• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NiMoO4納米線@ZnCo MOF(350)核殼結(jié)構(gòu)復(fù)合材料的制備及其析氧電催化性能

    2022-12-06 06:29:38魏學(xué)東喬雙燕
    關(guān)鍵詞:核殼材料科學(xué)電催化

    魏學(xué)東 劉 楠 喬雙燕

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,太原 030031)

    0 Introduction

    As resource and environmental issues become more and more prominent,sustainable clean energy has gradually become an alternative solution,among which hydrogen energy has attracted more and more attention due to its high efficiency,cleanliness,and recyclability[1-3].And water electrolysis is considered to be one of the most promising ways to produce hydrogen energy.However,due to the sluggish kinetics of the oxygen evolution reaction(OER),the reaction rate of water electrolysis is limited[4],therefore,it is necessary to design effective electrocatalysts to reduce the OER overpotential.So far,the most efficient electrocatalysts for OER are still noble metal catalysts such as RuO2and IrO2,but their high price and extremely scarce resources hinder their wide commercial application[5-6].Therefore,there is an urgent need to develop inexpensive and abundant non-noble metal OER electrocatalysts.MOFs have attracted extensive attention due to their rich structural diversity and large specific surface area[7-8].MOFs are gradually emerging as reliable templates or precursors for the preparation of metal-active nanomaterials and porous carbons and their composites[9].Researchers have done a lot of work on OER electrocatalysts using MOFs as direct templates or precursors to composite low-dimensional inorganic nanomaterials[10-13].For example,Mu and colleagues[14]reported a Mo-N/C@MoS2multifunctional electrocatalyst synthesized by vertically growing MoS2nanosheets encapsulated in a ZIF structure and then carbonized at high temperature.The hybrid structure exhibited excellent electrocatalytic activity and stability for hydrogen evolution reaction(HER),OER and oxygen reduction reaction(ORR).By direct annealing of reduced graphene oxide(rGO)-coated core-shell bimetallic zeolite imidazole framework,Chen et al.[15]developed a new material (Co@N-CNTs@rGO) with ultrafine Co nanoparticles coated on nitrogen-doped carbon nanotubes(N-CNTs).As-prepared Co@N-CNTs@rGO composite exhibited good HER electrocatalytic activity due to the uniform distribution of Co nanoparticles as well as the large specific surface area and abundant porosity.In electrolytes of 1 mol·L-1KOH and 0.5 mol·L-1H2SO4,the composite exhibited the overpotentials of only 108 and 87 mV at a current density of 10 mA·cm-2,respectively,outperforming most other reported Co-based electrocatalysts.Wang et al.[16]reported a novel N-doped carbon CoP particle/carbon nanotube composite(CNT-NC-CoP),which was developed by in situ nucleation and growth of ZIF67 nanoparticles on carbon nanotubes,which are then carbonized and phosphatized.The unique hierarchical structure endows the CNT-NC-CoP composite with a high specific surface area and abundant active sites.The ultra-low overpotential of 251 mV can be achieved at a current density of 10 mA·cm-2.Wan et al.[17]reported one-dimensional and two-dimensional porous Mo2C nanostructured electrocatalysts.Synthesized by coating one-dimensional MoO3nanowires and two-dimensional MoO3nanosheets with ZIF67 followed by high-temperature carbonization,the obtained Mo2C nanostructures exhibited low onset overpotentials of 25 and 36 mV in 0.1 mol·L-1HClO4and 0.1 mol·L-1KOH solutions,respectively,and small Tafel slopes of 40 and 47 mV·dec-1,respectively.The catalysts also showed excellent stability.

    Based on the above reports,we first synthesized NiMoO4nanowires(NWs)by a hydrothermal method,and then in situ grew a layer of ZnCo MOF nanocrystals on the NiMoO4NWs by room temperature liquid phase synthesis to form a coaxial core-shell structure.Then after a low-temperature heat treatment at 350℃(the sample was named NiMoO4NWs@ZnCo MOF(350)),it was found that except for a very small amount of Co3O4quantum dots new phase was inside the ZnCo MOF,the structure and morphology of the composite did not change significantly.The pyrolysis at lower temperatures promotes the generation of new phases,but also basically preserves the original framework structure of MOF,forming a new MOF core-shell structure with more abundant interfaces.The composite electrocatalyst was tested on an inert glassy carbon electrode in 1 mol·L-1KOH,and NiMoO4NWs@ZnCo MOF(350)had an overpotential of only 360 mV at a current density of 10 mA·cm-2and maintained good stability for 30 000 s.

    1 Experimental

    1.1 Material synthesis

    1.1.1 Preparation of NiMoO4NWs

    The preparation method of NiMoO4NWs was mainly referred to in the literature[18].1 mmol Ni(NO3)2·6H2O and 1 mmol sodium molybdate were dissolved in 25 mL of deionized water,and after it was completely dissolved,the solution was transferred to a 50 mL reactor,kept at 150℃for 6 h,and the product was collected by centrifugation,washed three times with C2H5OH and dried the precipitate in vacuum at 40℃.

