• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measuring fine molecular structures with luminescence signal from an alternating current scanning tunneling microscope

    2022-12-11 03:29:20FeiWenGuohuiDongandHuiDong
    Communications in Theoretical Physics 2022年12期

    Fei Wen ,Guohui Dongand Hui Dong,?

    1 Graduate School of China Academy of Engineering Physics,Beijing 100084,China

    2 School of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610068,China

    Abstract In scanning tunneling microscopy-induced luminescence(STML),the photon count is measured to reflect single-molecule properties,e.g.,the first molecular excited state.The energy of the first excited state is typically shown by a rise of the photon count as a function of the bias voltage between the tip and the substrate.It remains a challenge to determine the precise rise position of the current due to possible experimental noise.In this work,we propose an alternating current version of STML to resolve the fine structures in the photon count measurement.The measured photon count and the current at the long-time limit show a sinusoidal oscillation.The zero-frequency component of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC component of the bias voltage.We propose to measure the energy level with discontinuity of the first derivative of such a zero-frequency component.The current method will extend the application of STML in terms of measuring molecular properties.

    Keywords: alternating current scanning tunneling microscope,inelastic electron scattering,single-molecule electroluminescence,molecular energy levels

    1.Introduction

    Measuring the induced luminescence in scanning tunneling microscopy(STML)is currently arising as a powerful tool to detect single-molecular properties,such as energy levels and optical responses[1].The technique of generating light from a metal-insulator-metal tunneling junction was discovered by Lambe and McCarthy in 1976 [2].After,light emission with nearly atomic spatial resolution was reported for a scanning tunneling microscopy (STM) [3].

    The origin of emitted light in STM had been controversial;whether the photon is emitted from molecules?Intuitively,the transition involving molecular states could lead to molecular luminescence as the first origin.And the energy transfer from an excited molecular state to the metal substrate may also contribute to light emission,known as the quenching process,as the second origin.Berndtet alreported spatially resolved photon emission from an STM junction[4].And high emission efficiency from molecules was guaranteed by an oxide layer that blocks such a quenching process [5].To observe the emission solely from molecules,a decoupling layer to separate the molecule from the substrate is needed[6].By virtue of the decoupling proposal,molecular luminescence was realized with different decoupling layers and various substrates.The fluorescence from an individual molecule is observed for porphyrin molecules adsorbed onto a thin aluminum oxide (Al2O3) film covered on a metal NiAl(100)surface [7,8] and for molecules on the organic film as the decoupling layer on the metallic substrate [9–16].Ultra-thin insulating NaCl film was shown as a good decoupling layer[17] for the observation of luminescence,e.g.,for the individual pentacene [18] and C60[19] molecules from a metallic substrate.The advantage of strong enhanced molecular fluorescence caused by the decoupling method [20–23] makes the sandwich structure with metallic tip,decoupling layer and metallic substrate as a feasible platform for the STML experiments.Our current work will focus on such structure.

    In general,the theory of STML includes three mechanisms,i.e.,the inelastic electron scattering (IES) mechanism,charge injection (CI) mechanism and the gap plasmon mechanism.We focus on the IES mechanism where the electron tunnels from one electrode to the other inelastically while exciting the molecule in the gap.In the sandwich setup,the tunneling current,as well as the luminescence photon,is detected as a function of the bias voltage applied between the tip and the substrate.Once the energy of the tunneling electron is above a molecular transition gap,the single molecule can be pumped to an excited state and then fluoresces.Thus a rise of the photon count can be observed at the position where the tunneling electron energy matches the molecular transition energy [24].And the molecular energy level can be determined by the rise position of the photon count[25].Yet,it is difficult to accurately determine the energy level due to possible noise in the experiments [26].

    In this paper,we propose an AC-STML method to detect fine molecular levels.Originally,STM with alternating current[27] was developed to probe the noise spectrum.Here,we extend its application in molecular structure detection.To resolve the molecular structure,we calculate the current and the luminescence photon count for the AC bias STM with perturbation theory and express the current in the series of Bessel’s function.We find that the measured photon count and the inelastic current oscillate with time at the long-time limit.The zero-frequency component of the Fourier transformation of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC (time-independent) component of bias voltage.The fine molecular structure can be determined specifically with the knee points in the DC current (the zero-frequency component of the AC current) as a function of the driving AC frequency.

    The rest of the paper is organized as follows.In section 2,we describe our model of STML with AC bias and calculate the inelastic tunneling current in the time domain through Bessel’s function of the first kind.Then we obtain the zero-frequency current in the frequency domain.Section 3 shows the current and the first derivative of the current as a function of AC frequency.We summarize the main contributions in section 4.

