• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electromagnetic Transmission Characteristics of Y-Shaped and Y-Ring-Shaped Frequency Selective Fabrics

    2022-12-10 05:18:52GUANFuwang關(guān)福旺LIDanYANGZhuli楊竹麗QIUYiping邱夷平

    GUAN Fuwang(關(guān)福旺), LI Dan (李 丹), YANG Zhuli(楊竹麗), QIU Yiping(邱夷平), 3

    1 College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China

    2 Key Laboratory of Clothing Materials of Universities in Fujian(Quanzhou Normal University), Quanzhou 362000, China

    3 College of Textiles, Donghua University, Shanghai 201620, China

    Abstract: Asymmetrical Y-shaped and Y-ring-shaped frequency selective fabrics (FSFs) were proposed in this paper. They were prepared by computer engraving technology and tested in the anechoic chamber by using the free-space method. The test results of representative samples show that the resonance frequencies and the resonance peak or valley values in two polarization modes are not completely identical but the differentials are small, indicating that the influences of polarization modes are not significant. The transmission coefficient curves of Y-shaped and Y-ring-shaped FSFs with various size parameters are obviously different. For instance, as the unit size D increases by 4.0 mm, the resonance frequencies of patch FSFs decrease by 1.92 GHz and the resonance valleys increase by 12.32 dB. Different size parameters have dissimilar effects on the transmission characteristics and the corresponding influence laws should be analyzed concretely. The work could provide reference for the structural design and characteristics analysis of other FSFs.

    Key words: electromagnetic transmission; frequency selective fabric (FSF); computer engraving technology; transmission coefficient; anechoic chamber

    Introduction

    Frequency selective surfaces (FSSs) are periodic arrays composed of metal patches or apertures within a metallic screen, respectively showing the band-stop or band-pass characteristics[1]. FSSs have been systematically studied over the last decades and they can be widely used in various products, such as radar radome, special shielding clothing, and intelligent wearable products[2-4]. At present, the research work mainly focuses on the development of new structures (including complex patterns, multi-layer FSSs as well as three-dimensional structures[5-7]), the design of new characteristics (such as broadband absorption, narrow-frequency filtering, and multi-resonance characteristics[8-10]), and the structure and characteristics analysis of curved, tunable and active FSSs[11-13]. The existing products are mostly rigid plates or soft membrane materials, and the processing methods are mainly concentrated in laser engraving, chemical coating, vacuum coating,etc. Porous, flexible and lightweight textiles and processing methods are rarely involved[14-15].

    Based on the research foundation of FSSs, theoretical feasibility, preparation convenience and potential application advantages of frequency selective fabrics (FSFs) have been analyzed and some research progress has been made in recent years[16-19]. Our research group has successively designed and prepared FSFs with various conductive patterns such as cross-shaped, Jerusalem-shaped, and square-ring patterns, and the frequency selective characteristics have been systematically tested and analyzed[19-24]. However, it is worth noting that the above conductive units are centrosymmetric, namely they would overlap after 180° rotation. The electromagnetic transmission characteristics of such units could be predicted to a certain extent. For instance, the polarization mode would exert little influences due to the ideal symmetry. Therefore, other FSFs with less symmetrical conductive units should be separately investigated.

    According to Refs. [25-27], Y-shaped and Y-ring-shaped FSFs are very popular structures. Many research works have been carried out, and some basic conclusions have been made, which could help to design FSFs. However, due to the introduction of flexible and porous base fabrics, the electromagnetic transmission characteristics of FSFs would be certainly affected and should be systematically studied. In this paper, Y-shaped and Y-ring-shaped FSFs are designed by the electromagnetic simulation methods[28]. Then the FSFs are prepared by computer engraving technology, and the electromagnetic transmission characteristics are tested by using the free-space method. By comparatively analyzing the test results of FSFs with two complementary structures and different size parameters in two polarization modes, the design validity is verified and the effects of various parameters on frequency selective characteristics are explored. The research work could provide technical support for the preparation of FSFs and have reference value for exploring the characteristics of FSFs.