    1.1.2 Preparation of NiMoO4NWs@ZnCo MOF composites

    10 mg NiMoO4NWs was dissolved in 20 mL methanol,sonicated at 100 kHz for 30 min,and then 38 mg Zn(NO3)2·6H2O and 112 mg Co(NO3)2·6H2O were dissolved in the above solution to form solution A,followed by 40 mg polyvinylpyrrolidone(PVP)and 300 mg of dimethylimidazole were dissolved in 10 mL of methanol to form solution B.Solution B was poured into the solution A,left standing at room temperature for 2 h,the product was collected by centrifugation and washed three times with methanol to precipitate.NiMoO4NWs@ZnCo MOF composites were obtained.

    1.1.3 Preparation of NiMoO4NWs@ZnCo MOF(350)

    NiMoO4NWs@ZnCo MOF was placed in a porcelain boat,and high-purity argon gas was first passed through the quartz tube for 1 h at room temperature to remove the residual air in the quartz tube,and then kept at 350℃for 3 h.NiMoO4NWs@ZnCo MOF(350)was prepared well.

    1.2 Structural characterization

    Structural characterizations were carried out on various large-scale analytical instruments.Among them,X-ray diffraction analysis(XRD)was performed on a Philips 1830 diffractometer equipped with a Cu Kα radiation source,a 2θ range of 5°-90°,a working voltage of 40 kV,a working current of 40 mA,and a speed of 20(°)·min-1.Using field emission scanning electron microscopy(FE-SEM,SU-8010)to analyze the surface topography of the samples at the operating voltage of 5.0 kV.Nanoscale microscopic topography could be analyzed on transmission electron microscopy(TEM,JEM-2100F)and high-resolution transmission electron microscopy(HRTEM)at an accelerating voltage of 200 kV.X-ray photoelectron spectroscopy (XPS)was obtained using a K-Alpha spectrometer equipped with an Al Kα X-ray source to analyze the surface chemical states and electronic states of various elements.

    1.3 Electrochemical performance test

    All electrochemical performance tests of the material samples were carried out with a three-electrode system(the material electrode was the working electrode,the platinum foil was the counter electrode,and the Ag/AgCl was the reference electrode).The test instrument used Shanghai Chenhua Electrochemical Workstation CHI660E.It mainly includes linear sweep voltammetry(LSV),Tafel slope,cyclic voltammetry,electric double layer capacitance(Cdl),chronoamperometry,etc.Among them,the scanning speed of OER catalytic performance tested by LSV was 10 mV·s-1,and the voltage range was 1-2 V(vs RHE);The current density of 10 mA·cm-2was used for stability test by chronopotentiometry,and the time was set to 12 h.

    2 Results and discussion

    2.1 Structure and morphology characterization

    Fig.1 is a schematic diagram of the synthesis process for NiMoO4NWs@ZnCo MOF(350)electrocatalyst.First,NiMoO4NWs were synthesized under hydrothermal conditions,and then 10 mg of the synthesized NiMoO4NWs were dissolved in a methanol solution of cobalt nitrate and zinc nitrate,and methanol solution dissolved with PVP and dimethylimidazole was added to it.The mixed solution was left at room temperature for 2 h,and the NiMoO4NWs@ZnCo MOF material was obtained by centrifugal washing,and the material was calcined at 350℃for 3 h in a high-purity argon flow to obtain the final NiMoO4NWs@ZnCo MOF(350)electrocatalyst.

    Fig.1 Schematic diagram of the preparation process of NiMoO4NWs@ZnCo MOF(350)

    As shown in Fig.2a,as-synthesized NiMoO4NWs@ZnCo MOF was tested on an electrochemical workstation and found that the overpotentials were 420 and 540 mV at current densities of 10 and 50 mA·cm-2,respectively.Which is superior to the electrocatalytic performance of NiMoO4NWs and ZnCo MOF monomer samples.Therefore,it is judged that the twophase interface enhances the electrocatalytic activity,and although the electrocatalytic activity of NiMoO4NWs@ZnCo MOF is not high,it is still a potential MOF composite.To further improve its electrical conductivity and electrochemical performance,NiMoO4NWs@ZnCo MOF was subjected to pyrolysis experiments at 350,450,550,and 650℃,respectively.And it was found that the samples had the smallest overpotential at 350℃ (349 mV at 10 mA·cm-2,470 mV at 50 mA·cm-2)in Fig.2b.So NiMoO4NWs@ZnCo MOF(350)was selected as the research object to systematically study the structure and electrochemical performance.

    Fig.2 (a)LSV plots of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)LSV plots of the pyrolyzed NiMoO4NWs@ZnCo MOF at different temperatures

