• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni(Ⅱ)摻雜分層多孔Cu-BTC高效去除水體中的四環(huán)素

    2022-12-06 06:29:38陳艷霞譚力川袁光松馮思文王萃娟
    關(guān)鍵詞:思文艷霞工程學(xué)院

    陳艷霞 譚力川 王 鵬 袁光松 馮思文 王萃娟*, 童 妍 徐 敏

    (1西南交通大學(xué)生命科學(xué)與工程學(xué)院化學(xué)化工系,成都 610031)

    (2成都市第三人民醫(yī)院,成都 610031)

    Antibiotics are effective in inhibiting the growth of microorganisms and are commonly used in the pharmaceutical and livestock industries[1].However,the overuse and abuse of antibiotics have caused serious environmental pollution[2].Tetracycline(TC)is a widely used antibiotic for effective sterilization and prevention of livestock infections[3].However,its actual dosage in the livestock industry is numerous,causing a largescale TC flow into water bodies with livestock manure,polluting the environment[4].At the same time,the ingestion of TC by other organisms in the environment can pose a serious threat to human health as it accumulates in the food chain[5].Therefore,the effective removal of residual TC from the environment is very important and valuable.

    In general,adsorption[6],membrane separation[7],photodegradation[8],and advanced oxidation[9]are commonly used methods for TC removal,among which,adsorption has the advantages of high adsorption,simple operation,and low cost that is widely used[10-11].Among a series of adsorbents,MOFs are a combination of inorganic-organic materials self-assembled by metal ions or clusters and organic ligands,which have attracted a lot of attention in adsorption research because of their modifiable pore size and high specific surface area[12-13]and are also used as adsorbents for antibiotic removal[14-15].However,most MOFs are microporous in structure,resulting in slow mass transfer rates and difficult access to open channels or active sites[16].Therefore,it is ideal to introduce mesopores or macropores into conventional micropores,which not only maintain the inherent advantages of MOFs in terms of components and structure to a certain extent but also have hierarchical pores to ensure the accessibility of active sites and the diffusion of molecules.

    There is a large amount of research dedicated to expanding the pore size of MOFs,such as hybrid ligands[17],post-synthetic modification[18],template[19],and template-free methods[20].Among them,the templatefree method is of great interest because it minimizes the preparation cost,does not require surfactants or other special synthesis conditions,and reduces the complexity of the production process.Cao et al.[21]proposed a temperature-controlled and template-free strategy for the synthesis of hierarchical porous Cu-BTC(H3BTC=benzene-1,3,5-tricarboxylic acid)by adding small amounts of acetic acid and triethylamine as modifiers to regulate the crystallization rate of the crystals.Abdelhamid et al.[22]reported that the in situ formation of ZnO nitrate nanosheets can be promoted by adding sodium hydroxide to synthesize hierarchical porous ZIF-8 without introducing any template.

    In addition,MOFs can be functionalized by various modification strategies(organic node modification,in situ doping,or loading)to enhance the adsorption capacity[23-25].Recently,various reports have shown that modification with metal doping techniques can impart additional adsorption sites to MOFs and thus improve their adsorption capacity.Yang et al.[26-27]reported that UiO-66 and UiO-67 doped Ce(Ⅲ)could significantly improve the adsorption capacity of various dyes through an adsorption drive.Sun et al.[28]reported that Cu-doped ZIF-8 used for adsorption of TC hydrochloride significantly improved the adsorption capacity,which was 2.4 times higher than that of pristine ZIF-8.

    Therefore,in our study,we combined expanded pore size and metal doping techniques to synthesize hierarchical porous Cu-BTC based on the template-free and temperature-controlled methods,and added Ni(Ⅱ)to the synthetic precursor solution to synthesize metal Ni(Ⅱ)-doped hierarchical porous Cu-BTC,which was used for the first time for the adsorption of TC.We also studied the adsorption kinetics,and adsorption isotherms,and proposed a possible adsorption mechanism.

    1 Experimental

    1.1 Materials and reagents

    Copper nitrate trihydrate(Cu(NO3)2·3H2O)was acquired from Shanghai Maclean Biochemical Technology Co.,Ltd.(Shanghai,China).1,3,5-Benzene-tri benzoic acid (H3BTC),nickel nitrate hexahydrate(Ni(NO3)2·6H2O),and TC were acquired from Tianjin Heowns Biochemical Technology Co.,Ltd.(Tianjin,China).Triethylamine(TEA),acetic acid(CH3COOH),and ethanol were purchased from Chengdu Shiyang Chemical Reagent Factory.