    1 Experiments

    1.1 Sample design

    In this paper, Y-shaped and Y-ring-shaped FSFs were proposed. Based on the previous research work, the empirical formula and the electromagnetic simulation method were used for optimization design[24]. The schematics of Y-shaped and Y-ring-shaped FSFs are shown in Figs. 1(a), 1(b), 2(a), and 2(b). The corresponding unit size parameters are respectively shown in Figs. 1(c) and 2(c). By increasing or decreasing the values of unit size parameters, seven groups of Y-shaped FSFs and three groups of Y-ring-shaped FSFs were designed for comparison. Each group includes patch and aperture FSFs. The unit size parameters of Y-shaped and Y-ring-shaped FSFs are respectively listed in Tables 1 and 2.

    Table 1 Unit size parameters of Y-shaped FSFs

    It is noteworthy that each sample in Tables 1 and 2 contains two FSFs specimens. For instance, 1A# and 1B# respectively refer to the patch and the aperture FSFs. Therefore, there are twenty samples in total.

    Table 2 Unit size parameters of Y-ring-shaped FSFs

    1.2 Sample preparation and testing process

    The FSF samples were prepared by computer engraving technology and the preparation process was described detailly in Ref.[20]. The cotton warp backed weave fabric with a thickness of 0.8 mm was adopted for the dielectric layer, and warp and weft yarn densities were 110 end/(10 cm) and 280 pick/(10 cm), respectively. The aluminum foil with a thickness of 0.08 mm and square resistance of 3.62×10-4Ω was selected to form the conductive FSS layer. The GRAPHTEC CE6000-60 engraving machine(Japan) was driven by Wentai engraving software to periodically cut the fabric-based composites, and the operating parameters, such as tool pressures and speeds, were repeatedly adjusted to prepare the ideal sample with relatively smooth conductive patterns without obvious damage.

    The electromagnetic transmission characteristics were tested in the anechoic chamber by using the free-space method. The calibration process must be completed prior to the formal experiment to ensure that the center lines of the two antennas and the testing board are overlapped. The test was respectively carried out with and without the sample in the testing board, and the differential value between the two testing results is the authentic data of the sample. Specific testing principle and process were introduced in detail in Ref.[19]. By adjusting the position of the horn antenna and the absorbing wall, the electromagnetic transmission characteristics of samples in different polarization modes could be tested. Figures 3(a) and 3(b) show the preparation and test of Y-shaped FSF samples.

    2 Results and Discussion

    2.1 Electromagnetic transmission characteristics of Y-shaped FSFs

    2.1.1PolarizationmodeofY-shapedFSFs

    To study the influence of the polarization mode, the prepared FSFs were respectively tested in transverse electrical (TE) and transverse magnetic (TM) modes, which mean that the electric vector is respectively perpendicular and parallel to the incident plane. Samples 1A# and 1B# are taken as examples to analyze the testing results, and the transmission coefficient curves in two polarization modes are shown in Fig. 4.

    Fig. 1 Schematics of Y-shaped FSFs and unit size parameters: (a) patch FSF; (b) aperture FSF; (c) unit size parameters

    Fig. 2 Schematics of Y-ring-shaped FSFs and unit size parameters: (a) patch FSF; (b) aperture FSF; (c) unit size parameters

    Fig. 3 Preparation and test of Y-shaped FSF samples: (a) sample preparation; (b) sample test

    Fig. 4 Transmission coefficient curves of samples 1A# and 1B# in two polarization modes

    In Fig. 4, the transmission coefficient curves of samples 1A# and 1B# have obvious resonance valleys or peaks, showing band-stop or band-pass characteristics, which verifies the validity of design process. For the patch FSF, the resonance frequencies are respectively 16.56 GHz and 16.31 GHz in two polarization modes, with the valleys reaching -20.59 dB and -19.41 dB, and -10.00 dB bandwidths are 0.89 GHz and 0.77 GHz, with the difference of 0.12 GHz. For the aperture FSF, the resonance frequencies are respectively 16.56 GHz and 16.68 GHz in two polarization modes, with the peak values reaching -0.93 dB and -0.74 dB, and -3.00 dB bandwidths are 1.91 GHz and 2.17 GHz, with the difference of 0.26 GHz. The transmission coefficient curves in TE and TM modes have a high coincide degree, but there still are slight differences, which can be ascribed to the non-axisymmetry of the conductive units. The above results prove that the polarization mode exerts a certain influence but it is small. The testing results in the TE mode are chosen for subsequent analysis.

