• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NiMoO4納米線@ZnCo MOF(350)核殼結(jié)構(gòu)復(fù)合材料的制備及其析氧電催化性能

    2022-12-06 06:29:38魏學(xué)東喬雙燕
    關(guān)鍵詞:核殼材料科學(xué)電催化

    魏學(xué)東 劉 楠 喬雙燕

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,太原 030031)

    0 Introduction

    As resource and environmental issues become more and more prominent,sustainable clean energy has gradually become an alternative solution,among which hydrogen energy has attracted more and more attention due to its high efficiency,cleanliness,and recyclability[1-3].And water electrolysis is considered to be one of the most promising ways to produce hydrogen energy.However,due to the sluggish kinetics of the oxygen evolution reaction(OER),the reaction rate of water electrolysis is limited[4],therefore,it is necessary to design effective electrocatalysts to reduce the OER overpotential.So far,the most efficient electrocatalysts for OER are still noble metal catalysts such as RuO2and IrO2,but their high price and extremely scarce resources hinder their wide commercial application[5-6].Therefore,there is an urgent need to develop inexpensive and abundant non-noble metal OER electrocatalysts.MOFs have attracted extensive attention due to their rich structural diversity and large specific surface area[7-8].MOFs are gradually emerging as reliable templates or precursors for the preparation of metal-active nanomaterials and porous carbons and their composites[9].Researchers have done a lot of work on OER electrocatalysts using MOFs as direct templates or precursors to composite low-dimensional inorganic nanomaterials[10-13].For example,Mu and colleagues[14]reported a Mo-N/C@MoS2multifunctional electrocatalyst synthesized by vertically growing MoS2nanosheets encapsulated in a ZIF structure and then carbonized at high temperature.The hybrid structure exhibited excellent electrocatalytic activity and stability for hydrogen evolution reaction(HER),OER and oxygen reduction reaction(ORR).By direct annealing of reduced graphene oxide(rGO)-coated core-shell bimetallic zeolite imidazole framework,Chen et al.[15]developed a new material (Co@N-CNTs@rGO) with ultrafine Co nanoparticles coated on nitrogen-doped carbon nanotubes(N-CNTs).As-prepared Co@N-CNTs@rGO composite exhibited good HER electrocatalytic activity due to the uniform distribution of Co nanoparticles as well as the large specific surface area and abundant porosity.In electrolytes of 1 mol·L-1KOH and 0.5 mol·L-1H2SO4,the composite exhibited the overpotentials of only 108 and 87 mV at a current density of 10 mA·cm-2,respectively,outperforming most other reported Co-based electrocatalysts.Wang et al.[16]reported a novel N-doped carbon CoP particle/carbon nanotube composite(CNT-NC-CoP),which was developed by in situ nucleation and growth of ZIF67 nanoparticles on carbon nanotubes,which are then carbonized and phosphatized.The unique hierarchical structure endows the CNT-NC-CoP composite with a high specific surface area and abundant active sites.The ultra-low overpotential of 251 mV can be achieved at a current density of 10 mA·cm-2.Wan et al.[17]reported one-dimensional and two-dimensional porous Mo2C nanostructured electrocatalysts.Synthesized by coating one-dimensional MoO3nanowires and two-dimensional MoO3nanosheets with ZIF67 followed by high-temperature carbonization,the obtained Mo2C nanostructures exhibited low onset overpotentials of 25 and 36 mV in 0.1 mol·L-1HClO4and 0.1 mol·L-1KOH solutions,respectively,and small Tafel slopes of 40 and 47 mV·dec-1,respectively.The catalysts also showed excellent stability.

    Based on the above reports,we first synthesized NiMoO4nanowires(NWs)by a hydrothermal method,and then in situ grew a layer of ZnCo MOF nanocrystals on the NiMoO4NWs by room temperature liquid phase synthesis to form a coaxial core-shell structure.Then after a low-temperature heat treatment at 350℃(the sample was named NiMoO4NWs@ZnCo MOF(350)),it was found that except for a very small amount of Co3O4quantum dots new phase was inside the ZnCo MOF,the structure and morphology of the composite did not change significantly.The pyrolysis at lower temperatures promotes the generation of new phases,but also basically preserves the original framework structure of MOF,forming a new MOF core-shell structure with more abundant interfaces.The composite electrocatalyst was tested on an inert glassy carbon electrode in 1 mol·L-1KOH,and NiMoO4NWs@ZnCo MOF(350)had an overpotential of only 360 mV at a current density of 10 mA·cm-2and maintained good stability for 30 000 s.

    1 Experimental

    1.1 Material synthesis

    1.1.1 Preparation of NiMoO4NWs

    The preparation method of NiMoO4NWs was mainly referred to in the literature[18].1 mmol Ni(NO3)2·6H2O and 1 mmol sodium molybdate were dissolved in 25 mL of deionized water,and after it was completely dissolved,the solution was transferred to a 50 mL reactor,kept at 150℃for 6 h,and the product was collected by centrifugation,washed three times with C2H5OH and dried the precipitate in vacuum at 40℃.