    1.2 Synthesis of hierarchical porous Cu-BTC

    The hierarchical porous Cu-BTC(HP-Cu-BTC)was synthesized based on the literature[21].Firstly,1.8 mmol Cu(NO3)2·3H2O was dissolved in 12 mL ethanol.Then,0.62 mL CH3COOH and 0.5 mL TEA were added to the solution.The mixture was ultrasonically mixed well and then stirred at room temperature.After stirring for 1 h,1.0 mmol H3BTC was added to the mixture and stirred for 2 h to form a homogeneous solution,which was poured into an autoclave and reacted at 110℃for 24 h.Finally,the obtained product was washed with ethanol,collected by centrifugation,and dried in an oven at 60℃.

    1.3 Synthesis of Ni(Ⅱ)-doped hierarchical porous Cu-BTC

    The method was the same as that described above for the preparation of HP-Cu-BTC,except that different masses(0.532,0.262,0.174 mg)of Ni(NO3)2·6H2O were added in the first step in molar ratios of 1∶1,1∶2,and 1∶3 with Cu(NO3)2·3H2O,respectively.The other steps were the same,and the sample powders obtained were named HP-Ni-Cu-BTC(1∶1),HP-Ni-Cu-BTC(1∶2),and HP-Ni-Cu-BTC(1∶3),respectively.

    1.4 Characterizations

    Scanning electron microscope(SEM)images of HP-Ni-Cu-BTC were obtained on a ZEISS Sigma 500 SEM using an acceleration voltage of 5 kV,and a working distance of 4 mm.Energy-dispersive X-ray spectroscopy(EDS)mapping was performed using X-ray transmission electron microscopy energy spectrometer(Apollo XLT SDD)with an acceleration voltage of 15 kV,and a working distance of 5.8 mm.Powder X-ray diffraction (XRD) patterns were obtained using EMPYREAN diffractometer(Netherlands,PANalytical)in a 2θ range from 5°to 80°with a step size of 0.02°and a test speed of 0.1 s·step-1,with Cu Kα ion source radiation(λ=0.154 06 nm),a voltage of 40 kV,a current of 40 mA.Fourier transform-infrared(FT-IR)analyses were obtained using KBr tablets in a range of 4 000-400 cm-1on an infrared spectrometer(Thermo Nicolet 5700,America).N2adsorption-desorption isotherm measurements were acquired using an automatic gas adsorption analyzer at 77 K(ASAP2020,America).The specific surface areas were calculated using the Brunauer-Emmett-Teller(BET)method,and pore size distribution was based on a nonlocalized density functional theory(NLDFT)model.Thermal gravimetric analyses(TGA,Mettler-Toledo TGDSC3+)were measured from 30 to 600℃under a nitrogen atmosphere at 10℃·min-1.

    1.5 Adsorption experiments

    The adsorption performance of HP-Ni-Cu-BTC on TC was investigated by batch adsorption experiments.Specifically,a certain amount of TC was dissolved in deionized water respectively,thereby preparing a solution with different concentrations(10,30,50,70,and 100 mg·L-1).Then,30 mL of the known concentration of TC solution was added to a conical flask and 5 mg of adsorbent was added to the TC solution.Next,the flask was shaken in a shaker at room temperature,and 3 mL of the sample was taken out and filtered by centrifugation at a set time.Finally,the absorbance of the supernatant was measured in a spectrophotometer(UV-1800PC)at 357 nm.The adsorption capacity was calculated by the following Equation 1:

    Where q was the adsorption capacity of TC,mg·g-1;c0was the initial concentration of the TC solution,mg·mL-1;ctwas the concentration of the supernatant at moment t,mg·mL-1;V represented the volume of the antibiotic solution,mL;m represented the mass of the adsorbent,mg.

    In addition,the effects of adsorption performance were investigated at different pH values(4,5,6,7,8),and adsorbent addition amounts(5,8,10,12,15 mg),respectively.The adsorption kinetics and adsorption isotherms were calculated based on the adsorption capacity at different TC concentrations(10,30,50,70,100 mg·L-1).

    After performing adsorption experiments,the recoverability of the adsorbent was evaluated.Specifically,20 mg of adsorbent was dispersed in 30 mL TC solution,the adsorbent was separated by centrifugation,washed by ultrasonication in ethanol,cycled three times,dried,and reused in the next adsorption process.

