• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于含雙吡唑的四羧酸配體構(gòu)筑的Fe(Ⅱ)/Co(Ⅱ)同構(gòu)配合物的合成、晶體結(jié)構(gòu)及磁性質(zhì)

    2022-12-06 06:29:38李芬芳
    關(guān)鍵詞:晉中吡唑構(gòu)筑

    李芬芳 何 婧

    (晉中學(xué)院化學(xué)化工系,晉中 030600)

    0 Introduction

    The prudent design of coordination polymers(CPs)by connecting the metal ions as single point nodes or secondary building units(SBU)with a variety of organic ligands as linkers has attracted immense interest in the past few decades[1].This is not only due to their fascinating network structures and novel functionalities but also due to the ease of tuning such structures with the change of linkers and metals.It has been observed CPs have great potential for multiple applications depending on their structure,chemical composition,particle size,etc.Thus,in the last decades,CPs have demonstrated usefulness in fields such as hydrogen and methane storage capture[2],separation of CO2[3],water adsorption[4],solvent sponge behavior[5],controlled drug entrapment and release[6],heterogeneous catalysis[7],and luminescence[8].While many of these applications are based on the framework porosity,CPs materials also exhibit physical properties traditionally associated with highly dense oxide systems.For example,CPs may also have interesting magnetic properties because the magnetic metal ions and their coupling can be tailored in the CP structure through the incorporation of magnetic moment carriers such as paramagnetic metals,open-shell organic ligands,or both[9].So the designed syntheses of CPs having attractive magnetic properties are immensely important among the ever-growing number of functional applications.Such a class of compounds was investigated to design magnetic materials because magnetic coupling can easily be tuned and controlled by altering the linkers and nodes[10-13].Side by side it is also very important to understand the magnetic exchange pathway to rationalize the exact design of magnetically functional CPs.

    As magnetism is a cooperative phenomenon,a connection between moment carriers at distances within the interacting range is necessary;carboxylic-based and nitrogen-based ligands have proved to have good superexchange pathways for magnetic couplings[14].Especially,the carboxylate-based bridging ligand is one of the very popular choices for the execution of magnetic CPs.Thus,coordination architectures having carboxylate-donating linkers and paramagnetic metal ions have attracted the attention of contemporary research for understanding the magnetic exchange through the OCO bridges of the carboxylate ligands which show versatile binding abilities.In addition,flexible diamagnetic ligands are usually used to link magnetic d-or f-block metal ions into extended networks,facilitating magnetic exchange in one,two,and three dimensions[15-16].Paramagnetic transition metal elements allow the variation of spin quantum number and magnetic anisotropy,two important parameters in magnetism.Among these elements,Co(Ⅱ) and Ni(Ⅱ) appear as the preferred choice to develop magnetic CPs,because it provides the highest magneto-crystalline anisotropy,which results in record magnetic hardness[17].

    In the CPs,there are self-assemblies of isomorphous or isotopologue compounds,which provide variations of magnetic anisotropy and spin quantum numbers that affect the magnetic behavior of such isomorphous systems,such as[M(L)2(CH3OH)2](M=Mn(Ⅱ),Fe(Ⅱ),and Co(Ⅱ),HL=2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid),M(HCOO)2(4,4'-bpy)·nH2O(M=Co(Ⅱ)and Ni(Ⅱ));[M(L)(N3)]n·3nH2O(M=Mn(Ⅱ),Co(Ⅱ),and Ni(Ⅱ),L-=1-(4-carboxylatobenzyl-pyridinium-4-carboxylate),and[M(H2bpta)]n(H4bpta=2,2',4,4'-biphenyltetracarboxylic acid,M=Fe(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),and Zn(Ⅱ))[18-20].The magnetic interactions between transition metal centers usually are mainly mediated through M-L-M super-exchange which is important in magnetic orbits of metal ions,in which the nd-orbits of metal ions are combined out of phase with the np-orbits of ligands.The orbital interaction plays a significant role in the spin Hamiltonian for a given magnetic system.Indeed,a substantial number of CPs with magnetic properties have been reported,due to the use of constitutive openshell transition metal ions within the framework of the structure.