    Fig. 5 Transmission coefficient curves of Y-shaped FSFs with different a values: (a) patch FSFs; (b) aperture FSFs

    Fig. 6 Transmission coefficient curves of Y-shaped FSFs with different b values: (a) patch FSFs; (b) aperture FSFs

    Fig. 7 Transmission coefficient curves of Y-shaped FSFs with different D values: (a) patch FSFs; (b) aperture FSFs

    2.1.2UnitsizeofY-shapedFSFs

    The electromagnetic transmission characteristics of Y-shaped FSFs with different unit size parameters were tested and deeply analyzed. By comparing the characteristics differences of different FSFs, the influences of parametersa,b, andDcould be explored. The transmission coefficient curves of Y-shaped FSFs with differenta,b, andDvalues are separately shown in Figs. 5-7.

    Figure 5 shows that with the increase ofa, the transmission coefficient curves move to a higher frequency region. The valley values of patch FSFs decrease gradually, while the peak values of aperture FSFs increase progressively. Figure 6 shows that asbincreases, the transmission coefficient curves move to a lower frequency region, different from the variation trend in Fig. 5. Figure 7 shows that the change ofDwould exert remarkable influences on the transmission coefficients and the influence rules are identical for patch and aperture FSFs. AsDincreases, the transmission coefficient curves move to a lower frequency region, but the frequency selective characteristics become less ideal. To quantitatively analyze the influences of unit size parameters, characteristic indices including the resonance frequency and the resonance peak or valley, are extracted and shown in Fig. 8.

    Fig. 8 Effects of unit size parameters on characteristic indices: (a) resonance frequency of patch FSFs; (b) resonance frequency of aperture FSFs; (c) resonance valley of patch FSFs; (d) resonance peak of aperture FSFs

    Figures 8(a) and 8(b) show that the effects of unit size parameters on the resonance frequency are similar for patch and aperture FSFs. On the whole, the unit size parameterahas a positive effect. As the value ofaincreases, the resonance frequency also increases. But the influences of unit size parametersbandDare opposite. According to the results, the variation ofbhas the most significant influence and the resonance frequency decreases by about 5 GHz as the value ofbincreases by 2.0 mm. Figures 8(c) and 8(d) show that for patch and aperture FSFs, the influences of unit size parameters on the resonance valley or peak values are different. However, their frequency selective performance is becoming worse, which can be attributed to the variation of equivalent capacitance and inductance values caused by the change ofD. For patch FSFs,aandbhave negative effects and the influence ofDis positive. It is noteworthy in Fig. 8(c) that the effect ofbis the most remarkable. The influences of size parameters of aperture FSFs are contrary to those of patch FSFs and it seems that the variation trends in Fig. 8(d) are obviously nonlinear, different from the curves in Figs. 8(a) and 8(b).

    2.2 Electromagnetic transmission characteristics of Y-ring-shaped FSFs

    2.2.1PolarizationmodeofY-ring-shapedFSFs

    Based on the study of Y-shaped FSFs, Y-ring-shaped FSFs with different unit size parameters were tested systematically and the electromagnetic transmission characteristics were analyzed deeply. Samples 8A# and 8B# are selected to analyze the influence of polarization modes, and the transmission coefficient curves in TE and TM modes are shown in Fig. 9.