    Fig.3a shows the XRD patterns of as-synthesized NiMoO4,which is basically consistent with the NiMoO4·xH2O standard diffraction card(PDF No.13-0128).The XRD pattern showed that an inconsistent small peak at 13.56°existed in real synthetic samples[18-19].So it demonstrated the successful synthesis of NiMoO4NWs.It can be seen from Fig.3a that for the pure ZnCo MOF,the diffraction peaks are consistent with the diffraction peak positions and intensities of the ZnCo MOF crystals reported in the literature[20-21],and no impurity peaks were observed,indicating that the synthesized ZnCo MOF sample has higher crystallinity.For NiMoO4NWs@ZnCo MOF,except for the most diffraction peaks of ZnCo MOF,only a weaker peak of NiMoO4NWs appeared in the composite.The NiMoO4NWs monomer itself has strong crystallinity,which indicates the experimental fact that NiMoO4NWs were tightly coated by ZnCo MOF to form a coreshell structure.All the above results indicate the successful synthesis of the NiMoO4NWs@ZnCo MOF precursor.As shown in Fig.3b,NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF were pyrolyzed at 350℃,and it was found that compared with the precursor,the characteristic peaks of the monomers like NiMoO4NWs(350)and ZnCo MOF(350)can be well maintained,indicating that the thermal stability of the monomer sample is good,especially for the ZnCo MOF(350)which does not show a lot of coordination bond breakage and framework collapse.The intensity of its diffraction peaks decreased significantly compared with that before calcination.At 350℃,NiMoO4NWs@ZnCo MOF(350)obviously underwent a little pyrolysis,a small amount of new Co3O4phase(PDF No.43-1003)appeared in the composite,and the peaks of the NiMoO4NWs phase appeared at several positions and the intensity increased,indicating that a little pyrolysis caused the ZnCo MOF shell to become loose and porous,and the diffraction peaks of the NiMoO4NWs core appeared stronger.However,the composite sample still kept the framework structure of MOF unchanged,although the intensity of its diffraction peaks was greatly reduced.However,when the pyrolysis temperature was increased to 450℃according to XRD patterns in Fig.S1(Supporting information),the composite structure was basically destroyed,and it mainly evolved into another composite structure of a new NiMoO4(PDF No.45-0142)and CoO(PDF No.43-1004).In addition,the structure of pyrolyzed samples at 450,550,and 650℃was consistent and different from the pyrolyzed sample at 350℃,so the special structure of NiMoO4NWs@ZnCo MOF(350)determined its excellent catalytic activity.

    Fig.3 (a)XRD patterns of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)XRD patterns of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The microscopic morphology is shown in Fig.4.It can be observed from Fig.4a that the morphology of NiMoO4NWs was uniform one-dimensional NWs,and the diameter of the NWs was about 50 nm.Then,after adding the methanol solution of 2-methylimidazole and PVP to the methanol suspension of NiMoO4NWs,Zn(NO3)2·6H2O and Co(NO3)2·6H2O,ZnCo MOF nanocrystals were found to grow rapidly and attach to NiMoO4NWs.On the surface of NiMoO4NWs,a composite electrocatalyst with ZnCo MOF wrapped around NiMoO4NWs was obtained.

    The SEM image of the composite electrocatalyst is shown in Fig.4c.It can be clearly observed that for the NiMoO4NWs@ZnCo MOF composite electrocatalyst,the growth of ZnCo MOF was strictly restricted to the surface of NiMoO4NWs,and a coating layer with relatively uniform thickness was formed.The SEM image in Fig.4b is the ZnCo MOF nanocrystals synthesized separately.ZnCo MOF exhibited a good dodecahedral crystal form,with uniform morphology,sharp edges and corners,and a smooth surface,and the particle size was about 400 nm.From the SEM image of NiMoO4NWs@ZnCo MOF(350)in Fig.4d,the morphology of the pristine ZnCo MOF was largely preserved,indicating that the MOF framework is not completely collapsed.The morphology change of the pyrolytic sample at 650℃was also studied in Fig.S2,and it was found that the structure collapse was aggravated,and the pyrolysis products of some ZnCo MOF precursors were aggregated.

    Fig.4 SEM images of(a)NiMoO4NWs,(b)ZnCo MOF,(c)NiMoO4NWs@ZnCo MOF,and(d)NiMoO4NWs@ZnCo MOF(350)

    To deeply explore the size,structure,and morphology of the synthesized electrocatalysts,TEM and HRTEM tests were carried out(Fig.5).Fig.5c is the TEM image of NiMoO4NWs@ZnCo MOF(350).Compared with NiMoO4NWs@ZnCo MOF in Fig.5a,the composite sample after pyrolysis well-maintained precursor morphologies of one-dimensional NWs before calcination.And the ZnCo MOF crystal shell appeared as uniformly dispersed nanoparticles without obvious agglomeration,which is because a little pyrolysis occurs during the calcination at 350℃,and the pore structure of MOF as a template and the gas generated after thermal decomposition also play a good role in inhibiting the crystal polymerization.Fig.5b is the HRTEM image of NiMoO4NWs@ZnCo MOF.It can be seen that the lattice fringes of NiMoO4NWs were clear,marked as the NiMoO4·xH2O phase with a lattice spacing of 0.299 nm,which is closely related to the ZnCo MOF phase.The interface was almost seamless.The high-resolution image of NiMoO4NWs@ZnCo MOF(350)in Fig.5d after pyrolysis showed a similar structure,but a small amount of Co3O4marked with a lattice spacing of 0.244 nm appeared at the local position of the ZnCo MOF pyrolysis phase,apparently,the structure is consistent with the XRD analysis results in Fig.3.The two-phase interface continues to behave as a tight connection,and there should be chemical bonds other than intermolecular forces.Further elemental mapping of NiMoO4NWs@ZnCo MOF(350)in Fig.5e-5l showed that C,N,O,Co,Zn,Ni,and Mo elements co-existed in the sample and exhibited an obvious coreshell structure.And the Zn and Co elements of ZnCo MOF were densely distributed on the longitudinal axis of the NWs and distributed on the shell of the coreshell structure,and the Ni and Mo elements of NiMoO4NWs were obviously distributed on the core of the coreshell structure.