    With this in mind,we selected a ligand 1,1'-(1,4-phenylenebis(methylene))bis-(1H-pyrazole-3,5-dicarboxylic acid))(H4L,Scheme 1),succeeded in obtaining two new isomorphous 2D complexes{(NH2(CH3)2)2[Fe(L)]}n(1)and{(NH2(CH3)2)2[Co(L)]}n(2),and analyzed magnetic properties of the two complexes.The result of variable-temperature magnetic measurements exhibits antiferromagnetic exchange interactions in complexes 1 and 2.

    Scheme 1 Structure of H4L

    1 Experimental

    1.1 General methods and materials

    H4L was purchased from Jinan Henghua Science&Technology Co.,Ltd.,China.All solvents and other reagents were commercially available and were used without further purification.Fourier transform(FT)IR spectra were taken on a BRUKER TENSOR27 spectrometer in a 4 000-400 cm-1region with KBr pellets.Elemental analyses of C,H,and N were recorded on a CHNO-Rapid instrument.Powder X-ray diffraction(PXRD)data were collected on a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm)and the data were recorded within a 2θ range of 5°-50°.The working voltage and current were 60 kV and 50 mA,respectively.The calculated PXRD patterns were generated from the single-crystal X-ray diffraction data using PLATON software.Magnetic susceptibility data were obtained with a SQUID magnetometer(Quantum MPMS-VSM)in a temperature range of 1.8-300.0 K by using an applied field of 2 000 Oe.The magnetic susceptibility data were corrected for the diamagnetism of the samples using Pascal constants.Thermogravimetric analyses(TGA)were carried out with a Dupont thermal analyzer in a temperature range of 25-800℃under an N2flow with a heating rate of 5℃·min-1.

    1.2 Preparation of complexes 1 and 2

    A mixture of H4L(20.7 mg,0.05 mmol),FeSO4·7H2O(27.8 mg,0.10 mmol),SnCl2·2H2O(11.3 mg,0.05 mmol),and 10 mL of mixed solvents(acetonitrile/DMF/water,3∶3∶4,V/V)was placed in a 15 mL Teflonlined stainless steel autoclave.The mixture was heated under autogenous pressure at 160℃for 72 h and then cooled to room temperature naturally.Red block-shaped crystals of 1 were collected by filtration,washed with H2O,and dried in the air.Yield:70%.Anal.Calcd.for C22H26FeN6O8(%):C 47.1,H 4.63,N 14.9;Found(%):C 47.2,H 4.66,N 14.8.IR(KBr,cm-1):3 437s,3 130w,1 605s,1 533m,1 476m,1 362s,1 277m,1 241m,1 106 w,1 013s,821s,785w,764m,543m.

    The preparation process of complex 2 was the same as that of 1,except that FeSO4·7H2O and SnCl2·2H2O were replaced by CoCl2·3H2O(23.8 mg,0.10 mmol).Pink block-shaped crystals of 2 were collected,washed with H2O,and dried in air.Yield:70%.Anal.Calcd.for C22H26N6CoO8(%):C 47.0,H 4.63,N 15.0;Found(%):C 46.8,H 4.64,N 14.8.IR(KBr,cm-1):3 419 w,2 802w,2 399w,1 922w,1 610s,1 525m,1 487m,1 355s,1 274m,1 245m,1 107w,1 024s,837s,792w,767m,550m.

    1.3 X-ray crystallography

    The data for complex 1 were collected using a SuperNova(Cu)X-ray Source diffractometer utilizing Cu Kα (λ=0.154 18 nm)radiation at 173(2)K.Singlecrystal X-ray diffraction data for complex 2 were collected in the Beijing Synchrotron Radiation Facility(BSRF)beamline 3W1A,which were mounted on a MARCCD-165 detector(λ=0.071 00 nm)with the storage ring working at 2.5 GeV.In the process,the crystal was protected by liquid nitrogen at 100(2)K.Data was collected by the program MARCCD and processed using HKL 2000.

    All the structure was solved by direct methods employed in the program SHELXS-2014 and refined by full-matrix least-squares methods against F2with SHELXL-2016.The determination of cell parameters and data reduction was performed with SAINT Plus.Program SADABS was used for absorption corrections.After all non-H atoms were refined anisotropically,hydrogen atoms attached to C atoms were placed geometrically and refined using a riding model approximation,with a C—H length of 0.093 nm and Uiso(H)=1.2Ueq(C).A summary of the crystallographic data and data collection and refinement parameters for both complexes are listed in Table 1.