    Fig. 9 Transmission coefficient curves of samples 8A# and 8B# in two polarization modes

    Fig. 10 Transmission coefficient curves of Y-ring-shaped FSFs with different unit size parameters: (a) patch FSFs; (b) aperture FSFs

    Fig. 11 Comparison of transmission coefficient curves of Y-shaped and Y-ring-shaped FSFs: (a) patch FSFs; (b) aperture FSFs

    Figure 9 shows that patch and aperture FSFs respectively exhibit ideal band-stop and band-pass characteristics, proving the validity of the design process.

    On the whole, the transmission coefficient curves in two polarization modes are similar but not completely identical. For the patch FSF tested in TE and TM modes, the resonance frequencies respectively appear at 13.33 GHz and 13.92 GHz, with transmission coefficients of resonance valleys reaching -32.53 dB and -38.02 dB, and -10.00 dB bandwidths are separately 2.38 GHz and 2.64 GHz. For the aperture FSF, the resonance frequencies are 13.50 GHz and 12.90 GHz, with transmission coefficients of resonance peaks reaching -0.37 dB and -0.19 dB, and the -0.50 dB bandwidths are separately 1.36 GHz and 1.87 GHz.

    2.2.2UnitsizeofY-ring-shapedFSFs

    By keeping the outer diametersa2andb2of Y-ring constant and changing the inner diametersa1andb1of Y-ring, six Y-ring-shaped FSFs were designed and prepared. By analyzing their electromagnetic transmission characteristics, the influence of unit sizes could be explored. The transmission coefficient curves of Y-ring-shaped FSFs with different unit size parameters are shown in Figs. 10(a) and 10(b).

    Figure 10 shows that transmission coefficient curves of patch FSFs as well as aperture FSFs move to lower frequency regions as the inner diameter of Y-ring increases. Overall, the shape of transmission coefficient curves and the resonance frequencies have no obvious change. To quantitatively analyze the influence of the unit size parameters, the resonance frequencies are extracted and listed in Table 3.

    As shown in Table 3, when the internal diameter increases by 1.0 mm, the resonance frequency decreases by 1.87 GHz for patch FSFs, while the variation degree of aperture FSFs is a little larger, decreasing by 2.38 GHz. Different from the Y-shaped FSFs, the unit size parameters only affect the resonance frequency, and the data in Table 3 could provide design basis for determining the unit size parameters.

    Table 3 Resonance frequencies of Y-ring-shaped FSFs with different unit size parameters

    2.3 Characteristics comparison of Y-shaped and Y-ring-shaped FSFs

    To further comparatively analyze the differences of electromagnetic characteristics between Y-shaped and Y-ring-shaped FSFs, samples 1A#, 1B#, 10A#, and 10B# are selected for analysis and the diagram comparisons are shown in Figs. 11(a) and 11(b). Likewise, the characteristics, including the resonance frequency and the resonance peak or valley, are extracted and listed in Table 4.

    Table 4 Comparison of characteristics of Y-shaped and Y-ring-shaped FSFs

    Figures 11(a) and 11(b) show that the electromagnetic transmission characteristics of Y-shaped and Y-ring-shaped FSFs are significantly different. For patch FSFs, the transmission coefficient curves move down and to the left as Y-shaped FSFs vary to Y-ring-shaped FSFs, meaning that both of the resonance frequency and the resonance valley are changing. For aperture FSFs, resonance frequencies and bandwidths present remarkable variance. In Table 4, the differentials of the resonance frequency and the resonance peak or valley are listed, showing that the resonance frequency offset is about 5 GHz for two kinds of FSFs and the resonance valley offset is approximately 13 dB for the patch FSFs.

    The above variations can be attributed to the discrepancy of unit features. Although the unit size parameters of two kinds of FSFs are similar, equivalent inductance and capacitance values are obviously different, as the annular region of Y-ring-shaped FSFs could be equivalent to the extra inductor or capacitor. The above comparative analysis could offer design ideas for other ring-shaped FSFs.

    3 Conclusions

    Y-shaped and Y-ring-shaped FSFs were designed, prepared and tested. Through in-depth comparative analysis, the following conclusions are obtained.