    Fig.5 (a)TEM image and(b)HETEM image of NiMoO4NWs@ZnCo MOF;(c)TEM image,(d)HETEM image,(e)STEM image,and(f-l)elemental mappings of NiMoO4NWs@ZnCo MOF(350)

    In order to further characterize the valence states of elements in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350)composites,the XPS spectra were detected and the peaks were fitted.As shown in Fig.6a,the characteristic peaks of Ni2p3/2and Ni2p1/2for NiMoO4NWs@ZnCo MOF were 855.5 and 873.1 eV,respectively,which can be assigned to Ni2+.For NiMoO4NWs@ZnCoMOF(350),the characteristic peak of Ni2+remained unchanged but shifted by 0.5 eV[22].As shown in Fig.6b,for NiMoO4NWs@ZnCo MOF,the Mo3d5/2peak and the Mo3d3/2characteristic peak of the Mo3d XPS spectrum were located at 232.2 and 235.3 eV,respectively,indicating the existence of Mo6+[23].For the pyrolyzed NiMoO4NWs@ZnCo MOF(350),the valence state of Mo6+was unchanged and shifted by 0.5 eV.In the XPS spectrum of Zn2p,the peaks at 1 021.2 and 1 044.3 eV were characteristic peaks of Zn2p3/2and Zn2p1/2,respectively(Fig.6c)[24],corresponding to the Zn2+in NiMoO4NWs@ZnCo MOF.While for NiMoO4NWs@ZnCo MOF(350),the characteristic peak of Zn2+was unchanged but shifted negatively by 0.5 eV.The positive or negative shifts of the characteristic peaks of the above metal ions indicate that the two-phase interface of NiMoO4NWs and ZnCo MOF has stronger electronic interactions after pyrolysis[25-26].

    In the Co2p spectrum of NiMoO4NWs@ZnCo MOF,the binding energies at 780.9 and 796.3 eV belong to Co2p2/3and Co2p1/2,respectively,indicating that the cobalt element exists in the form of Co2+[27](Fig.6d).For NiMoO4NWs@ZnCo MOF(350)after pyrolysis,the main valence peak remained Co2+,but shifted negatively by 0.7 eV compared with that before pyrolysis,indicating that the electronic interaction at the interface is more intense for the phase after pyrolysis.Co2p3/2and Co2p1/2corresponded to the characteristic peaks of Co3+at 780.2 and 795.4 eV,respectively,indicating that Co2+and Co3+coexist in NiMoO4NWs@ZnCo MOF(350).It marks the appearance of a new phase of Co3O4[28],which is consistent with the analysis results in Fig.3b and 5d.The results show that various metal ions coexist in the composite,and their presence accelerates the electron transport speed and enhances its catalytic activity.

    The binding energy peaks of C1s in NiMoO4NWs@ZnCo MOF are shown in Fig.6e.With the appearance of the high-temperature pyrolysis Co3O4phase,four binding energy peaks appeared at 284.5,285.1,286.2 and 288.5 eV,which can correspond to C—C(sp2),C—N,C—O—Mo,andC=O bonds,respectively[29-31].It shows that a small amount of C=O bonds were produced by pyrolysis.In addition,as shown in Fig.6f,530.3,531.2,531.8,and 532.7 eV appeared in O1s of NiMoO4NWs@ZnCo MOF,corresponding to Mo—O bond(or Ni—O bond),oxygen vacancies(oxygen defects),C—O—Mo bond,and hydroxide(or adsorbed oxygen or moisture)[32-33].For NiMoO4NWs@ZnCo MOF(350),the peaks of O1s can be separated into five peaks at 529.4,530.3,531.2,531.8,and 532.7 eV.Except for the four peaks,before pyrolysis was retained,the binding energy peak at 529.4 eV corresponds to the spinel-type cobalt oxide(i.e.,the Co3O4phase).Through the above analysis of the XPS spectra,for NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350),chemical bonds C—O—Mo and a large number of oxygen vacancies were generated at the monomer phase heterointerface,which can become the source of active sites and increase the electrocatalytic activity of the composites,especially NiMoO4NWs@ZnCo MOF(350),in addition to retaining the interfacial chemical bonds and oxygen vacancies before pyrolysis,partial pyrolysis also leads to the formation of Co3O4phase,which also leads to the formation of a new phase interface and further increases the active sites of the heterointerface.