    Table 1 Crystal data and structure refinement parameters for complexes 1 and 2

    CCDC:1923316,1;1923318,2.

    2 Results and discussion

    2.1 IR characterization

    The peaks of FT-IR indicate that the strong broad absorption bands in the range between 3 419 cm-1should be assigned to the characteristic vibrations of the νN—Hstretching frequencies.The absence of strong bands around 1 706 cm-1in the FT-IR spectra indicates that—COOH group has been completely deprotonated to generate L4-anions,which is in agreement with that from its X-ray single crystal structure,and the characteristic strong bands of the coordinated carboxylate groups appeared at 1 610-1 525 cm-1for the asymmetric stretching and 1 355-1 274 cm-1for the symmetric one(Fig.1).

    Fig.1 FT-IR spectra of H4L and complexes 1 and 2

    2.2 Description of crystal structures

    Since the two complexes are isomorphous,only the structure of complex 1 will be described here.Complex 1 crystallizes in the P21/n space group containing the anion framework.The asymmetric unit consists of a half Fe2+ion,a half of a fully deprotonated L4-ligand,and one non-coordinated protonated dimethylamine cation by hydrolysis of DMF(Fig.2).As can be deduced from the charge balance,the framework is anionic having a-2 charge,and the electroneutrality is achieved by the incorporation of the protonated amine in the voids of the net.In complex 1,the Fe(Ⅱ)ion is surrounded by four oxygen atoms(O1,O1iii,O3i,O3ii)from four L4-ions and two nitrogen atoms(N2,N2iii)of two different L4-ions to present an octahedron geometry where the cis-and trans-angles separate at the metal is 76.65(8)°-180.0°.The Fe—O and Fe—N bond lengths are in a range of 0.206 3(2)-0.216 5(2)nm and 0.216 7(2)nm,respectively,which are slightly shorter than those of Fe(Ⅱ)complexes[21].The bond lengths(M—O and M—N)for the two complexes decrease with the increase of the d-electronic number,in agreement with the radius variation of the metal ions(Table 2).

    Fig.2 Atom labels and coordination environments of the Fe(Ⅱ)ions in complex 1 with displacement ellipsoids drawn at the 30% probability level

    Table 2 Selected bond distances(nm)and angles(°)around metal centers in isomorphous polymers 1 and 2

    As shown in Fig.3a,in complex 1,two carboxyl groups of pyrazole are fully deprotonated,each ligand bridges two Fe(Ⅱ)ions through chelating N,O atoms of the pyrazole ring and monodentate O atom of the same pyrazole ring,forming…Fe-L-Fe-L… chains parallel to the crystallographic b direction.The Fe…Fe distance separated by a μ1,5-pyrazole-carboxylate bridge is 0.795 7(1)nm(Co…Co 0.798 0(2)nm for 2).The dihedral angle between the planes of the benzene ring andpyrazole rings is 71.07(3)°.The 1D chains intersect to form an infinite 2D network that contains nearly square Fe4L4units.For each unit,four L4-anions act as the four edges,and four Fe(Ⅱ)ions represent the four vertices.The lengths of the diagonals are 1.051 3 and 1.194 8 nm,compared to 1.060 9 and 1.200 4 nm for 2,and the interior angles are 82.68°and 97.32°,compared to 82.46°and 97.54°for 2.

    Fig.3 (a)Two-dimensional sheets extending in the b-axis and c-axis of complex 1;(b)Topology net of complex 1 with Schl?fli symbol{312.414.52}

    From the topological point of view,the frameworks of complexes 1 and 2 can be simplified by the application of a(4,4)-connected topological approach(Fig.3b)using TOPOS[22].Each ligand is linked to four Fe2+ions to act as a 4-connected node;each Fe2+ion is bound by four L4-ions to act as a 4-connected node.The topological notation is{312.414.52}from TOPOS program analysis.