    (1) For Y-shaped and Y-ring-shaped FSFs, the polarization mode exerts certain influences on the electromagnetic transmission characteristics, but the effects are minor.

    (2) For Y-shaped FSFs, the changes of unit size parametersa,b, andDcan significantly affect the electromagnetic transmission characteristics, but the influences are various. On the whole, the variation ofbexerts the greatest influence on the resonance frequency as well as the resonance valley or peak.

    (3) For Y-ring-shaped FSFs, the variation of Y-ring inner diametersa1andb1has an appreciable impact on transmission coefficient curves, but it mainly affects the resonance frequency, different from Y-shaped FSFs.

    午夜福利在线在线| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 联通29元200g的流量卡| 赤兔流量卡办理| 看片在线看免费视频| 99久久成人亚洲精品观看| 国产乱人偷精品视频| 日本一本二区三区精品| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| av天堂中文字幕网| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 国产片特级美女逼逼视频| 亚洲第一电影网av| 高清午夜精品一区二区三区 | 少妇被粗大猛烈的视频| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 内射极品少妇av片p| av天堂在线播放| 成年女人永久免费观看视频| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品50| 久久久久久九九精品二区国产| 日本精品一区二区三区蜜桃| 老司机影院成人| 真实男女啪啪啪动态图| 在线天堂最新版资源| 日韩欧美一区二区三区在线观看| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 99视频精品全部免费 在线| 日韩制服骚丝袜av| 国产精华一区二区三区| 可以在线观看毛片的网站| 身体一侧抽搐| 色综合站精品国产| 可以在线观看的亚洲视频| 国产探花在线观看一区二区| 国产三级中文精品| 一个人免费在线观看电影| 色视频www国产| 国产亚洲精品av在线| 亚洲av中文av极速乱| 成人毛片a级毛片在线播放| 在现免费观看毛片| 国产精品人妻久久久影院| www日本黄色视频网| 国产一区二区三区av在线 | 国内少妇人妻偷人精品xxx网站| 2021天堂中文幕一二区在线观| 午夜a级毛片| 精品乱码久久久久久99久播| 九九热线精品视视频播放| 69人妻影院| 禁无遮挡网站| 亚洲一区高清亚洲精品| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 免费黄网站久久成人精品| 成人欧美大片| 免费在线观看影片大全网站| 美女大奶头视频| 丰满人妻一区二区三区视频av| 男女视频在线观看网站免费| 国产高清三级在线| 国产午夜福利久久久久久| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 在线观看美女被高潮喷水网站| 干丝袜人妻中文字幕| 久久久久久久久久成人| 男人舔女人下体高潮全视频| 亚洲最大成人手机在线| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 日韩欧美三级三区| 美女 人体艺术 gogo| 在线播放无遮挡| 午夜福利18| 观看美女的网站| 极品教师在线视频| 国产高清不卡午夜福利| 色综合站精品国产| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产99精品国产亚洲性色| 欧美高清成人免费视频www| av中文乱码字幕在线| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 亚洲成人久久性| 成人特级av手机在线观看| 久久精品国产亚洲网站| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类| 国内精品一区二区在线观看| 深夜精品福利| 又爽又黄无遮挡网站| 看十八女毛片水多多多| 成年女人永久免费观看视频| 如何舔出高潮| 日本黄大片高清| 亚洲国产欧美人成| 中文字幕免费在线视频6| 女同久久另类99精品国产91| 成年女人永久免费观看视频| 