    2.Methods

    2.1.The inelastic current in STML

    We sketch the setup of the AC-STML system in figure 1.The molecule is decoupled by a thin NaCl layer (the blue layer)from the metal substrate (the grey layer).Here,we describe the molecule with dipole approximation[24].The nucleus is marked by the yellow sphere and the molecular electron is marked by the black sphere.The tip generates a tunneling electron(the red sphere)by the AC bias applied between the tip and the substrate.The AC biascontains a time-independent partV0and a sinusoidal part with amplitudeV1and frequency ν.The radius of the tip’s apex isR,andddenotes the distance from the bottom of the tip to the substrate.The molecular nucleus is set as the origin of the coordinate system.→r,→rmand →adenote the coordinates of the tunneling electron,the molecular electron and the center of the tip’s apex,respectively.The tunneling electron interacts with the molecule via the Coulomb interaction.The molecule can be excited by the tunneling electron and will subsequently emit photons via spontaneous emission.

    The Hamiltonian in our AC-STML system is divided into three parts,

    The electron wavefunctions in the statekof the tip and in the statenof the substrate are written [31] as

    At a given bias,both the elastic and the inelastic tunneling occur.The interaction between the molecule and the tunneling electron is small and is treated as a perturbation.Thus the probability of the molecule in its excited state is quite low[34].At the beginning,we assume that the molecule is in its ground state and the tunneling electron is in the statenof the substrate,i.e.,noticing the typical low temperature in the STML experiments [7,8,18].Using the time-dependent perturbation theory,we find that at timet,the system evolves to state

    where (E)ρs(ρt(E))is the density of state in the substrate(tip)at energyE.Eeg=Ee-Egis the molecular energy gap,andJi(x)is thei-thBessel function of the first kind.In the derivation above,we have used the property of the Bessel functionsJi(-a)=(-1)i Ji(a).We change the range of the integral aboutEnfrom[-∞,μ0]to[2μ0,μ0],since most electrons of the metal occupy states near the Fermi energy.The detailed derivations are presented in the appendix.

    2.2.AC-current in the frequency domain

    In a manner different from the DC voltage case,the system under AC bias will not reach a steady state with a constant current at the long-time limit.Instead,the current oscillates with various Fourier frequencies.The information of the energy level can be extracted from these components in the Fourier transformations ofIs,t(t)as follows:

    The photon count in the AC system heavily depends on the AC inelastic tunneling current that we calculated above.As the molecule is firstly excited to its excited state by the AC bias and then decays back through the spontaneous emission process,the population equation of the molecule excited state reads [24]stands for the excited-state population and γ is the spontaneous decay rate.Since the AC inelastic tunneling current oscillates with various Fourier frequencies,we divide the excited-state populationwith respect to the Fourier frequencies,i.e.,Thus,the zero-component current contributes to a steady photon count in the long-time limit while every non-zerofrequency component gives one time-dependent photon count with its corresponding frequency.

    To find the energy levels,we consider the zero-frequency component of the inelastic current (equation(10)),i.e.,ω=0 as

    The result shown in equation (11) retains the current for the case with a DC voltage(V1=0)obtained in[24]by noticing thatJ0(0)=1 andJl(0)=0 for anyl≠0.In the paper [24],the current caused by the DC bias is kept constant at the long-time limit,while in our AC case,the inelastic current oscillates with time and cannot reach a steady state.So we make a Fourier transformation of the AC-induced current and investigate the zero-frequency component of the current.In the long-time limit,the time-independent photon count is proportional to the zero-component current,i.e.,equation (11).

    3.Results

    To reveal the resonant conditions in the above current,we perform the numerical calculation of the tunneling current with parameters extracted from the experimental setup.In the STML experiments,the metal used for the tip and the substrate is typically chosen as gold(Au)[35–39],silver(Ag)[1,29,30,40–46] and copper (Cu) [11,18,47,48].In our simulation of the STML current,the tip and the substrate are made of silver with Fermi energy μ0=-4.64 eV.The calculation of the current requires the Ag’s density of state,which is obtained from the book [49] by the spline interpolation of the discrete data points.The detail of the obtained density of state was presented in our previous publications [24,50].In the experiments,the molecular gap is typically chosen to be around 1.5 eV ~4 eV [1,29,38,42,43,51–53] to avoid the possible damage caused by the strong static electric field between the tip and the substrate.For example,the energy gap between the first single excited state and the ground state of the free-base phthalocyanine (H2Pc) molecule is 1.81 eV[42,51],and theQ(0,0) transition energy of the zincphthalocyanine(ZnPc)molecule is 1.90 eV[1,29,38,43,52,53].Here,we choose that the molecular gap isEeg=2.0 eV.In the scanning process,the distancedbetween the tip and the substrate is typically around several nanometers.And we have usedd=0.5 nm and the radius of the tip apex isR=0.5 nm.

    3.1.Tunneling current for the tip position =(0,0,d)

    Since the absolute value of the Bessel function decreases as its order increases,it is reasonable to cut off the high order term of the Bessel function of the summation in equation(11).Noticing that the factor cos[(l+l′-1)π2]vanishes for the case wherel+l′ is even,we consider the cutoffs with∣l-l′∣≤3and∣l-l′∣≤5to check the convergence of the current in equation(11).Figure 2(a)shows the zero-frequency inelastic tunneling current as a function of AC frequency ν.The parameters in the simulation are given as follows,l?[-3,3],R=0.5 nm,d=0.5 nm,=(0,0,d),Eeg=2 eV,eV1/?ν=2,μ0=-4.64 eV andeV0=-1.88 eV.The tip is placed right above the molecule.In figure 2(a),the red dotted line reveals the current including the summation of∣l∣≤3 and∣l-l′∣≤3,and the black line shows that of∣l∣≤3 and∣l-l′∣≤5.The coincidence of the two curves demonstrates that the zero-frequency inelastic current already converges with∣l-l′ ∣=3and ∣l∣≤3.Therefore,we use the cutoff∣l∣≤3 and∣l-l′∣≤3in the following calculation.