    To confirm that the phase of the bulk sample is pure and the crystal structures of 1 and 2 are truly representative of the bulk material,the PXRD experiments were carried out.As shown in Fig.4,PXRD patterns of 1 and 2 were determined at room temperature,which matched well with those simulated from their X-ray single crystal diffraction data,and the high purity of the complexes can be confirmed.In addition,TGA results indicate that complexes 1 and 2 were stable until about 604 K(Fig.5).

    Fig.4 Simulated(bottom)and experimental(top)PXRD patterns of complexes 1(a)and 2(b)

    Fig.5 TGA curves for complexes 1 and 2

    2.3 Magnetic properties

    To gain insight into magnetic changes in isomorphous polymers,magnetic measurements were carried out on the well-crushed crystalline samples.Variabletemperature magnetic susceptibilities of the two complexes were measured in a temperature range of 1.8-300.0 K with an applied magnetic field of 2 000 Oe.

    As shown in Fig.6a,the χMT value of 1(3.07 cm3·mol-1·K)at 300.0 K was larger than the spin-only χMT of 3.00 cm3·mol-1·K expected for a single isolated highspin Fe(Ⅱ) ion(g=2.0 and S=2).Upon cooling,the χMT value decreased smoothly and reached a minimum of 1.67 cm3·mol-1·K at 2.0 K,which indicates a characteristic feature of antiferromagnetic coupling between Fe(Ⅱ) ions.The Curie-Weiss fit,namely χ=C/(T-θ),in the range of 1.8 to 300.0 K afforded a Curie constant of C being 3.11 cm3·mol-1·K and a Weiss constant of θ being-0.49 K(Fig.6a,Inset).

    Fig.6 Temperature dependence of χMT and 1/χMcollected in an applied field of 2 000 Oe for complexes 1(a)and 2(b)

    To further investigate the magnetic properties of 1,the data can be fitted upon 7.0 K by an expression(Eq.1)for S=2 systems[23]:

    where J is the coupling constant between the neighboring Fe(Ⅱ) ions;N is Avogadro's number;β is the Bohr magneton;k is the Boltzmann constant;g is the Lande value.

    The best fit well reproduced the experimental data over the entire temperature range with g=1.95,J=-0.181 cm-1with an agreement factor(R)of 5.7×10-4,where R=∑(χMTexp-χMTcal)2/∑(χMTexp)2.The negative θ and J values indicate the presence of weak antiferromagnetic interaction between adjacent Fe(Ⅱ)ions.

    According to the literature[24],it can be deduced that the unpaired spin in egorbitals favor ferromagnetic interactions,whereas those in t2gorbitals favor stronger antiferromagnetic interactions,with only one unpaired electron in a t2gorbital being enough to dominate the overall superexchange.Therefore,Fe(Ⅱ) complexes should show antiferromagnetic.Our result is in good agreement with these expectations[25].

    As shown in Fig.6b,the χMT value of 2(3.23 cm3·mol-1·K)at 300.0 K was larger than the spin-only value(1.88 cm3·mol-1·K,g=2.0 and S=3/2).Upon cooling,the χMT value slightly increased first,then decreased and reached 2.22 cm3·mol-1·K at 2.0 K,which indicates a characteristic feature of antiferromagnetic coupling between Co(Ⅱ)ions.The magnetic susceptibility obeys the Curie-Weiss law with a Curie constant C=3.35 cm3·mol-1·K,and a Weiss constant θ=-3.87 K(Fig.6b,Inset).We apply the following expressions(Eq.2 and 3)for a 1D Co(Ⅱ)chain to fit the data[26]:

    where x=|J|kT;zj' represents the interaction between Co(Ⅱ)ions and J is the parameter of exchange interaction between the neighboring Co(Ⅱ)ions.The susceptibility values above 50 K were calculated,resulting in J=-0.11 cm-1,g=1.85,and the agreement factor defined by R= ∑ (χMTexp- χMTcal)2/∑ (χMTexp)2was 7.2×10-5.A negative J confirms a weak antiferromagnetic exchange that agrees with a negative θ value.

    3 Conclusions

    In summary,we have successfully constructed two new isomorphous coordination polymers from the 1,1'-(1,4-phenylenebis(methylene))bis-(1H-pyrazole-3,5-dicarboxylic acid))ligand under a similar synthetic procedure.The framework features anionic having a-2 charge and protonated dimethylamine cation by hydrolysis of DMF to maintain the electroneutrality of the complex.Magnetic studies indicate the presence of antiferromagnetic exchange for complexes 1 and 2.