亚洲精品456在线播放app| 看十八女毛片水多多多| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| av福利片在线观看| 国产一区二区三区在线臀色熟女| 国产在视频线在精品| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站| 性欧美人与动物交配| 伦理电影大哥的女人| 久久久久久久久久黄片| 女人被狂操c到高潮| 波野结衣二区三区在线| 国产精品三级大全| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站| 久久综合国产亚洲精品| 99热这里只有是精品50| 一级a爱片免费观看的视频| 女人十人毛片免费观看3o分钟| 级片在线观看| 久久久久久九九精品二区国产| 我要搜黄色片| 青春草视频在线免费观看| 神马国产精品三级电影在线观看| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 精华霜和精华液先用哪个| 国产精品久久视频播放| 日韩欧美在线乱码| 高清日韩中文字幕在线| 国产精品一二三区在线看| 国产精品一区二区三区四区免费观看 | 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 国产成人福利小说| 九九爱精品视频在线观看| 欧美三级亚洲精品| av视频在线观看入口| 丝袜喷水一区| 国产一区二区三区av在线 | 国产成人a区在线观看| 99国产极品粉嫩在线观看| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 欧美又色又爽又黄视频| 一级毛片我不卡| 可以在线观看毛片的网站| 深夜a级毛片| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 精品午夜福利在线看| 97超级碰碰碰精品色视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 麻豆av噜噜一区二区三区| 在线观看66精品国产| eeuss影院久久| 欧美一区二区国产精品久久精品| 久久这里只有精品中国| 色综合亚洲欧美另类图片| 18禁在线播放成人免费| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 免费看光身美女| 日本免费一区二区三区高清不卡| 99久久中文字幕三级久久日本| 少妇猛男粗大的猛烈进出视频 | 久久久久国内视频| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 国产成人福利小说| 久久国内精品自在自线图片| 观看免费一级毛片| 国语自产精品视频在线第100页| 欧美日韩一区二区视频在线观看视频在线 | 女人被狂操c到高潮| 看十八女毛片水多多多| 热99在线观看视频| 欧美丝袜亚洲另类| 国产精品综合久久久久久久免费| 夜夜爽天天搞| 亚洲无线观看免费| 亚洲国产欧美人成| 国产成人a区在线观看| 国产精品福利在线免费观看| 男人的好看免费观看在线视频| 日韩成人伦理影院| 亚洲av成人av| 级片在线观看| 少妇丰满av| 1024手机看黄色片| .国产精品久久| 丰满乱子伦码专区| 亚洲国产精品久久男人天堂| 亚洲精品日韩在线中文字幕 | 成人亚洲欧美一区二区av| 3wmmmm亚洲av在线观看| 国产欧美日韩精品一区二区| 热99re8久久精品国产| 国产91av在线免费观看| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站| 在线免费观看的www视频| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 人人妻,人人澡人人爽秒播| 一级毛片久久久久久久久女| 国产69精品久久久久777片| 看免费成人av毛片| 亚洲美女视频黄频| 一本久久中文字幕| 欧美潮喷喷水| 波多野结衣高清无吗| 欧美一区二区亚洲| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 91久久精品国产一区二区成人| 亚洲国产精品久久男人天堂| 悠悠久久av| 国产一区二区亚洲精品在线观看| 99在线视频只有这里精品首页| 高清毛片免费看| 91狼人影院| 精品一区二区三区人妻视频| 亚洲内射少妇av| 1024手机看黄色片| 丝袜喷水一区| 小说图片视频综合网站| 免费电影在线观看免费观看| 色播亚洲综合网| 亚洲图色成人| 免费av不卡在线播放| 国产精品一及| 老司机影院成人| 天堂av国产一区二区熟女人妻| 久久欧美精品欧美久久欧美| 听说在线观看完整版免费高清| 欧美3d第一页| 久久久久国产网址| 男人舔女人下体高潮全视频| 搡老妇女老女人老熟妇| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 国产又黄又爽又无遮挡在线| 寂寞人妻少妇视频99o| 日韩成人av中文字幕在线观看 | eeuss影院久久| 精品一区二区三区视频在线| 国产成人精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 赤兔流量卡办理| 精品乱码久久久久久99久播| 级片在线观看| www.