    Fig.6 XPS spectra of(a)Ni2p,(b)Mo2d,(c)Zn2p,(d)Co2p,(e)C1s,and(f)O1s in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF NWs(350)

    2.2 Electrochemical performance

    The OER performance was performed in 1 mol·L-1KOH solution using a conventional three-electrode system.The LSV curves are shown in Fig.7a,when the current density reached 10 mA·cm-2,the overpotential of NiMoO4NWs@ZnCo MOF(350)was only 360 mV,which was lower than 700 mV of the single-component NiMoO4NWs(350)and 430 mV of ZnCo MOF(350).Tafel slope is an essential parameter for describing the kinetic reaction mechanism of catalysts,which is calculated according to the Tafel equation:η=blg j+a(η is the overpotential,j represents the current density and b belongs to the Tafel slope).To further investigate the OER kinetic properties of the samples,Fig.7b shows the Tafel slopes of the three samples.The Tafel slope of NiMoO4NWs@ZnCo MOF(350)was 62 mV·dec-1,which was much smaller than 294 mV·dec-1of NiMoO4NWs(350)and 98 mV·dec-1of ZnCo MOF(350).It reveals that NiMoO4NWs@ZnCo MOF(350)has a faster electrocatalytic reaction rate of oxygen evolution.Fig.7c is the stability curves of NiMoO4NWs@ZnCo MOF(350)and the single components.It can be observed that the current density of the composite sample NiMoO4NWs@ZnCo MOF(350)was the highest close to 10 mA·cm-2under the same overpotential,and can be maintained for 30 000 s with basically no decay.The stability curve for a longer time was further studied,and it was found that after 50 000 s,the initial current density of the composite sample was attenuated,but still retained at 67%,as shown in Fig.S3.Then,the electrochemical impedance spectroscopy(EIS)of the electrocatalyst was tested.The smaller semicircular arc diameter represents a smaller charge transfer resistance(Rct)and therefore a faster OER.NiMoO4NWs@ZnCo MOF(350)in Fig.7d had a smaller impedance radius and a charge transfer resistance of about 73.4 Ω,which was lower than that of NiMoO4NWs(350)(239.4 Ω)and ZnCo MOF(350)(86.37 Ω).

    Fig.7 (a)LSV plots,(b)Tafel slope plots,(c)stability plots,and(d)impedance plots of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The Cdlof the electrocatalyst which can be used to compare the size of the electrochemical specific surface area was calculated by CV test.The electrochemical-specific surface area is proportional to the Cdl.The larger the electrochemical specific surface area of the catalyst,the larger the Cdl,which means the more catalytic active sites and the better catalytic performance of the catalyst.As shown in Fig.8a-8c,NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)were tested at different scanning speeds of 10-100 mV·s-1.The obtained CV curves were then linearly fitted to obtain the Cdl.As shown in Fig.8d,the Cdlof NiMoO4NWs@ZnCo MOF(350),NiMoO4NWs(350),and ZnCo MOF(350)were 9.535,0.162,and 4.195 mF·cm-2,respectively.The results once again proved that NiMoO4NWs@ZnCo MOF(350)had a higher specific surface area for electrochemical activity.

    Fig.8 CV curves of(a)NiMoO4NWs(350),(b)ZnCo MOF(350),and(c)NiMoO4NWs@ZnCo MOF(350)in a non-Faradaic range;(d)Plots of the current density difference(Δj,Δj=ja-jc,where jaand jcrepresent the positive and negative current densities,respectively)against scan rate(the slope is twice that of Cdlin the Fig.8d)

    At present,the accepted OER mechanism[34]for alkaline conditions can be expressed as:

    In the above reaction formula,*represents the active site of the catalyst,and O*,HO*,and HOO*represent three different oxygen-containing intermediates.According to the reaction mechanism,and all the above structural and electrochemical analysis results,several active sites or site sources such as C—O—Mo bond,oxygen vacancies,new Co3O4phase,all of the heterophase interfaces,and new increase specific surface of NiMoO4NWs@ZnCo MOF(350)are more likely to adsorb more hydroxyl oxygen atoms and achieve faster conversion of oxygen molecules.

    To further study the changes in the morphology and electrocatalytic performance of the sample after the stability test,Fig.9a shows the SEM image of NiMoO4NWs@ZnCo MOF(350)after the stability test.Compared with Fig.4d,the morphology of the composite sample before and after the stability test did not change significantly,showing good physical stability characteristics.In Fig.9b,the changes of the LSV curves before and after the stability test were observed,and it was found that the overpotential at 10 mA·cm-2hardly increased,while the overpotential at 50 mA·cm-2increased by less than 20 mV,indicating that the stability test did not significantly alter the electrocatalytic activity of NiMoO4NWs@ZnCo MOF(350).

    Fig.9 (a)SEM image after stability test and(b)LSV curves before and after stability test for NiMoO4NWs@ZnCo MOF(350)

    3 Conclusions

    In this experiment,a new type of ZnCo MOF nanoparticles was successfully synthesized by in situ growth synthesis on NiMoO4NWs and then carbonized.The pyrolysis temperature of 350℃maintained the morphology of the precursor well,and a small amount of the Co3O4phase appeared.The appearance of the Co3O4phase made the surface of the material more rough,loose,and porous,which is beneficial to increase the effective contact area between the catalyst and the electrolyte.Moreover,the unique core-shell structure endows the material with a high specific surface area,abundant exposed active sites,fast ion diffusion paths,and good electrical conductivity.Therefore,the electrocatalyst exhibited a low overpotential of 360 mV at a current density of 10 mA·cm-2and maintained longterm durability of 30 000 s.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgment:This study was supported by the General Project of Basic Research Program of Shanxi Province(Grant No.20210302123332),the National Natural Science Foundation of China(Grant No.22178204),and the 1331 Engineering of Shanxi Province.