    Figure 1.The schematic diagram of the AC STML system.In the dipole approximation,the yellow (black) sphere represents the molecular nucleus (molecular electron).The molecule is separated fromthe metallic substrate by the decoupling layer.The red sphere stands for the tunneling electron.The ra di us of the tip a pex is R.d representsthedista→nc→ebe→tweenthebott omofthe tip an dthe decouplinglayer. (,) means thedi stancefrom the tunneling electron (molec ular electron,the cent er of the tip’s apex) to the nucleus.The AC bias Vb(t)=V0+V1 sin (νt)is applied between the tip and thesubstrate.

    Figure 2.(a)The convergency of the zero-frequency inelastic current with =(0,0,d).The red dotted (blue dashed) curve shows the current under the summation of∣l∣≤3 and∣l -l′∣≤3(∣l -l′∣≤5).Both lines show the non-analyticity of the current with respect to the oscillating frequency.(b)The first derivative of the zerofrequency inelastic current with respect to the oscillating frequency ν.The tip is placed right above the molecule.The red dots show the discontinuous data in the current,which correspond to ?ν=0.04,0.06,and 0.12 eV.We have chosen the parameters as l ?[-3,3],R=0.5 nm,d=0.5 nm,=(0,0,d),Eeg=2 eV,μ0=-4.64 eV,and eV0=-1.88 eV.The ratio of the time-dependent voltage amplitude over the oscillating frequency is fixed at eV1/?ν=2.

    The curve in figure 2(a) also shows the discrete knee points.We numerically calculate the first derivative of the inelastic tunneling currentIs,t(ω=0)with respect to the AC frequency ν and plot the result in figure 2(b).In figure 2(b),the line reveals the discontinuity of the first derivative of the zero-frequency current with the discontinuous spots located at ?ν=0.04 eV,0.06 eV,and 0.12 eV.By defining the detuning Δ=Eeg+eV0,we find that the discontinuous spots are in agreement with the conditionΔ-l′? ν=0withl′=3,2,1,respectively.Mathematically,such discontinuous behavior can be understood with the Jacobi-Anger expansion.The STML system with AC biasV0+V1sin(νt)is equivalent to the system with a series of DC biases(l′=0,± 1,± 2,…).Once one effective biasmatches the molecular energy gap,namelya new contribution to the molecular excitation rate(the inelastic current)emerges and results in one discontinuous point in its first derivative curve.Therefore we have demonstrated that the discontinuous spots reveal the fine detail of the molecule.

    To investigate the influence caused by the height of the tip,we choose the parametersd=0.3 nm,d=0.4 nm andd=0.5 nm respectively.Figure 3(a) shows the zero-frequency component of the inelastic current which is dependent upon the position of the tip.The green,yellow and red curves correspond to the inelastic current with the tip fixed atd=0.3 nm,d=0.4 nm andd=0.5 nm respectively.The inelastic current becomes larger as the tip moves to the molecule.Because we modeled the electron wavefunction of the tip as equation (2),which decays with the tip radius exponentially,when the STM tip approaches the substrate,the electron wavefunction at the position of the tunneling electron increases,resulting in the increase of the transition matrix element.Finally,the inelastic current increases.Figure 3(b) reveals the first derivative of the inelastic current with respect to the frequency.Discontinuous data are marked by a dot.All the curves have discontinuous data at the same spots ?ν=0.04 eV,0.06 eV,and 0.12 eV,which are in agreement with the conditionΔ-l′? ν=0.Although the inelastic current changes with the tip approaching the molecule,the knee points of the current satisfy the resonant condition which is independent of the position of the tip.

    Figure 3.(a) The zero-frequency component of the inelastic current with different heights of the tip.The green,yellow and red curves correspond to the inelastic current with d=0.3 nm,d=0.4 nm and d=0.5 nm respectively.(b) The first derivative of the zerofrequency inelastic current with respect to the frequency ν.The tip is placed right above the molecule.The dotted markers in(b)show the discontinuous data at ?ν=0.04 eV,0.06 eV,and 0.12 eV.The other parameters are the same as before.

    Figure 4.(a)The convergence of the zero-frequency inelastic current in =(0.2 nm,0,d).The red dotted line and the blue dashed line correspond to the condition∣l -l′∣≤3and∣l -l′∣≤5,respectively.(b) The first-order derivative of the zero-frequency inelastic current about the bias frequency ν in a=(0.2 nm,0,d).The other parameters are the same as before.