    1.1.2 Preparation of NiMoO4NWs@ZnCo MOF composites

    10 mg NiMoO4NWs was dissolved in 20 mL methanol,sonicated at 100 kHz for 30 min,and then 38 mg Zn(NO3)2·6H2O and 112 mg Co(NO3)2·6H2O were dissolved in the above solution to form solution A,followed by 40 mg polyvinylpyrrolidone(PVP)and 300 mg of dimethylimidazole were dissolved in 10 mL of methanol to form solution B.Solution B was poured into the solution A,left standing at room temperature for 2 h,the product was collected by centrifugation and washed three times with methanol to precipitate.NiMoO4NWs@ZnCo MOF composites were obtained.

    1.1.3 Preparation of NiMoO4NWs@ZnCo MOF(350)

    NiMoO4NWs@ZnCo MOF was placed in a porcelain boat,and high-purity argon gas was first passed through the quartz tube for 1 h at room temperature to remove the residual air in the quartz tube,and then kept at 350℃for 3 h.NiMoO4NWs@ZnCo MOF(350)was prepared well.

    1.2 Structural characterization

    Structural characterizations were carried out on various large-scale analytical instruments.Among them,X-ray diffraction analysis(XRD)was performed on a Philips 1830 diffractometer equipped with a Cu Kα radiation source,a 2θ range of 5°-90°,a working voltage of 40 kV,a working current of 40 mA,and a speed of 20(°)·min-1.Using field emission scanning electron microscopy(FE-SEM,SU-8010)to analyze the surface topography of the samples at the operating voltage of 5.0 kV.Nanoscale microscopic topography could be analyzed on transmission electron microscopy(TEM,JEM-2100F)and high-resolution transmission electron microscopy(HRTEM)at an accelerating voltage of 200 kV.X-ray photoelectron spectroscopy (XPS)was obtained using a K-Alpha spectrometer equipped with an Al Kα X-ray source to analyze the surface chemical states and electronic states of various elements.

    1.3 Electrochemical performance test

    All electrochemical performance tests of the material samples were carried out with a three-electrode system(the material electrode was the working electrode,the platinum foil was the counter electrode,and the Ag/AgCl was the reference electrode).The test instrument used Shanghai Chenhua Electrochemical Workstation CHI660E.It mainly includes linear sweep voltammetry(LSV),Tafel slope,cyclic voltammetry,electric double layer capacitance(Cdl),chronoamperometry,etc.Among them,the scanning speed of OER catalytic performance tested by LSV was 10 mV·s-1,and the voltage range was 1-2 V(vs RHE);The current density of 10 mA·cm-2was used for stability test by chronopotentiometry,and the time was set to 12 h.

    2 Results and discussion

    2.1 Structure and morphology characterization

    Fig.1 is a schematic diagram of the synthesis process for NiMoO4NWs@ZnCo MOF(350)electrocatalyst.First,NiMoO4NWs were synthesized under hydrothermal conditions,and then 10 mg of the synthesized NiMoO4NWs were dissolved in a methanol solution of cobalt nitrate and zinc nitrate,and methanol solution dissolved with PVP and dimethylimidazole was added to it.The mixed solution was left at room temperature for 2 h,and the NiMoO4NWs@ZnCo MOF material was obtained by centrifugal washing,and the material was calcined at 350℃for 3 h in a high-purity argon flow to obtain the final NiMoO4NWs@ZnCo MOF(350)electrocatalyst.

    Fig.1 Schematic diagram of the preparation process of NiMoO4NWs@ZnCo MOF(350)

    As shown in Fig.2a,as-synthesized NiMoO4NWs@ZnCo MOF was tested on an electrochemical workstation and found that the overpotentials were 420 and 540 mV at current densities of 10 and 50 mA·cm-2,respectively.Which is superior to the electrocatalytic performance of NiMoO4NWs and ZnCo MOF monomer samples.Therefore,it is judged that the twophase interface enhances the electrocatalytic activity,and although the electrocatalytic activity of NiMoO4NWs@ZnCo MOF is not high,it is still a potential MOF composite.To further improve its electrical conductivity and electrochemical performance,NiMoO4NWs@ZnCo MOF was subjected to pyrolysis experiments at 350,450,550,and 650℃,respectively.And it was found that the samples had the smallest overpotential at 350℃ (349 mV at 10 mA·cm-2,470 mV at 50 mA·cm-2)in Fig.2b.So NiMoO4NWs@ZnCo MOF(350)was selected as the research object to systematically study the structure and electrochemical performance.

    Fig.2 (a)LSV plots of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)LSV plots of the pyrolyzed NiMoO4NWs@ZnCo MOF at different temperatures