    猜你喜歡
    核殼材料科學(xué)電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    成人国产综合亚洲| 一区福利在线观看| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕久久专区| 成人18禁在线播放| 特大巨黑吊av在线直播| 麻豆成人午夜福利视频| 日日干狠狠操夜夜爽| 色噜噜av男人的天堂激情| 变态另类成人亚洲欧美熟女| 免费一级毛片在线播放高清视频| 国产午夜精品论理片| 黑人巨大精品欧美一区二区mp4| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线播放欧美日韩| 国产黄片美女视频| 午夜视频精品福利| 搡老岳熟女国产| 免费高清视频大片| 噜噜噜噜噜久久久久久91| 亚洲精品美女久久久久99蜜臀| 人人妻,人人澡人人爽秒播| 国产高清视频在线播放一区| 精品国产超薄肉色丝袜足j| 老司机深夜福利视频在线观看| 久久久久久久久免费视频了| 性欧美人与动物交配| 亚洲一区高清亚洲精品| 麻豆国产av国片精品| 亚洲色图 男人天堂 中文字幕| 最近最新免费中文字幕在线| 欧美激情在线99| 51午夜福利影视在线观看| 亚洲狠狠婷婷综合久久图片| АⅤ资源中文在线天堂| 亚洲美女黄片视频| 国内精品一区二区在线观看| 淫妇啪啪啪对白视频| 美女 人体艺术 gogo| 可以在线观看的亚洲视频| 日韩av在线大香蕉| 午夜福利免费观看在线| 亚洲欧美日韩无卡精品| 精品国产亚洲在线| 亚洲午夜理论影院| 色尼玛亚洲综合影院| 精品欧美国产一区二区三| 91av网站免费观看| 国产精品一及| 日韩免费av在线播放| 欧美激情久久久久久爽电影| 最新美女视频免费是黄的| 一卡2卡三卡四卡精品乱码亚洲| 一本一本综合久久| 亚洲欧美一区二区三区黑人| 亚洲熟妇中文字幕五十中出| 久久亚洲精品不卡| 欧美又色又爽又黄视频| 午夜福利在线观看免费完整高清在 | av在线天堂中文字幕| 十八禁网站免费在线| 久久久成人免费电影| 久久人人精品亚洲av| 久久精品人妻少妇| 日韩免费av在线播放| 夜夜看夜夜爽夜夜摸| 亚洲色图av天堂| 好看av亚洲va欧美ⅴa在| 国产欧美日韩精品一区二区| 国产精品电影一区二区三区| xxx96com| 国产激情久久老熟女| 99久久综合精品五月天人人| 操出白浆在线播放| 亚洲人成电影免费在线| 禁无遮挡网站| 99国产精品一区二区蜜桃av| 亚洲精品国产精品久久久不卡| 久久精品夜夜夜夜夜久久蜜豆| 2021天堂中文幕一二区在线观| 黑人巨大精品欧美一区二区mp4| 好看av亚洲va欧美ⅴa在| 成人精品一区二区免费| 两个人看的免费小视频| 日本在线视频免费播放| 久久午夜综合久久蜜桃| 99在线视频只有这里精品首页| 午夜福利在线观看吧| 国产精品 国内视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美人成| 狠狠狠狠99中文字幕| 亚洲五月天丁香| 国模一区二区三区四区视频 | 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美国产在线观看| 特大巨黑吊av在线直播| 免费看日本二区| 狂野欧美白嫩少妇大欣赏| 美女高潮的动态| 亚洲五月天丁香| 岛国在线免费视频观看| 夜夜爽天天搞| 最近在线观看免费完整版| 国产69精品久久久久777片 | 亚洲电影在线观看av| 国产精品久久久久久亚洲av鲁大| 91字幕亚洲| 国产三级中文精品| 九九久久精品国产亚洲av麻豆 | 亚洲精品中文字幕一二三四区| 免费大片18禁| 成在线人永久免费视频| 亚洲国产欧洲综合997久久,| 人人妻,人人澡人人爽秒播| 老汉色∧v一级毛片| 精品福利观看| 久久久久久久久中文| 怎么达到女性高潮| 亚洲第一电影网av| x7x7x7水蜜桃| tocl精华| 高清毛片免费观看视频网站| 一夜夜www| 综合色av麻豆| 免费看美女性在线毛片视频| 中文字幕熟女人妻在线| 国产伦精品一区二区三区视频9 | 亚洲欧美精品综合久久99| 久久久国产成人免费| 又大又爽又粗| av在线天堂中文字幕| 91久久精品国产一区二区成人 | 波多野结衣高清无吗| 国产精品影院久久| 精品人妻1区二区| 女人高潮潮喷娇喘18禁视频| 久久久国产欧美日韩av| 欧美在线黄色| 午夜福利在线在线| 嫩草影视91久久| 村上凉子中文字幕在线| 亚洲国产精品999在线| 国产精品av视频在线免费观看| 天堂√8在线中文| 欧美在线一区亚洲| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 看免费av毛片| 精品国内亚洲2022精品成人| 99国产精品99久久久久| 黑人操中国人逼视频| 精品电影一区二区在线| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清专用| 久久国产精品人妻蜜桃| 成人高潮视频无遮挡免费网站| 亚洲专区国产一区二区| 亚洲国产高清在线一区二区三| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 国产成人av教育| 欧美乱码精品一区二区三区| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 午夜福利在线观看吧| 母亲3免费完整高清在线观看| 国内精品久久久久久久电影| 色av中文字幕| 亚洲国产欧美网| 一个人看视频在线观看www免费 | 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产在线观看| 啦啦啦观看免费观看视频高清| 免费一级毛片在线播放高清视频| www日本在线高清视频| 白带黄色成豆腐渣| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品色激情综合| 禁无遮挡网站| 国内精品久久久久精免费| 不卡一级毛片| 99re在线观看精品视频| 欧美日韩乱码在线| 一本一本综合久久| 国产精品 欧美亚洲| 成人高潮视频无遮挡免费网站| 亚洲美女黄片视频| 天天躁日日操中文字幕| 欧美成人免费av一区二区三区| 老熟妇乱子伦视频在线观看| 一a级毛片在线观看| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 成人三级黄色视频| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 性欧美人与动物交配| 成人永久免费在线观看视频| 国产一级毛片七仙女欲春2| 热99在线观看视频| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 