    Figure 5.(a) The zero-frequency component of the inelastic tunneling currentas afunctionof the frequency with thelateral displacement betweenthe tipand the molecule fixedat=(0,0,d),=(0.1 nm,0,d)an ?=(0.2 nm,0,d),which is represented by the red,blue and yellow curves respectively.(b)The first derivative of the zero-frequency component of the current with respect to the frequency.The correspondence between the color and the lateral displacement is the same as (a).The dotted markers show the discontinuous spots in curves.The other parameters are the same as before.

    Figure 6.The inelastic tunneling current and its first derivative in =(0.2 nm,0,d)with Δ=0.04,0.06,0.08,0.1,and 0.12 eV.(a)–(e)show the inelastic tunneling current with an upward trend.(f)–(j) give the first derivative of the current.The round (square,triangle) dot characterizes the discontinuous points.

    Figure 7.The energy of knee points as a function of Δ=Eeg+eV0.The data points in round (square,triangle) dots correspond to the knee points with the same marker in figure 6.The slope of the triangle (square,round) dot line equals to1l′=1 (12,13).

    The advantage of our AC-STML is that the frequency can be tuned with precision.In the DC bias case,the inelastic tunneling current has a sudden rise from zero when the absolute value of the DC bias becomes equal to a critical quantity,i.e.,the absolute value of the molecular energy gap divided by the electron charge [24].And one can extract the information of the molecular energy gap from this curve theoretically.However,due to the noise of the experiment,the inelastic tunneling current curve changes smoothly near the critical quantity.Thus one can only read out the energy gap roughly.In the AC STML method,the point of the energy gap is featured as the knee point of the zero-frequency component of the AC current.These points show a discontinuous and non-analytical property at the non-zero point of the current curve.By numerically calculating the first derivative of the zero-frequency component of the inelastic tunneling current with respect to the AC frequency,the discontinuous points,i.e.,the sudden rising points,correspond to the points of energy resonance.We can read out discontinuous points directly and then obtain the energy gap of the molecule.

    The method of realizing our proposal has two steps.Firstly,the molecule is probed via a DC bias.The molecular energy gap can be roughly obtained through the rising point in the photon-emission spectrum.And we estimate the rough value asV0.Second,we add a non-zero AC component to this DC voltage and apply this time-dependent bias to the molecule.A series of knee points can be shown in the figure of the zero-frequency inelastic tunneling currentIs,t(ω=0)as a function of the AC frequency.Then,we can precisely determine these non-analytical points through the first derivative of the inelastic tunneling currentIs,t(ω=0)with respect to the AC frequency.The precise molecular gap is given with the relationEeg-e∣V0∣=l′?ν(l′=0,± 1,± 2,± 3).

    3.2.Tunneling current for the tip position a→=(0.2 nm,0,d)

    Without loss of generality,we consider the case where the tip is laterally displaced from the center of the molecule,e.g.,=(0.2 nm,0,d).We calculate the zero-frequency inelastic current as shown in figure 4(a).The curve shows the same feature as that in figure 2(a).The other parameters in figure 4 are the same as in figure 2.The coincidence between the red dotted line and the blue dashed line also shows the convergence of our calculation when we consider the summation with terms ∣l∣≤3 and∣l-l′∣≤3.We also calculate the frist derivative of the zero-frequency inelastic current with respect to the AC frequency to explore the fine details of the current.As shown in figure 4(b),the first derivative of the zero-frequency inelastic current reveals the discontinuity at the same spots ?ν=0.04 eV,0.06 eV,and 0.12 eV.The results in=(0,0,d)and=(0.2 nm,0,d)indicates that the fnie structure in the AC current is robust with respect to the relative position between the tip and the molecule.

    To investigate the influence of the relative position of the tip and the molecule on the inelastic current,we calculated the zero-frequency component of the current and its first derivative with respect to the frequency as a function of the frequency in figure 5.Since we assume that the molecular dipole is isotropic in three axes,the inelastic current is symmetric around thez-axis.Hence,we only calculate the displacement of the tip in thex-axis.In figure 5,the red,blue and yellow curves correspond to the cases with=(0,0,d),=(0.1 nm,0,d)and=(0.2 nm,0,d)respectively.In figure 5(a),when the tip is right above the molecule,the zerofrequency inelastic current is much smaller than in the other cases.The current with=(0.1 nm,0,d)is a little smaller than the current with=(0.2 nm,0,d).So,the inelastic current can change with the distance between the tip and the molecule.In figure 5(b),the dotted markers reveal the knee points of the current at the same spots ?ν=0.04 eV,0.06 eV,and0.12 eV,showing that the resonant relation is independent on the relative of the tip and the molecule.

    To show the general case,we calculate the inelastic tunneling current and its first derivative with different energy detuning Δ=0.04,0.06,0.08,0.1,and 0.12 eV,as illustrated in figure 6.The left column represents the current curves with an upward trend as discussed before.When the frequency ν of the bias is small,the energy of the tunneling electron is too weak to excite the molecule.No inelastic tunneling electron transfers energy to the molecule and no inelastic current flows through the electrodes.The energy of the rising point in the current becomes higher as Δ increases.From the definition Δ=Eeg+eV0,the increase ofV0causes the effective bias-V0to decrease.To reach the molecular excitation energy,the value of ?ν should be larger.The right column in figure 6 plots the first derivative of the current.The round (square,triangle) spot reveals the nonanalysis feature of the current.With Δ increasing,the energy of the knee point in the same shape increases too.