    Fig.3a shows the XRD patterns of as-synthesized NiMoO4,which is basically consistent with the NiMoO4·xH2O standard diffraction card(PDF No.13-0128).The XRD pattern showed that an inconsistent small peak at 13.56°existed in real synthetic samples[18-19].So it demonstrated the successful synthesis of NiMoO4NWs.It can be seen from Fig.3a that for the pure ZnCo MOF,the diffraction peaks are consistent with the diffraction peak positions and intensities of the ZnCo MOF crystals reported in the literature[20-21],and no impurity peaks were observed,indicating that the synthesized ZnCo MOF sample has higher crystallinity.For NiMoO4NWs@ZnCo MOF,except for the most diffraction peaks of ZnCo MOF,only a weaker peak of NiMoO4NWs appeared in the composite.The NiMoO4NWs monomer itself has strong crystallinity,which indicates the experimental fact that NiMoO4NWs were tightly coated by ZnCo MOF to form a coreshell structure.All the above results indicate the successful synthesis of the NiMoO4NWs@ZnCo MOF precursor.As shown in Fig.3b,NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF were pyrolyzed at 350℃,and it was found that compared with the precursor,the characteristic peaks of the monomers like NiMoO4NWs(350)and ZnCo MOF(350)can be well maintained,indicating that the thermal stability of the monomer sample is good,especially for the ZnCo MOF(350)which does not show a lot of coordination bond breakage and framework collapse.The intensity of its diffraction peaks decreased significantly compared with that before calcination.At 350℃,NiMoO4NWs@ZnCo MOF(350)obviously underwent a little pyrolysis,a small amount of new Co3O4phase(PDF No.43-1003)appeared in the composite,and the peaks of the NiMoO4NWs phase appeared at several positions and the intensity increased,indicating that a little pyrolysis caused the ZnCo MOF shell to become loose and porous,and the diffraction peaks of the NiMoO4NWs core appeared stronger.However,the composite sample still kept the framework structure of MOF unchanged,although the intensity of its diffraction peaks was greatly reduced.However,when the pyrolysis temperature was increased to 450℃according to XRD patterns in Fig.S1(Supporting information),the composite structure was basically destroyed,and it mainly evolved into another composite structure of a new NiMoO4(PDF No.45-0142)and CoO(PDF No.43-1004).In addition,the structure of pyrolyzed samples at 450,550,and 650℃was consistent and different from the pyrolyzed sample at 350℃,so the special structure of NiMoO4NWs@ZnCo MOF(350)determined its excellent catalytic activity.

    Fig.3 (a)XRD patterns of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)XRD patterns of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The microscopic morphology is shown in Fig.4.It can be observed from Fig.4a that the morphology of NiMoO4NWs was uniform one-dimensional NWs,and the diameter of the NWs was about 50 nm.Then,after adding the methanol solution of 2-methylimidazole and PVP to the methanol suspension of NiMoO4NWs,Zn(NO3)2·6H2O and Co(NO3)2·6H2O,ZnCo MOF nanocrystals were found to grow rapidly and attach to NiMoO4NWs.On the surface of NiMoO4NWs,a composite electrocatalyst with ZnCo MOF wrapped around NiMoO4NWs was obtained.

    The SEM image of the composite electrocatalyst is shown in Fig.4c.It can be clearly observed that for the NiMoO4NWs@ZnCo MOF composite electrocatalyst,the growth of ZnCo MOF was strictly restricted to the surface of NiMoO4NWs,and a coating layer with relatively uniform thickness was formed.The SEM image in Fig.4b is the ZnCo MOF nanocrystals synthesized separately.ZnCo MOF exhibited a good dodecahedral crystal form,with uniform morphology,sharp edges and corners,and a smooth surface,and the particle size was about 400 nm.From the SEM image of NiMoO4NWs@ZnCo MOF(350)in Fig.4d,the morphology of the pristine ZnCo MOF was largely preserved,indicating that the MOF framework is not completely collapsed.The morphology change of the pyrolytic sample at 650℃was also studied in Fig.S2,and it was found that the structure collapse was aggravated,and the pyrolysis products of some ZnCo MOF precursors were aggregated.

    Fig.4 SEM images of(a)NiMoO4NWs,(b)ZnCo MOF,(c)NiMoO4NWs@ZnCo MOF,and(d)NiMoO4NWs@ZnCo MOF(350)

    To deeply explore the size,structure,and morphology of the synthesized electrocatalysts,TEM and HRTEM tests were carried out(Fig.5).Fig.5c is the TEM image of NiMoO4NWs@ZnCo MOF(350).Compared with NiMoO4NWs@ZnCo MOF in Fig.5a,the composite sample after pyrolysis well-maintained precursor morphologies of one-dimensional NWs before calcination.And the ZnCo MOF crystal shell appeared as uniformly dispersed nanoparticles without obvious agglomeration,which is because a little pyrolysis occurs during the calcination at 350℃,and the pore structure of MOF as a template and the gas generated after thermal decomposition also play a good role in inhibiting the crystal polymerization.Fig.5b is the HRTEM image of NiMoO4NWs@ZnCo MOF.It can be seen that the lattice fringes of NiMoO4NWs were clear,marked as the NiMoO4·xH2O phase with a lattice spacing of 0.299 nm,which is closely related to the ZnCo MOF phase.The interface was almost seamless.The high-resolution image of NiMoO4NWs@ZnCo MOF(350)in Fig.5d after pyrolysis showed a similar structure,but a small amount of Co3O4marked with a lattice spacing of 0.244 nm appeared at the local position of the ZnCo MOF pyrolysis phase,apparently,the structure is consistent with the XRD analysis results in Fig.3.The two-phase interface continues to behave as a tight connection,and there should be chemical bonds other than intermolecular forces.Further elemental mapping of NiMoO4NWs@ZnCo MOF(350)in Fig.5e-5l showed that C,N,O,Co,Zn,Ni,and Mo elements co-existed in the sample and exhibited an obvious coreshell structure.And the Zn and Co elements of ZnCo MOF were densely distributed on the longitudinal axis of the NWs and distributed on the shell of the coreshell structure,and the Ni and Mo elements of NiMoO4NWs were obviously distributed on the core of the coreshell structure.