亚洲熟妇熟女久久| 男插女下体视频免费在线播放| 99热这里只有是精品50| 黄色 视频免费看| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| avwww免费| 女警被强在线播放| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 成在线人永久免费视频| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 宅男免费午夜| 校园春色视频在线观看| 日本与韩国留学比较| 青草久久国产| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 日本一本二区三区精品| 久久久成人免费电影| 国产视频内射| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 欧美激情久久久久久爽电影| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 色吧在线观看| 成人三级做爰电影| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 色尼玛亚洲综合影院| 最好的美女福利视频网| 国产真实乱freesex| 国产精品1区2区在线观看.| 露出奶头的视频| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 欧美黄色淫秽网站| 国产精品久久久久久亚洲av鲁大| tocl精华| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 精品国产乱子伦一区二区三区| 999久久久国产精品视频| 99在线人妻在线中文字幕| 在线观看免费午夜福利视频| 看免费av毛片| 成人国产一区最新在线观看| 黄片大片在线免费观看| 婷婷精品国产亚洲av| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 五月玫瑰六月丁香| 伦理电影免费视频| 精品国产三级普通话版| 色av中文字幕| 日韩成人在线观看一区二区三区| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看| 视频区欧美日本亚洲| 日本一本二区三区精品| 久久精品国产清高在天天线| 久久草成人影院| 精品电影一区二区在线| 久久九九热精品免费| 国产黄片美女视频| 一夜夜www| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 成人亚洲精品av一区二区| 国产男靠女视频免费网站| 男人和女人高潮做爰伦理| av天堂中文字幕网| 搡老妇女老女人老熟妇| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 91老司机精品| 欧美黑人欧美精品刺激| 欧美大码av| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| 1000部很黄的大片| 1024手机看黄色片| 不卡一级毛片| 一本一本综合久久| 久久精品91蜜桃| 国产精品 国内视频| 免费看光身美女| 成在线人永久免费视频| 91在线观看av| 极品教师在线免费播放| 搡老熟女国产l中国老女人| 国产精品九九99| 天堂网av新在线| 久久天堂一区二区三区四区| 校园春色视频在线观看| 少妇丰满av| 又爽又黄无遮挡网站| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 国产爱豆传媒在线观看| 国产美女午夜福利| www.自偷自拍.com| 三级毛片av免费| 午夜视频精品福利| 日韩有码中文字幕| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 久久久久久人人人人人| 亚洲成人久久爱视频| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 国模一区二区三区四区视频 | 国产亚洲精品久久久com| av福利片在线观看| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 一个人观看的视频www高清免费观看 | 18禁黄网站禁片免费观看直播| e午夜精品久久久久久久| 97碰自拍视频| 亚洲欧美激情综合另类| 午夜影院日韩av| 国产视频内射| 亚洲国产精品sss在线观看| 国产精品亚洲av一区麻豆| 日本五十路高清| 久久这里只有精品19| 97碰自拍视频| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 精品日产1卡2卡| av国产免费在线观看| 少妇的丰满在线观看| 亚洲乱码一区二区免费版| 久久久久性生活片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| 久久国产乱子伦精品免费另类| 色视频www国产| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| 国产一区二区在线观看日韩 | 国产在线精品亚洲第一网站| 老汉色av国产亚洲站长工具| 精品久久久久久久人妻蜜臀av| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| 久久久精品欧美日韩精品| netflix在线观看网站| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 欧美日韩精品网址| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 日本 欧美在线| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 小说图片视频综合网站| 午夜精品在线福利| 大型黄色视频在线免费观看| xxxwww97欧美| 97人妻精品一区二区三区麻豆| 婷婷丁香在线五月| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 国产成人av激情在线播放| 亚洲18禁久久av| 亚洲 欧美一区二区三区| 国产精品九九99| 久久久久久久久中文| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 精品国产乱码久久久久久男人| 久久精品亚洲精品国产色婷小说| cao死你这个sao货| 在线a可以看的网站| 男人的好看免费观看在线视频| 亚洲中文字幕日韩| av女优亚洲男人天堂 | 欧美日韩亚洲国产一区二区在线观看| 99久久精品热视频| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 