    To figure out the relation between the energy of knee points and Δ,we show the energy of knee points as the function of the energy Δ with various orders.Figure 7 plots the energy of spots with the same markers in figure 6.The energy of the knee points linearly increases with energy Δ.The slope of the line with triangle (square,round) markers is 1 (1/2,1/3),and matches 1l′ in the relationΔ-l′? ν=0 withl′=1 (2,3).This demonstrates that the molecular gapEegcan be determined via the knee pointsΔ-l′? ν=0.

    4.Conclusions

    In summary,we have proposed the AC-STML setup to measure fine molecular structures.We calculate the photon count reflected by the inelastic current and obtain its Fourier components at the long-time limit.We show that the rising position of the current spectrum is precisely determined by the match between the effective bias and the molecular energy gap.These rising positions are utilized to find the molecular energy levels by scanning the frequency of the AC bias.The observations here allow us to propose an alternative method to determine the molecular levels,especially the fine structures around electronic levels,e.g.,the vibrational levels.

    The AC-STML method can be realized in experiments.Theoretically,our proposal works well in a large range of AC frequencies.In reality,the AC frequency can be realized around the GHz level [54].Therefore,as long as we can localize the rough biasV0to the rangeeV through the inelastic current curve in the DC bias case,the precise energy gap will be obtained successfully.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No.11 875 049),the NSAF (Grant Nos.U1730449 and U1930403),and the National Basic Research Program of China (Grant No.2016YFA0301201).

    Appendix.The derivation of the AC current

    The first derivative of the inelastic tunneling amplitudece,k(t)

    The solution of the inelastic tunneling amplitudece,k(t)is

    The inelastic tunneling rate can be expressed as

    Then equation (12)can be rewritten as

    The inelastic tunneling rate can be expressed through the series of Bessel’s function

    where we have used the relationJl(-a)=(-1)l Jl(a).Calculating the integral,we obtain

    By replacing the summation with the integral and substituting the inelastic tunneling rate equation (14) into the current aboveIs,t(t),we obtain the inelastic tunneling current explicitly (equation (9) in the main text) as