色视频.com| 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 三级男女做爰猛烈吃奶摸视频| 校园人妻丝袜中文字幕| 国产免费男女视频| 我要搜黄色片| 国产精品亚洲美女久久久| 成年女人永久免费观看视频| 99久久精品一区二区三区| 香蕉av资源在线| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久com| h日本视频在线播放| 超碰av人人做人人爽久久| 欧美最黄视频在线播放免费| 99热只有精品国产| 午夜久久久久精精品| 午夜a级毛片| 久久99热6这里只有精品| 在线观看av片永久免费下载| 国产美女午夜福利| 亚洲激情五月婷婷啪啪| 国产美女午夜福利| 又粗又爽又猛毛片免费看| 给我免费播放毛片高清在线观看| 熟女电影av网| 午夜免费激情av| 亚洲av五月六月丁香网| 丝袜美腿在线中文| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 久久久久久大精品| 干丝袜人妻中文字幕| 一个人看的www免费观看视频| 亚洲av中文字字幕乱码综合| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 自拍偷自拍亚洲精品老妇| 丰满的人妻完整版| 男插女下体视频免费在线播放| 直男gayav资源| 亚洲色图av天堂| 亚洲国产欧洲综合997久久,| 能在线免费观看的黄片| 成人精品一区二区免费| 午夜福利18| 亚洲国产精品成人综合色| 久久久精品大字幕| 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 在线看三级毛片| 白带黄色成豆腐渣| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 一个人看的www免费观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产乱人偷精品视频| 精品一区二区三区人妻视频| 亚洲中文日韩欧美视频| 国产精品久久久久久亚洲av鲁大| 日本撒尿小便嘘嘘汇集6| 国产高潮美女av| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| 在线观看午夜福利视频| 99视频精品全部免费 在线| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 成人鲁丝片一二三区免费| 国产熟女欧美一区二区| 插阴视频在线观看视频| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 少妇人妻精品综合一区二区 | 色噜噜av男人的天堂激情| 晚上一个人看的免费电影| 91av网一区二区| 成年女人毛片免费观看观看9| 久久国产乱子免费精品| 亚洲久久久久久中文字幕| 在线观看一区二区三区| 久久久久精品国产欧美久久久| 久久精品夜夜夜夜夜久久蜜豆| 老司机福利观看| 欧美bdsm另类| 国产在视频线在精品| 我的女老师完整版在线观看| 亚洲欧美日韩高清在线视频| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 搡老妇女老女人老熟妇| 网址你懂的国产日韩在线| 亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 亚洲欧美中文字幕日韩二区| av天堂在线播放| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费看| 国产成人91sexporn| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| av在线亚洲专区| 日本爱情动作片www.在线观看 | 毛片女人毛片| 国产乱人视频| 免费看av在线观看网站| 美女大奶头视频| 91精品国产九色| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 亚洲自偷自拍三级| 午夜视频国产福利| 久久综合国产亚洲精品| 三级经典国产精品| 毛片女人毛片| 亚洲精品日韩在线中文字幕 | 久久久久久久久久成人| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 久久欧美精品欧美久久欧美| 极品教师在线视频| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 久久国内精品自在自线图片| 大型黄色视频在线免费观看| 性欧美人与动物交配| 一区福利在线观看| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 久久久久免费精品人妻一区二区| 卡戴珊不雅视频在线播放| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 午夜福利高清视频| 久久草成人影院| 99久久精品热视频| 成人一区二区视频在线观看| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产av成人精品 | 一级av片app| 久久国产乱子免费精品| 波多野结衣高清无吗| 久99久视频精品免费| 日日啪夜夜撸| 老司机福利观看| 国产私拍福利视频在线观看| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图| 