    猜你喜歡
    晉中吡唑構(gòu)筑
    晉中國(guó)家農(nóng)高區(qū)無花果采摘正當(dāng)時(shí)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    晉中市委統(tǒng)戰(zhàn)部調(diào)研晉中國(guó)家農(nóng)高區(qū)(山西農(nóng)谷)
    加快培育百億企業(yè) 建好晉中國(guó)家農(nóng)高區(qū)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    晉中:率先出臺(tái)提升鄉(xiāng)村治理能力“25條”
    “一帶一路”構(gòu)筑“健康絲路”
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    構(gòu)筑“健康家庭”,從容應(yīng)對(duì)重大疾患
    踐行治水方針 構(gòu)筑安全保障
    嫩草影视91久久| 免费高清在线观看日韩| 成人av一区二区三区在线看| 麻豆一二三区av精品| 男女之事视频高清在线观看| 搡老岳熟女国产| 日本成人三级电影网站| 岛国在线观看网站| 亚洲国产精品sss在线观看| 国产精品亚洲av一区麻豆| 校园春色视频在线观看| svipshipincom国产片| 欧美另类亚洲清纯唯美| e午夜精品久久久久久久| 成人国语在线视频| 少妇的丰满在线观看| 亚洲男人的天堂狠狠| 精品第一国产精品| 波多野结衣巨乳人妻| 精品国产国语对白av| 搡老熟女国产l中国老女人| 亚洲av片天天在线观看| 欧美乱色亚洲激情| 成人国产综合亚洲| 少妇粗大呻吟视频| 亚洲真实伦在线观看| 亚洲片人在线观看| 亚洲成av片中文字幕在线观看| 美女高潮到喷水免费观看| 国内毛片毛片毛片毛片毛片| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 非洲黑人性xxxx精品又粗又长| 欧美中文日本在线观看视频| 窝窝影院91人妻| 一二三四在线观看免费中文在| 制服诱惑二区| 国内久久婷婷六月综合欲色啪| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 99国产综合亚洲精品| 国产亚洲av嫩草精品影院| 99久久精品国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人看人人澡| 亚洲 欧美一区二区三区| 日日夜夜操网爽| 欧美国产精品va在线观看不卡| 熟女电影av网| 亚洲av成人不卡在线观看播放网| 男女下面进入的视频免费午夜 | 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久男人| 18美女黄网站色大片免费观看| 中文字幕人妻熟女乱码| 欧美一级毛片孕妇| 精品一区二区三区av网在线观看| 热re99久久国产66热| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 国内揄拍国产精品人妻在线 | 成人手机av| 欧美黄色淫秽网站| 激情在线观看视频在线高清| 男人舔女人的私密视频| 香蕉丝袜av| 亚洲免费av在线视频| 麻豆一二三区av精品| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 给我免费播放毛片高清在线观看| 中文字幕精品亚洲无线码一区 | 久久天堂一区二区三区四区| 99精品久久久久人妻精品| 免费观看精品视频网站| 久久久久亚洲av毛片大全| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 嫩草影视91久久| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| 黄色视频不卡| 欧美丝袜亚洲另类 | 黄片播放在线免费| 欧美三级亚洲精品| 午夜福利免费观看在线| 99热6这里只有精品| netflix在线观看网站| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 精品久久久久久成人av| 悠悠久久av| 日韩三级视频一区二区三区| 精品无人区乱码1区二区| 精品国产国语对白av| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区| 久久久久国产一级毛片高清牌| 在线十欧美十亚洲十日本专区| 亚洲精品久久成人aⅴ小说| 免费人成视频x8x8入口观看| 午夜久久久久精精品| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 黑人操中国人逼视频| 午夜福利18| 亚洲av熟女| 亚洲国产精品久久男人天堂| 999久久久精品免费观看国产| 国产黄a三级三级三级人| 三级毛片av免费| netflix在线观看网站| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 成人欧美大片| 男女午夜视频在线观看| 中国美女看黄片| 国内精品久久久久精免费| 久久久久久九九精品二区国产 | 