    ORCID iDs

    日本在线视频免费播放| 成年av动漫网址| 久久韩国三级中文字幕| 十八禁网站免费在线| 最近的中文字幕免费完整| 亚洲熟妇中文字幕五十中出| 国产爱豆传媒在线观看| 亚洲无线观看免费| 校园春色视频在线观看| 99久久精品国产国产毛片| 亚洲精品粉嫩美女一区| 一区二区三区高清视频在线| 麻豆一二三区av精品| 韩国av在线不卡| 免费人成视频x8x8入口观看| www.色视频.com| 国产高清视频在线播放一区| 国产欧美日韩精品一区二区| 99热这里只有是精品在线观看| 91在线精品国自产拍蜜月| 男女做爰动态图高潮gif福利片| 内射极品少妇av片p| 中文字幕人妻熟人妻熟丝袜美| 国产美女午夜福利| 亚洲av第一区精品v没综合| 亚洲av美国av| 亚洲自拍偷在线| 夜夜看夜夜爽夜夜摸| 午夜视频国产福利| 桃色一区二区三区在线观看| 日韩av在线大香蕉| 国产精品一及| 大型黄色视频在线免费观看| 又黄又爽又免费观看的视频| 男女那种视频在线观看| 亚洲人与动物交配视频| 日本撒尿小便嘘嘘汇集6| 国产成人影院久久av| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩无卡精品| 成人特级黄色片久久久久久久| 小蜜桃在线观看免费完整版高清| 美女高潮的动态| 欧美成人一区二区免费高清观看| 国产一区二区亚洲精品在线观看| 波多野结衣高清无吗| 亚洲成av人片在线播放无| 日本黄色片子视频| 校园人妻丝袜中文字幕| 日韩中字成人| 小说图片视频综合网站| 精品久久久久久久久久免费视频| 久99久视频精品免费| 欧美性感艳星| 无遮挡黄片免费观看| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看 | 成人三级黄色视频| 欧美+日韩+精品| 亚洲av不卡在线观看| 男人的好看免费观看在线视频| 国产黄a三级三级三级人| 亚洲人成网站在线播放欧美日韩| 99久久精品一区二区三区| 欧美国产日韩亚洲一区| 给我免费播放毛片高清在线观看| 精品午夜福利在线看| 国产乱人视频| 在线播放无遮挡| 久久草成人影院| 男女视频在线观看网站免费| 亚洲精品一区av在线观看| 久久久久国产精品人妻aⅴ院| 国产成人a区在线观看| 性欧美人与动物交配| 我要搜黄色片| 一a级毛片在线观看| 大香蕉久久网| 亚洲人成网站高清观看| 亚洲成人久久爱视频| 国产黄色小视频在线观看| 久久精品影院6| 最新中文字幕久久久久| 国产免费一级a男人的天堂| 亚洲欧美成人精品一区二区| 人妻久久中文字幕网| 欧美xxxx黑人xx丫x性爽| 国产亚洲91精品色在线| 五月伊人婷婷丁香| 99久久久亚洲精品蜜臀av| 欧美激情久久久久久爽电影| 中文资源天堂在线| 日韩欧美国产在线观看| 欧美3d第一页| 精品人妻熟女av久视频| 免费观看的影片在线观看| 国产高清有码在线观看视频| or卡值多少钱| 国产成人福利小说| 国产私拍福利视频在线观看| 成人三级黄色视频| 男人舔奶头视频| 不卡一级毛片| 国产亚洲精品久久久久久毛片| 伊人久久精品亚洲午夜| 亚洲丝袜综合中文字幕| 久久久a久久爽久久v久久| 直男gayav资源| 午夜激情福利司机影院| 国产黄色小视频在线观看| 露出奶头的视频| 97在线视频观看| 久久精品夜夜夜夜夜久久蜜豆| 蜜臀久久99精品久久宅男| 日本免费一区二区三区高清不卡| 日本黄大片高清| 欧美激情国产日韩精品一区| 成人美女网站在线观看视频| 老司机福利观看| 久久久久久久久久久丰满| 国产色爽女视频免费观看| 久久99热6这里只有精品| 亚洲欧美日韩高清专用| 欧美在线一区亚洲| or卡值多少钱| 国产亚洲91精品色在线| 日韩中字成人| ponron亚洲| 女同久久另类99精品国产91| 国产精品不卡视频一区二区| 国产精品永久免费网站| 亚洲人与动物交配视频| 国产精华一区二区三区| 日本免费a在线| 一进一出好大好爽视频| 国产男靠女视频免费网站| 国产白丝娇喘喷水9色精品| 18+在线观看网站| 国产乱人偷精品视频| 国产视频内射| aaaaa片日本免费| ponron亚洲| 网址你懂的国产日韩在线| 亚洲欧美成人精品一区二区| 午夜免费男女啪啪视频观看 | 天天躁夜夜躁狠狠久久av| 午夜福利在线观看免费完整高清在 | 中国国产av一级| 亚洲精品国产成人久久av| 成人特级av手机在线观看| 色播亚洲综合网| 久久久国产成人精品二区| 尤物成人国产欧美一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 成人亚洲精品av一区二区| 女的被弄到高潮叫床怎么办| 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看 | 91在线观看av| 国产精品人妻久久久久久| 中国美白少妇内射xxxbb| 国产精品人妻久久久久久| 国产在线男女| 欧美日本视频| 国产伦在线观看视频一区| 国产精品99久久久久久久久| 欧美日韩国产亚洲二区| 欧美人与善性xxx| 特级一级黄色大片| 国产白丝娇喘喷水9色精品| 亚洲av五月六月丁香网| 身体一侧抽搐| 人妻夜夜爽99麻豆av| 国产成人精品久久久久久| 亚洲电影在线观看av| 亚洲专区国产一区二区| 十八禁国产超污无遮挡网站| 在线播放国产精品三级| 蜜桃久久精品国产亚洲av| 一个人免费在线观看电影| 变态另类丝袜制服| 亚洲国产精品sss在线观看| 97人妻精品一区二区三区麻豆| av中文乱码字幕在线| 成人三级黄色视频| 男女下面进入的视频免费午夜| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线观看日韩| 我的老师免费观看完整版| 日韩欧美 国产精品| 久久欧美精品欧美久久欧美| 此物有八面人人有两片| 村上凉子中文字幕在线| 一级a爱片免费观看的视频| 日韩精品有码人妻一区| 色噜噜av男人的天堂激情| 色噜噜av男人的天堂激情| 美女免费视频网站| 日韩制服骚丝袜av| 深夜精品福利| 狂野欧美激情性xxxx在线观看| 欧美一区二区亚洲| 国产精品女同一区二区软件| 在线免费观看的www视频| 色视频www国产| 露出奶头的视频| 国产午夜精品久久久久久一区二区三区 | 国产伦精品一区二区三区视频9| 亚洲av成人av| 亚洲av一区综合| 日本爱情动作片www.