    2 Results and discussion

    2.1 Characterizations

    The morphology of the HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2)were photographed by SEM(Fig.1),which showed that the hierarchical pores were formed by the accumulation of nanoscale Cu-BTC crystals and that the Ni(Ⅱ)ion doping had no significant effect on the size and morphology of the obtained particles.For the synthesized HP-Ni-Cu-BTC(1∶2),the Ni/Cu molar ratio in the framework was 0.42,confirming the presence of Ni(Ⅱ),and its EDS spectrum(Fig.2)showed a uniform distribution of each element,further indicating the successful synthesis of HP-Ni-Cu-BTC(1∶2).

    Fig.1 SEM images of(a)HP-Cu-BTC and(b)HP-Ni-Cu-BTC(1∶2)

    Fig.2 (a)SEM image,(b)EDS elemental contents,and elemental distribution of(c)Cu and(d)Ni of HP-Ni-Cu-BTC(1∶2)

    The compositions and crystal structures of the synthesized samples were characterized by FT-IR and XRD(Fig.3).FT-IR patterns showed that the characteristic peaks of Ni(Ⅱ)-doped Cu-BTC and HP-Cu-BTC were consistent with those of undoped microporous Cu-BTC and HP-Cu-BTC,demonstrating that the skeletal structure of Cu-BTC was not impacted by Ni(Ⅱ).XRD patterns also showed that all samples had similar diffraction peaks and no extra additional diffraction peaks were noticed after doping with Ni(Ⅱ),indicating that the doping of Ni(Ⅱ)did not affect the crystal structure of the material.All the above characterizations proved the successful synthesis of the samples.

    Fig.3 (a)FT-IR spectra and(b)XRD patterns of Cu-BTC,Ni-Cu-BTC,HP-Cu-BTC,and HP-Ni-Cu-BTC

    The thermal stability of Ni(Ⅱ)-doped HP-Cu-BTC(1∶2)was investigated by TGA curves.Fig.4a showed some differences between the TGA curves of undoped and doped Ni(Ⅱ),but the doping of Ni(Ⅱ) did not affect the thermal stability of HP-Cu-BTC.The first weight loss of HP-Ni-Cu-BTC(1∶2)(90%)was smaller than that of undoped HP-Cu-BTC(80%),which was due to the mass loss in the first stage mainly attributed to the loss of guest molecules,and the smaller pore volume in the MOF after Ni(Ⅱ)doping leading to the reduction of guest molecules in its pores.The mass loss of HP-Ni-Cu-BTC(1∶2)in the second stage was greater than that of HP-Cu-BTC,indicating that the residual solids of undoped Ni(Ⅱ)were higher and further indicating that Ni(Ⅱ)was successfully doped into the backbone of HP-Cu-BTC[29].

    The N2adsorption-desorption isotherms were further researched(Fig.4b).Cu-BTC and Ni-Cu-BTC showed Ⅰ-type adsorption isotherms,indicating typical microporous structures,while HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2)had obvious hysteresis loops at high partial pressure,suggesting the presence of mesoporous structures.Table S1(Supporting information)lists some pore parameters.The results showed that the specific surface area and pore volume decreased after doping Ni(Ⅱ).

    Fig.4 (a)TGA curves of HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2);(b)N2 adsorption-desorption isotherms of Cu-BTC,Ni-Cu-BTC,HP-Cu-BTC,and HP-Ni-Cu-BTC(1∶2)

    2.2 Adsorption experiment

    To investigate the effect of Ni(Ⅱ)-doped HP-Cu-BTC on the adsorption of TC,we also synthesized Cu-BTC,Ni-Cu-BTC,and HP-Cu-BTC,which were used to adsorb TC under the same conditions as a comparison.Fig.5a showed their adsorption capacities were(52.4±2.5)mg·g-1,(69.4±3.3)mg·g-1,(96.0±3.1)mg·g-1,and(171.8±1.6)mg·g-1,respectively.The adsorption capacity of the Ni(Ⅱ)-doped samples was larger than that of the undoped samples.In addition,the hier-archical porous structure also facilitated the improvement of the adsorption capacity.Meanwhile,we also investigated the effect of Ni(Ⅱ)addition on adsorption,Fig.5b demonstrated that the adsorption capacities of Ni(Ⅱ) doped with different ratios were(116.3±0.7)mg·g-1,(171.8±1.6)mg·g-1,and (134.4±2.6)mg·g-1,respectively.As the addition of doped Ni(Ⅱ)increased,it contributed to improving adsorption,but the adsorption capacity decreased when too much was added,probably because more Ni(Ⅱ)was introduced into the adsorbent,which may block the pores and lead to increase diffusion resistance in the mass transfer reaction and reduce the accessible active sites.Therefore,in the subsequent optimization experiments,we chose an adsorbent with a molar ratio of 1∶2 as the adsorbent model for the following experiments.