欧美不卡视频在线免费观看| 在现免费观看毛片| 国产精品福利在线免费观看| 久久久久久久久久久丰满| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片| 欧美性猛交╳xxx乱大交人| 看免费成人av毛片| 毛片女人毛片| 免费看a级黄色片| 亚洲久久久久久中文字幕| 黑人高潮一二区| 看片在线看免费视频| 综合色丁香网| 亚洲成人av在线免费| 国产真实乱freesex| 色在线成人网| 精品人妻一区二区三区麻豆 | 精品久久久久久久久久久久久| 天堂√8在线中文| 日韩在线高清观看一区二区三区| 天天躁日日操中文字幕| av在线蜜桃| 啦啦啦啦在线视频资源| 精品一区二区免费观看| 美女被艹到高潮喷水动态| 日本免费a在线| 在线观看66精品国产| 简卡轻食公司| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 嫩草影院精品99| 看十八女毛片水多多多| 国产欧美日韩一区二区精品| 无遮挡黄片免费观看| 天堂影院成人在线观看| 久久精品综合一区二区三区| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产真实伦视频高清在线观看| 人妻久久中文字幕网| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| 深夜a级毛片| 精品午夜福利在线看| 三级毛片av免费| 色哟哟哟哟哟哟| 俺也久久电影网| 免费观看在线日韩| 22中文网久久字幕| 99久国产av精品国产电影| 一级黄色大片毛片| 国产成人a∨麻豆精品| 黄色配什么色好看| 日本爱情动作片www.在线观看 | 一进一出好大好爽视频| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 精品人妻视频免费看| 91精品国产九色| 看非洲黑人一级黄片| 国产91av在线免费观看| 搡女人真爽免费视频火全软件 | 日本黄大片高清| 日韩亚洲欧美综合| 91久久精品电影网| 99热6这里只有精品| 人人妻,人人澡人人爽秒播| 国产精品一二三区在线看| 欧美日韩在线观看h| 中出人妻视频一区二区| 久久精品久久久久久噜噜老黄 | 69av精品久久久久久| 在线a可以看的网站| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 精品乱码久久久久久99久播| 国产探花在线观看一区二区| 国产精品爽爽va在线观看网站| 日韩成人伦理影院| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 日本爱情动作片www.在线观看 | 欧美成人免费av一区二区三区| 日韩中字成人| 久久精品国产亚洲av天美| 国产精品,欧美在线| 亚洲av成人精品一区久久| 国产成人福利小说| 少妇的逼水好多| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 亚洲专区国产一区二区| 日本一二三区视频观看| 免费在线观看影片大全网站| 51国产日韩欧美| 国产午夜精品久久久久久一区二区三区 | 又爽又黄无遮挡网站| 香蕉av资源在线| 色5月婷婷丁香| 日本欧美国产在线视频| 国产真实伦视频高清在线观看| 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜爱| 大型黄色视频在线免费观看| 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 免费观看在线日韩| 欧美成人精品欧美一级黄| 亚洲精品粉嫩美女一区| 人人妻人人澡人人爽人人夜夜 | 亚洲成人久久性| 亚洲美女搞黄在线观看 | 免费av不卡在线播放| aaaaa片日本免费| 亚州av有码| 精品少妇黑人巨大在线播放 | 毛片女人毛片| 色噜噜av男人的天堂激情| 少妇的逼水好多| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 日韩大尺度精品在线看网址| 免费搜索国产男女视频| 97碰自拍视频| 老女人水多毛片| 91在线精品国自产拍蜜月| 中文字幕av成人在线电影| 日韩欧美国产在线观看| 观看美女的网站| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 日本免费a在线| 久久久久久九九精品二区国产| 久久久久精品国产欧美久久久| 在线观看美女被高潮喷水网站| 国产高潮美女av| 国产在视频线在精品| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 国产乱人偷精品视频| 天美传媒精品一区二区| 一进一出抽搐gif免费好疼| 国产av一区在线观看免费| 观看美女的网站| 久久热精品热| 丝袜喷水一区| 少妇猛男粗大的猛烈进出视频 | 两个人视频免费观看高清| 国产三级中文精品| 精品久久久久久久久久免费视频| 色播亚洲综合网| 村上凉子中文字幕在线| 成人欧美大片| 亚洲欧美清纯卡通| 国产不卡一卡二| 尾随美女入室| 国产人妻一区二区三区在| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 99九九线精品视频在线观看视频| 欧美日韩综合久久久久久| 可以在线观看的亚洲视频|