在线观看 | 十八禁国产超污无遮挡网站| 午夜久久久久精精品| 观看免费一级毛片| 又黄又爽又刺激的免费视频.| 特大巨黑吊av在线直播| 精品久久久久久久久久久久久| 日韩欧美国产在线观看| 老女人水多毛片| 精品久久久噜噜| 真人做人爱边吃奶动态| 亚洲,欧美,日韩| 精品少妇黑人巨大在线播放 | 99国产极品粉嫩在线观看| 日本黄大片高清| 91午夜精品亚洲一区二区三区| 波多野结衣高清无吗| av天堂在线播放| 搡老岳熟女国产| 蜜桃久久精品国产亚洲av| 人妻久久中文字幕网| 内地一区二区视频在线| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久久免费视频| 看片在线看免费视频| 伊人久久精品亚洲午夜| 国产亚洲精品久久久久久毛片| 99久久久亚洲精品蜜臀av| 久久久午夜欧美精品| 国产一区二区在线观看日韩| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女搞黄在线观看 | av在线蜜桃| 国产男靠女视频免费网站| 欧美bdsm另类| 久久精品国产清高在天天线| 久久精品综合一区二区三区| 日本免费a在线| 一本久久中文字幕| 久久精品国产亚洲网站| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 人妻丰满熟妇av一区二区三区| 精品久久久久久久人妻蜜臀av| 国产伦在线观看视频一区| 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 久久欧美精品欧美久久欧美| 国产成人91sexporn| 国产精品一及| 在线免费观看的www视频| av天堂在线播放| 九九久久精品国产亚洲av麻豆| 99在线人妻在线中文字幕| av在线天堂中文字幕| 一级毛片我不卡| 秋霞在线观看毛片| 老司机福利观看| 联通29元200g的流量卡| 国产精品人妻久久久久久| 伦精品一区二区三区| 成人高潮视频无遮挡免费网站| 日韩,欧美,国产一区二区三区 | 日本精品一区二区三区蜜桃| 久久久久久国产a免费观看| 欧美一区二区亚洲| 亚洲精品影视一区二区三区av| 国产片特级美女逼逼视频| 蜜桃亚洲精品一区二区三区| 99热这里只有是精品50| 亚洲国产日韩欧美精品在线观看| 亚洲经典国产精华液单| 日韩av不卡免费在线播放| 国产精品久久久久久精品电影| 色综合站精品国产| 天天躁日日操中文字幕| 韩国av在线不卡| 99久久成人亚洲精品观看| 国产亚洲精品av在线| 日本成人三级电影网站| 在线观看av片永久免费下载| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品国产av成人精品 | 亚洲成人久久性| 少妇被粗大猛烈的视频| АⅤ资源中文在线天堂| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久com| 日本黄色片子视频| 99热精品在线国产| 在线观看免费视频日本深夜| 亚洲国产精品sss在线观看| 天堂动漫精品| 欧美在线一区亚洲| 午夜爱爱视频在线播放| 中文字幕免费在线视频6| 熟妇人妻久久中文字幕3abv| 国产午夜福利久久久久久| 亚洲精品成人久久久久久| 天堂√8在线中文| 18禁在线播放成人免费| 麻豆国产av国片精品| 九九爱精品视频在线观看| 久久久久久久久中文| 亚洲人成网站在线播放欧美日韩| 日本五十路高清| 国产欧美日韩精品亚洲av| 国产成人a∨麻豆精品| 一级黄片播放器| 大又大粗又爽又黄少妇毛片口| 国产成人freesex在线 | 男插女下体视频免费在线播放| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| 日韩一本色道免费dvd| 露出奶头的视频| 国产欧美日韩一区二区精品| 欧美另类亚洲清纯唯美| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 无遮挡黄片免费观看| 色吧在线观看| 国内精品久久久久精免费| 国内精品久久久久精免费| 国产免费男女视频| 午夜福利高清视频| 婷婷色综合大香蕉| 亚洲最大成人av| 久久久国产成人免费| 亚洲国产精品久久男人天堂| 国产精品99久久久久久久久| 麻豆久久精品国产亚洲av| 欧美日韩精品成人综合77777| 精品久久久久久久久av| 中国美女看黄片| 欧美3d第一页| 99热精品在线国产| 亚洲电影在线观看av| 无遮挡黄片免费观看| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 亚洲国产精品久久男人天堂| 看黄色毛片网站| 全区人妻精品视频| 91av网一区二区| 中国国产av一级| 别揉我奶头~嗯~啊~动态视频| 国产aⅴ精品一区二区三区波| 人妻制服诱惑在线中文字幕| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 最近的中文字幕免费完整| 国产又黄又爽又无遮挡在线| 国产精品1区2区在线观看.| 亚洲真实伦在线观看| 99在线人妻在线中文字幕| 在线观看午夜福利视频| 中文字幕免费在线视频6| 国产精品野战在线观看| 精品久久久久久久人妻蜜臀av| 不卡一级毛片| 日本 av在线| 国产亚洲91精品色在线| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜爱| 一个人观看的视频www高清免费观看| 国产亚洲欧美98| 中文字幕av在线有码专区| 不卡一级毛片| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 免费看a级黄色片| 狂野欧美激情性xxxx在线观看| 精品人妻熟女av久视频| 亚洲丝袜综合中文字幕| 日韩人妻高清精品专区| 天堂动漫精品| 亚洲精品国产av成人精品 | 日本-黄色视频高清免费观看| 香蕉av资源在线| 午夜老司机福利剧场| 男女那种视频在线观看| 亚洲av二区三区四区| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 伦精品一区二区三区| 日韩欧美精品v在线| 成人漫画全彩无遮挡| 久久草成人影院| 伊人久久精品亚洲午夜| 搡老岳熟女国产| 日本a在线网址| 欧美色欧美亚洲另类二区| 亚洲精华国产精华液的使用体验 | 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 