Chao, SUN Xiang-yun, ZHOU Jin-sheng, et al. Tensile Plasticity and Recrystallization Behavior of GH4169 Alloy Under Action of Pulse Current[J]. Journal of Plasticity Engineering, 2021, 28 (8): 169-174.
[17] 王忠金, 宋輝, 蔡舒鵬, 等. 脈沖電流誘導(dǎo)鈦合金板材裂紋愈合與組織演變研究進(jìn)展[J]. 塑性工程學(xué)報(bào), 2019, 26(2): 1-14.
WANG Zhong-jin, SONG Hui, CAI Shu-peng, et al. Research Advancements on Self-Heating of Cracks and Evolution of Microstructures of Titanium Alloy Sheets Induced by Electropulsing [J]. Journal of Plasticity Engineering, 2019, 26 (2): 1-14.
[18] 薛杰, 李保永, 秦中環(huán), 等. 鈦合金鈑金件脈沖電流輔助熱壓成形精度控制[J]. 航空制造技術(shù), 2020, 63(11): 69-75.
XUE Jie, LI Bao-yong, QIN Zhong-huan, et al. Accuracy Control of Pulse Current Assisted Hot Pressing Forming for Titanium Alloy Sheet Metal Parts[J]. Aeronautical Manufacturing Technology, 2020, 63(11): 69-75.
[19] 趙文凱, 池成忠, 崔曉磊, 等. 電流加載方式對(duì)AZ31B鎂合金板材拉伸變形行為的影響[J].塑性工程學(xué)報(bào). 2020, 27(4): 101-109.
ZHAO Wen-kai, CHI Cheng-zhong, CUI Xiao-lei, et al. Effect of Electric Current Loading Mode on Tensile Deformation Behavior of AZ31B Magnesium Alloy Sheet[J]. Journal of Plasticity Engineering, 2020, 27(4): 101-109.
[20] 夏琴香, 陳燦, 肖剛鋒, 等. 難變形金屬電?熱?力耦合作用下的電致塑性效應(yīng)研究現(xiàn)狀[J].鍛壓技術(shù). 2021, 46(9): 124-131.
XIA Qin-xiang, CHEN Can, XIAO Gang-feng, et al. Current Status of Research on Electroplasticity Effect for Difficult-to-deform Metals Under Electro-thermo-mechanical Coupling[J]. Forging & Stamping Technology, 2021, 46(9): 124-131.
[21] 范蓉, 趙坤民, 任大鑫, 等. 脈沖電流對(duì)Al-Mg合金力學(xué)性能和斷口的影響[J]. 中國(guó)科學(xué): 技術(shù)科學(xué), 2016, 46(7): 717-721.
FAN Rong, ZHAO Kun-min, REN Da-xin, et al. Effect of Pulse Current on the Mechanical Properties and Fracture Behaviors of Al-Mg Alloys[J]. Scientia Sinica (Technologica), 2016, 46(7): 717-721.
[22] 楊以鵬. TC4曲面構(gòu)件自阻加熱電塑性成形工藝研究[D]. 秦皇島: 燕山大學(xué), 2019: 65-70.
YANG Yi-peng. Study on Resistance Heating and Electro Plastic Forming Process of TC4 Curved Surfaces[D]. Qinhuangdao: Yanshan University, 2019: 65-70.
[23] 肖寒, 張凱鋒, 姜巨福, 等. 5A90 Al-Li合金桁條電流自阻加熱成形技術(shù)[J]. 鍛壓技術(shù), 2017, 42(7): 66-71.
XIAO Han, ZHANG Kai-feng, JIANG Ju-fu, et al. Current Resistance Heating Forming Technology of Al-Li Alloy 5A90 Stringers[J]. Forging &Stamping Technology, 2017, 42(7): 66-71.
[24] YANAGIMOTO J, IZUMI R. Continuous Electric Resistance Heating—Hot Forming System for High-alloy Metals with Poor Workability[J]. Journal of Materials Processing Technology, 2009, 209(6): 3060-3068.
[25] MORI K, MAKI S, TANAKA Y. Warm and Hot Stamping of Ultra High Tensile Strength Steel Sheets Using Resistance Heating[J]. CIRP Annals, 2005, 54(1): 209-212.
Thermal Bending of Intermetallic Compounds NiAl Sheet with Continuous Current
LIU Yi-wei1, WANG Chong-yang2
(1. Representative Office of the Air Force Equipment Department in Dalian, Liaoning Dalian 116000, China; 2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
The work aimsto solve and overcome the difficulties in forming of the existing high temperature resistant intermetallic compounds, and the low efficiency in the traditional isothermal forming and the underutilization of energy in the process, a new technology of continuous current thermal bending for intermetallic compounds sheet is developed. Firstly, with temperature experiments performed systematically for NiAlsheets, the current density of thermal bending is determined. And then, three point bending tests of NiAl sheets are made to identify the punch press speed. Finally, thermal bending experiments are carried out on a self-designed and manufactured thermal bending device and ceramic insulating mold that can combine current with load continuously. Under the experimental conditions of current density of 8.5 A/mm2, heating temperature of 1 300 ℃ and punch pressing speed of 0.5 mm/min, the thermal bending parts after forming are obtained with good dimensional precision, uniform thickness, and no cracking or springback. This approach is aimed specifically at thermal bending, difficulties in the intermetallic compounds deformation are greatly reduced. The problem that the traditional pulsed current assisted thermal forming is difficult to sustain power in the deformation process is also addressed, and cracking and springback are eventually avoided.
intermetallic compounds; NiAl; pulse current; thermal bending
10.3969/j.issn.1674-6457.2022.12.015
TG306
A
1674-6457(2022)12-0140-06
2022?01?10
國(guó)家自然科學(xué)基金(52175297)
劉屹?。?984—),男,碩士,工程師,主要研究方向?yàn)楹娇这k金工藝、鈦合金零件的擴(kuò)散連接/超塑成形和熱成形。
王重陽(yáng)(1982—),女,碩士,工程師,主要研究方向?yàn)橄冗M(jìn)材料熱成形。