    Fig.5 (a)TEM image and(b)HETEM image of NiMoO4NWs@ZnCo MOF;(c)TEM image,(d)HETEM image,(e)STEM image,and(f-l)elemental mappings of NiMoO4NWs@ZnCo MOF(350)

    In order to further characterize the valence states of elements in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350)composites,the XPS spectra were detected and the peaks were fitted.As shown in Fig.6a,the characteristic peaks of Ni2p3/2and Ni2p1/2for NiMoO4NWs@ZnCo MOF were 855.5 and 873.1 eV,respectively,which can be assigned to Ni2+.For NiMoO4NWs@ZnCoMOF(350),the characteristic peak of Ni2+remained unchanged but shifted by 0.5 eV[22].As shown in Fig.6b,for NiMoO4NWs@ZnCo MOF,the Mo3d5/2peak and the Mo3d3/2characteristic peak of the Mo3d XPS spectrum were located at 232.2 and 235.3 eV,respectively,indicating the existence of Mo6+[23].For the pyrolyzed NiMoO4NWs@ZnCo MOF(350),the valence state of Mo6+was unchanged and shifted by 0.5 eV.In the XPS spectrum of Zn2p,the peaks at 1 021.2 and 1 044.3 eV were characteristic peaks of Zn2p3/2and Zn2p1/2,respectively(Fig.6c)[24],corresponding to the Zn2+in NiMoO4NWs@ZnCo MOF.While for NiMoO4NWs@ZnCo MOF(350),the characteristic peak of Zn2+was unchanged but shifted negatively by 0.5 eV.The positive or negative shifts of the characteristic peaks of the above metal ions indicate that the two-phase interface of NiMoO4NWs and ZnCo MOF has stronger electronic interactions after pyrolysis[25-26].

    In the Co2p spectrum of NiMoO4NWs@ZnCo MOF,the binding energies at 780.9 and 796.3 eV belong to Co2p2/3and Co2p1/2,respectively,indicating that the cobalt element exists in the form of Co2+[27](Fig.6d).For NiMoO4NWs@ZnCo MOF(350)after pyrolysis,the main valence peak remained Co2+,but shifted negatively by 0.7 eV compared with that before pyrolysis,indicating that the electronic interaction at the interface is more intense for the phase after pyrolysis.Co2p3/2and Co2p1/2corresponded to the characteristic peaks of Co3+at 780.2 and 795.4 eV,respectively,indicating that Co2+and Co3+coexist in NiMoO4NWs@ZnCo MOF(350).It marks the appearance of a new phase of Co3O4[28],which is consistent with the analysis results in Fig.3b and 5d.The results show that various metal ions coexist in the composite,and their presence accelerates the electron transport speed and enhances its catalytic activity.

    The binding energy peaks of C1s in NiMoO4NWs@ZnCo MOF are shown in Fig.6e.With the appearance of the high-temperature pyrolysis Co3O4phase,four binding energy peaks appeared at 284.5,285.1,286.2 and 288.5 eV,which can correspond to C—C(sp2),C—N,C—O—Mo,andC=O bonds,respectively[29-31].It shows that a small amount of C=O bonds were produced by pyrolysis.In addition,as shown in Fig.6f,530.3,531.2,531.8,and 532.7 eV appeared in O1s of NiMoO4NWs@ZnCo MOF,corresponding to Mo—O bond(or Ni—O bond),oxygen vacancies(oxygen defects),C—O—Mo bond,and hydroxide(or adsorbed oxygen or moisture)[32-33].For NiMoO4NWs@ZnCo MOF(350),the peaks of O1s can be separated into five peaks at 529.4,530.3,531.2,531.8,and 532.7 eV.Except for the four peaks,before pyrolysis was retained,the binding energy peak at 529.4 eV corresponds to the spinel-type cobalt oxide(i.e.,the Co3O4phase).Through the above analysis of the XPS spectra,for NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350),chemical bonds C—O—Mo and a large number of oxygen vacancies were generated at the monomer phase heterointerface,which can become the source of active sites and increase the electrocatalytic activity of the composites,especially NiMoO4NWs@ZnCo MOF(350),in addition to retaining the interfacial chemical bonds and oxygen vacancies before pyrolysis,partial pyrolysis also leads to the formation of Co3O4phase,which also leads to the formation of a new phase interface and further increases the active sites of the heterointerface.

    Fig.6 XPS spectra of(a)Ni2p,(b)Mo2d,(c)Zn2p,(d)Co2p,(e)C1s,and(f)O1s in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF NWs(350)