黑人高潮一二区| 国产真实乱freesex| 亚洲三级黄色毛片| 国产极品精品免费视频能看的| 深夜精品福利| 最近手机中文字幕大全| 国产aⅴ精品一区二区三区波| 免费观看在线日韩| АⅤ资源中文在线天堂| 国产精品一区www在线观看| a级一级毛片免费在线观看| 波多野结衣高清无吗| 99在线人妻在线中文字幕| 亚洲国产色片| 99久久精品一区二区三区| 男女啪啪激烈高潮av片| 免费大片18禁| 午夜福利成人在线免费观看| 老熟妇仑乱视频hdxx| 听说在线观看完整版免费高清| 国产麻豆成人av免费视频| 91在线观看av| 日韩精品有码人妻一区| 中国美女看黄片| 国产av一区在线观看免费| 熟女电影av网| 深夜精品福利| 可以在线观看的亚洲视频| 尾随美女入室| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 国产欧美日韩精品一区二区| 国产高清视频在线播放一区| 亚洲最大成人av| 色av中文字幕| 久久精品91蜜桃| a级毛片免费高清观看在线播放| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 蜜臀久久99精品久久宅男| av视频在线观看入口| 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 午夜免费男女啪啪视频观看 | 搡老岳熟女国产| av卡一久久| 老师上课跳d突然被开到最大视频| 永久网站在线| 国国产精品蜜臀av免费| 亚洲成a人片在线一区二区| 中国美白少妇内射xxxbb| 一级a爱片免费观看的视频| 精品久久久久久久末码| 久久人妻av系列| 日本与韩国留学比较| 最近中文字幕高清免费大全6| 最近2019中文字幕mv第一页| 可以在线观看的亚洲视频| 免费搜索国产男女视频| 草草在线视频免费看| 又粗又爽又猛毛片免费看| 色综合色国产| 日本与韩国留学比较| 男女视频在线观看网站免费| 国产综合懂色| 插逼视频在线观看| a级毛片免费高清观看在线播放| 免费看日本二区| 国语自产精品视频在线第100页| 国产高清视频在线观看网站| 桃色一区二区三区在线观看| 欧美日韩综合久久久久久| 色综合站精品国产| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 18禁在线播放成人免费| 91精品国产九色| 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 毛片一级片免费看久久久久| 久久久精品大字幕| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 色吧在线观看| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 日产精品乱码卡一卡2卡三| 亚洲五月天丁香| 免费av观看视频| 国产精品,欧美在线| 欧美丝袜亚洲另类| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看| 偷拍熟女少妇极品色| 国产成人a区在线观看| 精品人妻视频免费看| 亚洲国产精品成人久久小说 | 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩| 麻豆成人午夜福利视频| 国产成人freesex在线 | 99久久成人亚洲精品观看| 波多野结衣高清无吗| 国产成人影院久久av| 91狼人影院| 国产亚洲91精品色在线| 成熟少妇高潮喷水视频| 老熟妇仑乱视频hdxx| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看| 亚洲一级一片aⅴ在线观看| 一级av片app| 悠悠久久av| 毛片一级片免费看久久久久| 赤兔流量卡办理| 美女黄网站色视频| 精品日产1卡2卡| 亚洲激情五月婷婷啪啪| 18禁裸乳无遮挡免费网站照片| 91狼人影院| 天堂√8在线中文| 九九爱精品视频在线观看| 日韩精品青青久久久久久| 久久久久九九精品影院| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 国产aⅴ精品一区二区三区波| 国产 一区精品| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 悠悠久久av| 亚洲精品久久国产高清桃花| 日韩国内少妇激情av| 97在线视频观看| 精品久久久久久久久久免费视频| 最新中文字幕久久久久| aaaaa片日本免费| 麻豆久久精品国产亚洲av| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 亚洲高清免费不卡视频| 亚洲色图av天堂| 亚洲七黄色美女视频| 看黄色毛片网站| 哪里可以看免费的av片| 观看免费一级毛片| 草草在线视频免费看| 久久草成人影院| 最好的美女福利视频网| 久久人人爽人人片av| 不卡一级毛片| 亚洲欧美清纯卡通| 日本成人三级电影网站| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 久久精品影院6| 国产色婷婷99| 亚洲自偷自拍三级| 老女人水多毛片| 97超视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 男人狂女人下面高潮的视频| 国产男靠女视频免费网站| 午夜激情欧美在线| 国产爱豆传媒在线观看| 国产人妻一区二区三区在| 精品一区二区三区人妻视频| 日本一二三区视频观看| 在线a可以看的网站| 亚洲高清免费不卡视频| 国产精品1区2区在线观看.| 日日摸夜夜添夜夜爱| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放 | av专区在线播放| 国产国拍精品亚洲av在线观看| 国产成人91sexporn| 成熟少妇高潮喷水视频| 五月伊人婷婷丁香| 中出人妻视频一区二区| 亚洲精品日韩av片在线观看| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 国产亚洲欧美98| 村上凉子中文字幕在线| 干丝袜人妻中文字幕| 午夜影院日韩av| 干丝袜人妻中文字幕| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看|