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 黄色女人牲交| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看 | 国产久久久一区二区三区| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 十分钟在线观看高清视频www| 国产精品乱码一区二三区的特点| 久久精品国产清高在天天线| 国产真实乱freesex| 看黄色毛片网站| 国产又爽黄色视频| 欧美成狂野欧美在线观看| 久久久久久久久中文| 午夜福利18| 亚洲五月天丁香| 免费观看精品视频网站| 欧美av亚洲av综合av国产av| 亚洲一码二码三码区别大吗| 男女那种视频在线观看| 人人妻,人人澡人人爽秒播| 香蕉丝袜av| 色尼玛亚洲综合影院| 亚洲精品国产区一区二| 亚洲九九香蕉| 亚洲人成网站高清观看| ponron亚洲| 成人免费观看视频高清| 成熟少妇高潮喷水视频| 丝袜在线中文字幕| 国产成人精品久久二区二区91| 国产精品永久免费网站| 国产精品综合久久久久久久免费| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av高清一级| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 99riav亚洲国产免费| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| 国产av又大| 好看av亚洲va欧美ⅴa在| 黄色女人牲交| 国产日本99.免费观看| 欧美日韩瑟瑟在线播放| 琪琪午夜伦伦电影理论片6080| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 欧美av亚洲av综合av国产av| 俺也久久电影网| 久久国产亚洲av麻豆专区| 精华霜和精华液先用哪个| 黄片大片在线免费观看| 色播在线永久视频| 日本 av在线| 大香蕉久久成人网| 在线十欧美十亚洲十日本专区| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| av超薄肉色丝袜交足视频| 可以在线观看毛片的网站| 欧美在线黄色| 女警被强在线播放| 欧美激情久久久久久爽电影| 99精品欧美一区二区三区四区| 麻豆国产av国片精品| 日本熟妇午夜| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 日韩av在线大香蕉| 可以在线观看毛片的网站| 亚洲国产看品久久| 亚洲色图 男人天堂 中文字幕| av电影中文网址| 久久99热这里只有精品18| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| 制服丝袜大香蕉在线| 91大片在线观看| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 男男h啪啪无遮挡| avwww免费| 最近在线观看免费完整版| 无限看片的www在线观看| 国内揄拍国产精品人妻在线 | 亚洲avbb在线观看| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 黄色视频,在线免费观看| 在线看三级毛片| 欧美激情久久久久久爽电影| 色综合亚洲欧美另类图片| 视频在线观看一区二区三区| 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 亚洲成人精品中文字幕电影| 亚洲精品中文字幕一二三四区| 午夜福利成人在线免费观看| 看片在线看免费视频| 久久久久亚洲av毛片大全| 叶爱在线成人免费视频播放| 在线看三级毛片| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网| av在线天堂中文字幕| 色av中文字幕| 国产精品亚洲一级av第二区| 亚洲av美国av| 最近在线观看免费完整版| 一级毛片高清免费大全| 91成人精品电影| 18禁美女被吸乳视频| 亚洲av电影不卡..在线观看| 欧美成人午夜精品| 亚洲av成人av| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 欧美黄色片欧美黄色片| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看 | 久久中文看片网| 好男人在线观看高清免费视频 | 女生性感内裤真人,穿戴方法视频| 午夜老司机福利片| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 搡老妇女老女人老熟妇| 午夜久久久在线观看| 亚洲专区国产一区二区| 亚洲av美国av| 一进一出抽搐动态| av电影中文网址| 国产一区在线观看成人免费| 免费看十八禁软件| 啦啦啦韩国在线观看视频| 欧美又色又爽又黄视频| 男女之事视频高清在线观看| 精品久久久久久久久久久久久 | 亚洲av第一区精品v没综合| 丁香六月欧美| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 国产亚洲欧美精品永久| 日本五十路高清| 久久香蕉激情| 国产精品免费视频内射| 