    2.2 Electrochemical performance

    The OER performance was performed in 1 mol·L-1KOH solution using a conventional three-electrode system.The LSV curves are shown in Fig.7a,when the current density reached 10 mA·cm-2,the overpotential of NiMoO4NWs@ZnCo MOF(350)was only 360 mV,which was lower than 700 mV of the single-component NiMoO4NWs(350)and 430 mV of ZnCo MOF(350).Tafel slope is an essential parameter for describing the kinetic reaction mechanism of catalysts,which is calculated according to the Tafel equation:η=blg j+a(η is the overpotential,j represents the current density and b belongs to the Tafel slope).To further investigate the OER kinetic properties of the samples,Fig.7b shows the Tafel slopes of the three samples.The Tafel slope of NiMoO4NWs@ZnCo MOF(350)was 62 mV·dec-1,which was much smaller than 294 mV·dec-1of NiMoO4NWs(350)and 98 mV·dec-1of ZnCo MOF(350).It reveals that NiMoO4NWs@ZnCo MOF(350)has a faster electrocatalytic reaction rate of oxygen evolution.Fig.7c is the stability curves of NiMoO4NWs@ZnCo MOF(350)and the single components.It can be observed that the current density of the composite sample NiMoO4NWs@ZnCo MOF(350)was the highest close to 10 mA·cm-2under the same overpotential,and can be maintained for 30 000 s with basically no decay.The stability curve for a longer time was further studied,and it was found that after 50 000 s,the initial current density of the composite sample was attenuated,but still retained at 67%,as shown in Fig.S3.Then,the electrochemical impedance spectroscopy(EIS)of the electrocatalyst was tested.The smaller semicircular arc diameter represents a smaller charge transfer resistance(Rct)and therefore a faster OER.NiMoO4NWs@ZnCo MOF(350)in Fig.7d had a smaller impedance radius and a charge transfer resistance of about 73.4 Ω,which was lower than that of NiMoO4NWs(350)(239.4 Ω)and ZnCo MOF(350)(86.37 Ω).

    Fig.7 (a)LSV plots,(b)Tafel slope plots,(c)stability plots,and(d)impedance plots of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The Cdlof the electrocatalyst which can be used to compare the size of the electrochemical specific surface area was calculated by CV test.The electrochemical-specific surface area is proportional to the Cdl.The larger the electrochemical specific surface area of the catalyst,the larger the Cdl,which means the more catalytic active sites and the better catalytic performance of the catalyst.As shown in Fig.8a-8c,NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)were tested at different scanning speeds of 10-100 mV·s-1.The obtained CV curves were then linearly fitted to obtain the Cdl.As shown in Fig.8d,the Cdlof NiMoO4NWs@ZnCo MOF(350),NiMoO4NWs(350),and ZnCo MOF(350)were 9.535,0.162,and 4.195 mF·cm-2,respectively.The results once again proved that NiMoO4NWs@ZnCo MOF(350)had a higher specific surface area for electrochemical activity.

    Fig.8 CV curves of(a)NiMoO4NWs(350),(b)ZnCo MOF(350),and(c)NiMoO4NWs@ZnCo MOF(350)in a non-Faradaic range;(d)Plots of the current density difference(Δj,Δj=ja-jc,where jaand jcrepresent the positive and negative current densities,respectively)against scan rate(the slope is twice that of Cdlin the Fig.8d)

    At present,the accepted OER mechanism[34]for alkaline conditions can be expressed as:

    In the above reaction formula,*represents the active site of the catalyst,and O*,HO*,and HOO*represent three different oxygen-containing intermediates.According to the reaction mechanism,and all the above structural and electrochemical analysis results,several active sites or site sources such as C—O—Mo bond,oxygen vacancies,new Co3O4phase,all of the heterophase interfaces,and new increase specific surface of NiMoO4NWs@ZnCo MOF(350)are more likely to adsorb more hydroxyl oxygen atoms and achieve faster conversion of oxygen molecules.

    To further study the changes in the morphology and electrocatalytic performance of the sample after the stability test,Fig.9a shows the SEM image of NiMoO4NWs@ZnCo MOF(350)after the stability test.Compared with Fig.4d,the morphology of the composite sample before and after the stability test did not change significantly,showing good physical stability characteristics.In Fig.9b,the changes of the LSV curves before and after the stability test were observed,and it was found that the overpotential at 10 mA·cm-2hardly increased,while the overpotential at 50 mA·cm-2increased by less than 20 mV,indicating that the stability test did not significantly alter the electrocatalytic activity of NiMoO4NWs@ZnCo MOF(350).

    Fig.9 (a)SEM image after stability test and(b)LSV curves before and after stability test for NiMoO4NWs@ZnCo MOF(350)

    3 Conclusions

    In this experiment,a new type of ZnCo MOF nanoparticles was successfully synthesized by in situ growth synthesis on NiMoO4NWs and then carbonized.The pyrolysis temperature of 350℃maintained the morphology of the precursor well,and a small amount of the Co3O4phase appeared.The appearance of the Co3O4phase made the surface of the material more rough,loose,and porous,which is beneficial to increase the effective contact area between the catalyst and the electrolyte.Moreover,the unique core-shell structure endows the material with a high specific surface area,abundant exposed active sites,fast ion diffusion paths,and good electrical conductivity.Therefore,the electrocatalyst exhibited a low overpotential of 360 mV at a current density of 10 mA·cm-2and maintained longterm durability of 30 000 s.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgment:This study was supported by the General Project of Basic Research Program of Shanxi Province(Grant No.20210302123332),the National Natural Science Foundation of China(Grant No.22178204),and the 1331 Engineering of Shanxi Province.