国产激情偷乱视频一区二区| 99国产综合亚洲精品| 99国产精品一区二区三区| 亚洲av熟女| 老司机在亚洲福利影院| 国产亚洲av嫩草精品影院| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| 国产男靠女视频免费网站| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 99精品久久久久人妻精品| 99视频精品全部免费 在线 | 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9 | 可以在线观看的亚洲视频| av在线蜜桃| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 国产综合懂色| 男女做爰动态图高潮gif福利片| 老司机福利观看| 好男人电影高清在线观看| 青草久久国产| 免费无遮挡裸体视频| 舔av片在线| 天堂网av新在线| 国产精品久久久人人做人人爽| aaaaa片日本免费| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 19禁男女啪啪无遮挡网站| 真实男女啪啪啪动态图| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 丝袜人妻中文字幕| 国内精品一区二区在线观看| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 精品久久久久久成人av| 国产野战对白在线观看| 99久久99久久久精品蜜桃| 欧美国产日韩亚洲一区| 国产三级在线视频| 亚洲人与动物交配视频| 亚洲 欧美 日韩 在线 免费| 两个人视频免费观看高清| 国产高清videossex| 久久久久久人人人人人| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 19禁男女啪啪无遮挡网站| www.精华液| 日韩欧美精品v在线| 国产成人av教育| 亚洲精品在线美女| 最近最新中文字幕大全免费视频| 亚洲成av人片在线播放无| 女生性感内裤真人,穿戴方法视频| 99久国产av精品| 欧美日本亚洲视频在线播放| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 欧美一级a爱片免费观看看| 1024香蕉在线观看| 欧美成人免费av一区二区三区| 久久天堂一区二区三区四区| 少妇的逼水好多| а√天堂www在线а√下载| 亚洲熟女毛片儿| 国产成人av教育| 国产又色又爽无遮挡免费看| 亚洲欧美日韩高清在线视频| 免费观看人在逋| 小说图片视频综合网站| 午夜激情福利司机影院| 久久这里只有精品中国| 国产精品野战在线观看| 岛国在线免费视频观看| 麻豆久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| 中文字幕久久专区| 一夜夜www| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 他把我摸到了高潮在线观看| 色综合婷婷激情| 色播亚洲综合网| 日韩欧美 国产精品| 中出人妻视频一区二区| 国产精品一区二区三区四区久久| 好看av亚洲va欧美ⅴa在| 又大又爽又粗| 午夜福利在线在线| 黄色丝袜av网址大全| 国产亚洲欧美在线一区二区| 欧美日韩精品网址| bbb黄色大片| 亚洲片人在线观看| 成人一区二区视频在线观看| 国产成人精品久久二区二区91| 日本黄大片高清| 亚洲精品456在线播放app | 色尼玛亚洲综合影院| 久久久久久国产a免费观看| 国产毛片a区久久久久| 一本一本综合久久| 美女免费视频网站| 欧美一级a爱片免费观看看| 日本免费a在线| 亚洲精品在线美女| 免费看日本二区| 中文字幕人妻丝袜一区二区| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品在线福利| 巨乳人妻的诱惑在线观看| 亚洲在线观看片| 一个人免费在线观看电影 | 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 不卡av一区二区三区| 精品欧美国产一区二区三| 搡老岳熟女国产| 一级毛片女人18水好多| 久久久久久久精品吃奶| 日韩人妻高清精品专区| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| av天堂中文字幕网| xxxwww97欧美| 欧美黑人欧美精品刺激| 欧美日韩瑟瑟在线播放| 国产精品美女特级片免费视频播放器 | 一级作爱视频免费观看| 一a级毛片在线观看| 天堂av国产一区二区熟女人妻| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| 日韩有码中文字幕| 黄色女人牲交| 久久精品国产综合久久久| 午夜免费激情av| 日本与韩国留学比较| 亚洲av成人精品一区久久| 亚洲精品中文字幕一二三四区| 12—13女人毛片做爰片一| 国产精品久久电影中文字幕| 成人特级av手机在线观看| av天堂中文字幕网| 夜夜夜夜夜久久久久| 岛国视频午夜一区免费看| 少妇熟女aⅴ在线视频| 日韩有码中文字幕| 免费av毛片视频| 成人永久免费在线观看视频| 1024手机看黄色片| 国产高清激情床上av| 波多野结衣巨乳人妻| 国产成人影院久久av| 美女大奶头视频| 国产精品野战在线观看| 成人无遮挡网站| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 亚洲精华国产精华精| 亚洲美女黄片视频| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 久久人人精品亚洲av| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕| 亚洲成人精品中文字幕电影| 成人一区二区视频在线观看| 久久精品91无色码中文字幕| 无遮挡黄片免费观看| 淫妇啪啪啪对白视频| 成人午夜高清在线视频| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全电影3| 男女之事视频高清在线观看| 日韩人妻高清精品专区| 观看免费一级毛片| 欧美zozozo另类| 亚洲精品在线观看二区| 99热这里只有是精品50| 99久久无色码亚洲精品果冻| 人人妻人人澡欧美一区二区| 国产成人av激情在线播放| 99久久无色码亚洲精品果冻| 欧美日本亚洲视频在线播放| 成人一区二区视频在线观看| 这个男人来自地球电影免费观看| 午夜福利18| 窝窝影院91人妻| 久久久久九九精品影院| 色噜噜av男人的天堂激情|