色播亚洲综合网| 啦啦啦观看免费观看视频高清| 国产野战对白在线观看| 亚洲aⅴ乱码一区二区在线播放 | 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 嫩草影院精品99| 中出人妻视频一区二区| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 99国产精品99久久久久| 午夜影院日韩av| 精品日产1卡2卡| 国产精品一区二区精品视频观看| 88av欧美| 老司机午夜十八禁免费视频| 在线观看舔阴道视频| 国产高清激情床上av| 大香蕉久久成人网| 国产精品野战在线观看| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 色播在线永久视频| av在线播放免费不卡| www.www免费av| 精品高清国产在线一区| 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 香蕉av资源在线| 特大巨黑吊av在线直播 | www.精华液| 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 又紧又爽又黄一区二区| www.www免费av| 午夜激情av网站| 满18在线观看网站| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 国产激情偷乱视频一区二区| 深夜精品福利| 中文在线观看免费www的网站 | 1024视频免费在线观看| 国产亚洲精品综合一区在线观看 | 波多野结衣高清无吗| 一个人观看的视频www高清免费观看 | 午夜激情av网站| 在线天堂中文资源库| 欧美丝袜亚洲另类 | 国产精品二区激情视频| 亚洲一区高清亚洲精品| 熟女电影av网| 一个人免费在线观看的高清视频| 校园春色视频在线观看| 一进一出抽搐gif免费好疼| 亚洲av熟女| 中文字幕久久专区| 精品国产一区二区三区四区第35| 男人的好看免费观看在线视频 | 婷婷亚洲欧美| 国产精品九九99| 午夜久久久在线观看| 男人舔奶头视频| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 国产野战对白在线观看| 国产精品 国内视频| 久久 成人 亚洲| 国产av在哪里看| 极品教师在线免费播放| 伦理电影免费视频| av天堂在线播放| 欧美成人一区二区免费高清观看 | tocl精华| 天天一区二区日本电影三级| 长腿黑丝高跟| 女人被狂操c到高潮| 在线观看www视频免费| 99国产综合亚洲精品| 两个人看的免费小视频| 欧美激情高清一区二区三区| 国产视频内射| 中文亚洲av片在线观看爽| or卡值多少钱| 91老司机精品| 手机成人av网站| 日韩欧美三级三区| 一区二区三区精品91| 美国免费a级毛片| www.999成人在线观看| 久99久视频精品免费| 美女国产高潮福利片在线看| 长腿黑丝高跟| 99热这里只有精品一区 | 亚洲第一欧美日韩一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 欧美zozozo另类| 久久精品国产综合久久久| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 亚洲国产看品久久| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品亚洲一级av第二区| 69av精品久久久久久| 国产精品亚洲美女久久久| 国产一区二区三区在线臀色熟女| 看免费av毛片| 欧美午夜高清在线| 欧美中文综合在线视频| www.自偷自拍.com| 18禁裸乳无遮挡免费网站照片 | 巨乳人妻的诱惑在线观看| 国产日本99.免费观看| 老司机靠b影院| 青草久久国产| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 日韩视频一区二区在线观看| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 亚洲国产精品999在线| 人人妻人人澡人人看| 亚洲中文字幕日韩| 亚洲av熟女| 老司机深夜福利视频在线观看| 丰满的人妻完整版| 成人国语在线视频| 久久婷婷成人综合色麻豆| 夜夜爽天天搞| 一本大道久久a久久精品| 变态另类丝袜制服| 亚洲欧洲精品一区二区精品久久久| 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 又黄又爽又免费观看的视频| 亚洲九九香蕉| 一级毛片高清免费大全| 国产精品一区二区三区四区久久 | 黑人巨大精品欧美一区二区mp4| 中文字幕另类日韩欧美亚洲嫩草| 成人欧美大片| 欧美激情 高清一区二区三区| 黄片播放在线免费| 露出奶头的视频| 国产亚洲精品一区二区www| 日韩欧美免费精品| 老司机在亚洲福利影院| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| xxxwww97欧美| 99re在线观看精品视频| 级片在线观看| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 亚洲国产精品久久男人天堂| 