    猜你喜歡
    核殼材料科學(xué)電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    26uuu在线亚洲综合色| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 男女高潮啪啪啪动态图| 国产精品熟女久久久久浪| 91精品三级在线观看| 天天操日日干夜夜撸| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 日韩av不卡免费在线播放| 久久久久网色| 免费女性裸体啪啪无遮挡网站| 一区二区三区四区激情视频| 91成人精品电影| 视频区图区小说| 国产乱来视频区| 亚洲精品aⅴ在线观看| 我要看黄色一级片免费的| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 国产成人一区二区在线| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 国产不卡av网站在线观看| 免费看不卡的av| 激情五月婷婷亚洲| 国产精品久久久av美女十八| 最近最新中文字幕免费大全7| 国产一级毛片在线| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 只有这里有精品99| 少妇熟女欧美另类| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 久久人人爽人人片av| 国产极品天堂在线| 日韩中文字幕欧美一区二区 | 母亲3免费完整高清在线观看 | 亚洲欧美日韩另类电影网站| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| 亚洲精品aⅴ在线观看| 一二三四在线观看免费中文在| 精品福利永久在线观看| 亚洲欧美精品综合一区二区三区 | 国产在线一区二区三区精| 亚洲av免费高清在线观看| 久久ye,这里只有精品| 人人妻人人澡人人看| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 欧美精品高潮呻吟av久久| 97在线视频观看| 尾随美女入室| 日日摸夜夜添夜夜爱| 午夜福利在线免费观看网站| 2021少妇久久久久久久久久久| 满18在线观看网站| 日日啪夜夜爽| 丝袜喷水一区| 飞空精品影院首页| www日本在线高清视频| 中国国产av一级| 哪个播放器可以免费观看大片| 宅男免费午夜| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 国产精品免费视频内射| 成人毛片a级毛片在线播放| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 看非洲黑人一级黄片| 国产成人精品福利久久| 在线观看人妻少妇| 999精品在线视频| 午夜福利视频精品| 七月丁香在线播放| 女人精品久久久久毛片| 国产免费现黄频在线看| 亚洲国产看品久久| 热99国产精品久久久久久7| 丰满乱子伦码专区| 日韩伦理黄色片| 国产女主播在线喷水免费视频网站| 国产成人一区二区在线| 亚洲少妇的诱惑av| 欧美成人午夜精品| 热re99久久国产66热| 97在线视频观看| 成人国语在线视频| 91aial.com中文字幕在线观看| 成人亚洲精品一区在线观看| 亚洲第一av免费看| 国产无遮挡羞羞视频在线观看| 亚洲欧美清纯卡通| 色视频在线一区二区三区| 成人国语在线视频| av福利片在线| 最新的欧美精品一区二区| 波野结衣二区三区在线| 亚洲精品一二三| 涩涩av久久男人的天堂| 亚洲五月色婷婷综合| 春色校园在线视频观看| 久久热在线av| 午夜久久久在线观看| 国产一区亚洲一区在线观看| 一区二区av电影网| 国产黄色免费在线视频| 高清黄色对白视频在线免费看| 欧美日本中文国产一区发布| www.自偷自拍.com| 日韩制服丝袜自拍偷拍| 不卡av一区二区三区| 午夜福利视频精品| 精品卡一卡二卡四卡免费| 欧美日韩视频高清一区二区三区二| 精品一区在线观看国产| av一本久久久久| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 电影成人av| 免费大片黄手机在线观看| 国产精品香港三级国产av潘金莲 | 国产乱来视频区| 亚洲欧美中文字幕日韩二区| 亚洲av免费高清在线观看| 亚洲精品av麻豆狂野| 日本av手机在线免费观看| 制服人妻中文乱码| 久久久国产一区二区| 国产一区亚洲一区在线观看| 成人国语在线视频| av免费在线看不卡| 亚洲欧洲国产日韩| 最黄视频免费看| 麻豆av在线久日| 黄频高清免费视频| 精品国产乱码久久久久久男人| 国产免费现黄频在线看| 国产白丝娇喘喷水9色精品| 女性生殖器流出的白浆| 亚洲久久久国产精品| 天天影视国产精品| 亚洲第一青青草原| kizo精华| 久久av网站| 亚洲国产精品999| 久久久久久久亚洲中文字幕| 亚洲av在线观看美女高潮| 狠狠精品人妻久久久久久综合| 一级黄片播放器| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品电影小说| 婷婷色综合www| 卡戴珊不雅视频在线播放| 搡老乐熟女国产| 国产男人的电影天堂91| av免费在线看不卡| 又大又黄又爽视频免费| 视频区图区小说| 国产黄频视频在线观看| 精品福利永久在线观看| 久久女婷五月综合色啪小说| 亚洲久久久国产精品| 免费在线观看完整版高清| 国产在线免费精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 两个人免费观看高清视频| 亚洲人成网站在线观看播放| 国产av一区二区精品久久| 国产成人一区二区在线| 国产一区二区三区综合在线观看| 日本黄色日本黄色录像| 亚洲中文av在线| 亚洲经典国产精华液单| 国产av精品麻豆| 黄频高清免费视频| 欧美亚洲 丝袜 人妻 在线| 1024视频免费在线观看| 免费人妻精品一区二区三区视频| 欧美亚洲 丝袜 人妻 在线| 香蕉国产在线看| 国产 一区精品| 国产精品无大码| 国产一区二区在线观看av| 日本wwww免费看| 七月丁香在线播放| av天堂久久9| 久久99热这里只频精品6学生| 一区二区三区四区激情视频| 综合色丁香网| 久久久久久久精品精品| 黄色怎么调成土黄色| 一二三四中文在线观看免费高清| 777久久人妻少妇嫩草av网站| 欧美精品亚洲一区二区| 欧美成人午夜精品| 国产爽快片一区二区三区| 久久久久久久国产电影| 18禁动态无遮挡网站| 日日啪夜夜爽| 国产不卡av网站在线观看| 亚洲,欧美精品.| 国产欧美亚洲国产| 欧美日韩综合久久久久久| 黑丝袜美女国产一区| 老司机影院毛片| 国产成人精品无人区| 在线看a的网站| 亚洲熟女精品中文字幕| 丝袜人妻中文字幕| 国产极品天堂在线| 亚洲一级一片aⅴ在线观看| 国产精品 国内视频| 一级片免费观看大全| 桃花免费在线播放| 七月丁香在线播放| 国产精品欧美亚洲77777| 国产成人av激情在线播放| 99九九在线精品视频| 亚洲国产色片| 999精品在线视频| 赤兔流量卡办理| 午夜免费观看性视频| 亚洲人成网站在线观看播放| videosex国产| 国产精品av久久久久免费| 欧美精品一区二区大全| 亚洲熟女精品中文字幕| 欧美精品国产亚洲| 亚洲内射少妇av| 欧美日韩视频高清一区二区三区二| 午夜福利影视在线免费观看| 一级a爱视频在线免费观看| 国产精品熟女久久久久浪| 国产乱来视频区| 国产乱人偷精品视频| 欧美97在线视频| 一区二区日韩欧美中文字幕| www.av在线官网国产| 人体艺术视频欧美日本| av网站免费在线观看视频| a级毛片在线看网站| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 亚洲情色 制服丝袜| 国产成人免费无遮挡视频| 99久久综合免费| 狂野欧美激情性bbbbbb| 如何舔出高潮| 国产又爽黄色视频| 捣出白浆h1v1| 超色免费av| 日本vs欧美在线观看视频| 成人国语在线视频| 国产精品三级大全| av免费在线看不卡| 丰满乱子伦码专区| 女人精品久久久久毛片| 伦理电影免费视频| 在线观看免费高清a一片| 亚洲欧美清纯卡通| 久久久久久免费高清国产稀缺| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 成人毛片a级毛片在线播放| 免费观看a级毛片全部| 欧美精品国产亚洲| 久久97久久精品| 国产成人aa在线观看| 亚洲第一av免费看| 捣出白浆h1v1| 精品国产露脸久久av麻豆| 亚洲av国产av综合av卡| 欧美人与性动交α欧美精品济南到 | 欧美变态另类bdsm刘玥| 女性生殖器流出的白浆| 亚洲精品日韩在线中文字幕| 国产精品秋霞免费鲁丝片| 亚洲国产欧美在线一区| av国产精品久久久久影院| 最近2019中文字幕mv第一页| 女人高潮潮喷娇喘18禁视频| 人人妻人人爽人人添夜夜欢视频| 国产免费福利视频在线观看| 日本色播在线视频| 久久午夜综合久久蜜桃| 亚洲国产最新在线播放| 国产精品99久久99久久久不卡 | 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看| 日韩在线高清观看一区二区三区| 日韩一本色道免费dvd| 欧美日韩成人在线一区二区| 久久这里只有精品19| 国产精品 欧美亚洲| 欧美日韩国产mv在线观看视频| 国产亚洲一区二区精品| 亚洲三级黄色毛片| 亚洲第一区二区三区不卡| 人人妻人人澡人人看| 国产亚洲最大av| 亚洲国产色片| 日韩电影二区| 亚洲欧美精品自产自拍| 26uuu在线亚洲综合色| 精品第一国产精品| 另类精品久久| 午夜免费观看性视频| 免费女性裸体啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 久久午夜福利片| 女人被躁到高潮嗷嗷叫费观| 天天影视国产精品| 日韩熟女老妇一区二区性免费视频| 1024视频免费在线观看| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 亚洲精品国产av成人精品| 久久精品久久久久久久性| 日韩精品免费视频一区二区三区| 18+在线观看网站| 高清视频免费观看一区二区| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲成人手机| 99热全是精品| 精品视频人人做人人爽| 成人毛片a级毛片在线播放| 精品一区二区三区四区五区乱码 | 老司机亚洲免费影院| 国产精品久久久久久久久免| 尾随美女入室| 成年美女黄网站色视频大全免费| 日韩一卡2卡3卡4卡2021年| 天美传媒精品一区二区| 97精品久久久久久久久久精品| 一级爰片在线观看| 日本-黄色视频高清免费观看| av免费观看日本| 天美传媒精品一区二区| 在线亚洲精品国产二区图片欧美| 捣出白浆h1v1| 日本色播在线视频| 男女国产视频网站| 亚洲三区欧美一区| 18+在线观看网站| 大话2 男鬼变身卡| 又大又黄又爽视频免费| 久久精品国产综合久久久| 精品亚洲成a人片在线观看| 亚洲国产看品久久| 成年美女黄网站色视频大全免费| 久久久久国产一级毛片高清牌| av不卡在线播放| 啦啦啦啦在线视频资源| 欧美av亚洲av综合av国产av | 午夜免费男女啪啪视频观看| 香蕉丝袜av| 一区二区av电影网| 不卡av一区二区三区| 午夜影院在线不卡| 成年美女黄网站色视频大全免费| 日本vs欧美在线观看视频| 老司机亚洲免费影院| 亚洲国产看品久久| 国产成人精品无人区| 大片电影免费在线观看免费| 曰老女人黄片| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 色婷婷av一区二区三区视频| 一区二区三区四区激情视频| 自线自在国产av| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 91精品伊人久久大香线蕉| 国产乱人偷精品视频| 亚洲成人av在线免费| 日韩大片免费观看网站| 美国免费a级毛片| 久久婷婷青草| 男女边摸边吃奶| 国产高清国产精品国产三级| 91精品伊人久久大香线蕉| 久久久久久人人人人人| 亚洲国产精品999| 日本色播在线视频| 男男h啪啪无遮挡| 亚洲精品国产av蜜桃| 成年人免费黄色播放视频| 91aial.com中文字幕在线观看| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| av.