色综合亚洲欧美另类图片| 夜夜躁狠狠躁天天躁| 91成年电影在线观看| 韩国av一区二区三区四区| 欧美zozozo另类| 黄网站色视频无遮挡免费观看| 在线观看日韩欧美| 午夜影院日韩av| 午夜久久久在线观看| 久久久久久久久久黄片| 亚洲午夜理论影院| а√天堂www在线а√下载| 老熟妇乱子伦视频在线观看| 在线观看免费日韩欧美大片| 亚洲全国av大片| 久久精品国产99精品国产亚洲性色| 国产在线观看jvid| 级片在线观看| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 国产aⅴ精品一区二区三区波| 日韩三级视频一区二区三区| 老司机深夜福利视频在线观看| 18美女黄网站色大片免费观看| 丝袜在线中文字幕| 首页视频小说图片口味搜索| 午夜福利一区二区在线看| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看| 亚洲第一青青草原| 久久精品国产综合久久久| 啪啪无遮挡十八禁网站| 欧美三级亚洲精品| 桃色一区二区三区在线观看| 国产精品久久久久久精品电影 | 亚洲av熟女| 成人特级黄色片久久久久久久| 国产成人一区二区三区免费视频网站| 一级a爱片免费观看的视频| 一本精品99久久精品77| 琪琪午夜伦伦电影理论片6080| 色婷婷久久久亚洲欧美| 国产av又大| 久久久国产欧美日韩av| 91大片在线观看| 精品久久久久久久毛片微露脸| 曰老女人黄片| 别揉我奶头~嗯~啊~动态视频| 欧美av亚洲av综合av国产av| 欧美久久黑人一区二区| 久久中文字幕一级| 午夜两性在线视频| 国产视频内射| 国产精品,欧美在线| 日日摸夜夜添夜夜添小说| 日本免费a在线| 成人特级黄色片久久久久久久| x7x7x7水蜜桃| 国产主播在线观看一区二区| 黄色毛片三级朝国网站| 色播亚洲综合网| 日韩欧美 国产精品| 首页视频小说图片口味搜索| 亚洲av美国av| 欧美绝顶高潮抽搐喷水| 香蕉国产在线看| 精品久久久久久,| 精品第一国产精品| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三 | 日韩免费av在线播放| 成人三级做爰电影| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 国产真实乱freesex| 精品国产一区二区三区四区第35| 啦啦啦韩国在线观看视频| 两个人视频免费观看高清| 亚洲 欧美 日韩 在线 免费| 亚洲成a人片在线一区二区| 久久精品国产清高在天天线| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 国产黄a三级三级三级人| 色老头精品视频在线观看| tocl精华| av在线播放免费不卡| 日日爽夜夜爽网站| 老鸭窝网址在线观看| 自线自在国产av| 丰满人妻熟妇乱又伦精品不卡| a级毛片a级免费在线| 亚洲五月色婷婷综合| 国产日本99.免费观看| 免费电影在线观看免费观看| 亚洲专区字幕在线| 后天国语完整版免费观看| www日本黄色视频网| 日日夜夜操网爽| 免费人成视频x8x8入口观看| 欧美+亚洲+日韩+国产| 国产片内射在线| 极品教师在线免费播放| 妹子高潮喷水视频| 精品日产1卡2卡| 国产三级黄色录像| 久久国产精品影院| 亚洲免费av在线视频| 深夜精品福利| 色老头精品视频在线观看| 女警被强在线播放| 欧美午夜高清在线| 亚洲专区字幕在线| 欧美人与性动交α欧美精品济南到| 久久狼人影院| 国产成人精品久久二区二区免费| 久久精品91无色码中文字幕| 欧美日本亚洲视频在线播放| 午夜免费鲁丝| 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 制服人妻中文乱码| 日本a在线网址| 18禁观看日本| 欧美大码av| 51午夜福利影视在线观看| ponron亚洲| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 麻豆久久精品国产亚洲av| 成人三级做爰电影| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 精品午夜福利视频在线观看一区| 天堂√8在线中文| av免费在线观看网站| 成年免费大片在线观看| 国产av不卡久久| 一二三四在线观看免费中文在| 很黄的视频免费| 亚洲成av片中文字幕在线观看| 欧美不卡视频在线免费观看 | 精品国产国语对白av| 欧美在线一区亚洲| 国产精品免费视频内射| 国产真实乱freesex| 成人三级黄色视频| 中文在线观看免费www的网站 | 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 一级作爱视频免费观看| 免费看a级黄色片| www.精华液| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 精品久久久久久久末码| 久久久久久免费高清国产稀缺| 国产精品美女特级片免费视频播放器 | 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 热99re8久久精品国产| 久久狼人影院| 日韩大尺度精品在线看网址|