在线天堂| 日韩av免费高清视频| 丝袜脚勾引网站| 久久久欧美国产精品| 国产黄频视频在线观看| av卡一久久| 日韩视频在线欧美| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 少妇人妻精品综合一区二区| 中文字幕人妻丝袜一区二区 | 这个男人来自地球电影免费观看 | 日韩三级伦理在线观看| 国产在视频线精品| 一级爰片在线观看| 成人毛片60女人毛片免费| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 国产有黄有色有爽视频| 午夜久久久在线观看| 另类精品久久| 精品国产露脸久久av麻豆| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 亚洲在久久综合| 少妇的丰满在线观看| 久久精品夜色国产| 日韩欧美一区视频在线观看| 亚洲一区二区三区欧美精品| 国产综合精华液| 欧美av亚洲av综合av国产av | 亚洲国产日韩一区二区| 色吧在线观看| 97人妻天天添夜夜摸| 亚洲人成网站在线观看播放| 亚洲人成电影观看| 国产1区2区3区精品| 97在线人人人人妻| 美女大奶头黄色视频| 黄片播放在线免费| 久久久久久免费高清国产稀缺| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 999精品在线视频| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久久久大奶| 成人影院久久| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 中文字幕制服av| 国产成人精品无人区| 久久久久国产精品人妻一区二区| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 午夜激情av网站| 欧美日本中文国产一区发布| 亚洲综合色网址| 国产一级毛片在线| 一级片免费观看大全| 观看美女的网站| 国产激情久久老熟女| av一本久久久久| 伊人久久国产一区二区| 超色免费av| 一本大道久久a久久精品| 18禁国产床啪视频网站| 一级毛片 在线播放| 久久久久久免费高清国产稀缺| 在线天堂最新版资源| 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 成人手机av| 久久国内精品自在自线图片| 午夜福利,免费看| 精品午夜福利在线看| 狠狠精品人妻久久久久久综合| a级毛片在线看网站| 精品国产国语对白av| 免费在线观看完整版高清| 可以免费在线观看a视频的电影网站 | 国产成人免费观看mmmm| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 国产在视频线精品| 看免费成人av毛片| 国产亚洲最大av| 国产精品久久久av美女十八| 观看av在线不卡| 国产成人精品福利久久| 国产精品人妻久久久影院| 久热久热在线精品观看| 国产精品 国内视频| 一区二区三区乱码不卡18| 捣出白浆h1v1| 国产片内射在线| 久久久久久久亚洲中文字幕| 久久精品久久久久久噜噜老黄| 欧美精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 亚洲欧洲精品一区二区精品久久久 | 大香蕉久久网| 国产一区二区 视频在线| 日韩电影二区| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| videos熟女内射| 亚洲欧洲国产日韩| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 老司机影院成人| 最近中文字幕2019免费版| 久久 成人 亚洲| 91精品三级在线观看| 成年美女黄网站色视频大全免费| av卡一久久| 久久鲁丝午夜福利片| 久久午夜综合久久蜜桃| 成年女人在线观看亚洲视频| 最近最新中文字幕免费大全7| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 亚洲精品在线美女| 久久免费观看电影| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 亚洲国产精品一区三区| 热99久久久久精品小说推荐| 日本猛色少妇xxxxx猛交久久| 国产亚洲精品第一综合不卡| 少妇人妻 视频| 国产欧美日韩一区二区三区在线| 国产精品一国产av| 麻豆乱淫一区二区| 亚洲精品视频女| 欧美日韩av久久| 精品福利永久在线观看| 久久久久网色| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 最近中文字幕2019免费版| 好男人视频免费观看在线| 亚洲经典国产精华液单| 少妇猛男粗大的猛烈进出视频| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 中文字幕人妻丝袜一区二区 | 国产精品欧美亚洲77777| 成年动漫av网址| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看 | 一级片'在线观看视频| 国产又爽黄色视频| 亚洲综合色惰| 建设人人有责人人尽责人人享有的| 精品国产露脸久久av麻豆| 久久影院123| 国产一区有黄有色的免费视频| 香蕉国产在线看| 女性被躁到高潮视频| 熟女av电影| 少妇的丰满在线观看| 欧美 日韩 精品 国产| 男的添女的下面高潮视频| 久久精品国产综合久久久| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看av| 少妇熟女欧美另类| 丝袜美腿诱惑在线| 精品一区二区三区四区五区乱码 | 激情五月婷婷亚洲| 高清在线视频一区二区三区| 超色免费av| 国产精品熟女久久久久浪| 九草在线视频观看| 丰满乱子伦码专区| 91成人精品电影| 亚洲天堂av无毛| 国产成人aa在线观看| 老司机影院毛片| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 天堂俺去俺来也www色官网| 在线看a的网站| 国产1区2区3区精品| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 老汉色∧v一级毛片| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 免费观看a级毛片全部| 久久久久久人妻|