    The effects of adsorbent dosage and pH on the adsorption performance were investigated.With the increase of adsorbent addition from 3 to 15 mg,the adsorption efficiency gradually increased,while the adsorption capacity decreased,because the equilibrium concentration of TC would be lower when more adsorbent was added(Fig.5c).Therefore,based on the principle of economy,5 mg of adsorbent was chosen to in the later experiments to obtain higher adsorption capacity and removal efficiency.The adsorption capacity increased with increasing pH from 4 to 6,and reached the maximum at pH 6(Fig.5d).It may be because at pH 4-7,both the adsorbent and TC are heterogeneously charged and electrostatic attraction occurs to increase the adsorption capacity.For comparison purposes,Table 1 summarizes several recent reports on the adsorption of TC by different adsorbents and their adsorption capacities.Compared with other materials,the Ni(Ⅱ)-doped hierarchical porous Cu-BTC exhibited excellent adsorption capacity.2.2.1 Adsorption kinetics

    Table 1 Comparison of the adsorption performance of different adsorbents on TC

    Fig.5 (a)Adsorption capacities of different adsorbents on TC(m=5 mg,cTC,0=30 mg·L-1,V=30 mL);(b)Adsorption capacities of HP-Cu-BTC doped with different molar ratios of Ni(Ⅱ) on TC(m=5 mg,cTC,0=30 mg·L-1,V=30 mL);Effect of(c)adsorbent addition(cTC,0=50 mg·L-1,V=30 mL)and(d)pH(m=5 mg,cTC,0=50 mg·L-1,V=30 mL)on the adsorption capacity of TC

    To further investigate the relationship between adsorption capacity and time,the pseudo-first-order model and pseudo-second-order model were used to describe the adsorption behavior of HP-Ni-Cu-BTC(1∶2)on TC.Formulas 2 and 3 were as follows:

    Where qtwas the adsorption capacity of the adsorbent for TC at t time,mg·g-1;qewas the equilibrium adsorption capacity,mg·g-1;k1was pseudo-first-order model adsorption rate constant,min-1;k2was the pseudosecond-order model adsorption rate constant,g·mg-1·min-1.The corresponding fitted curves and parameters of the experimental results were shown in Fig.6 and Table 2(qe,calwas the calculated equilibrium adsorption capacity after fitting,mg·g-1).It is shown that the adsorption dates of TC on HP-Ni-Cu-BTC(1∶2)were more consistent with the pseudo-second-order,which had a higher linear R2and calculated the theoretical values closer to the experimental values.In the adsorption process,the TC molecules were adsorbed from the solution to the outer surface of HP-Ni-Cu-BTC(1∶2)and diffused into the pore,and the rate-limiting step was a chemisorption process between HP-Ni-Cu-BTC(1∶2)and TC molecules.

    Table 2 Pseudo-first-order model and pseudo-second-order model parameters of TC adsorption on HP-Ni-Cu-BTC(1∶2)

    Fig.6 Dynamic simulation for TC adsorption onto HP-Ni-Cu-BTC(1∶2):(a)pseudo-first-order model and(b)pseudo-second-order kinetic model

    2.2.2 Adsorption isotherms

    Adsorption isotherms were described using Langmuir,Freundlich,and Temkin models.Therein,the Langmuir model was used in the ideal case of monolayer adsorption and Freundlich isotherms are usually suitable for non-ideal adsorption on heteroge-neous surfaces[32].The equations for the three models were as follows:

    Where cewas the concentration at equilibrium,mg·L-1;KLwas the adsorption constant of Langmuir,L·mg-1;qmwas the fitted maximum adsorption capacity(mg·g-1);KF(mg·g-1-1/n·L1/n)and n were the adsorptions constant of Freundlich;KTand f(L·mg-1)were Temkin constant.Fig.7 and Table 3 showed the fitting results of the Langmuir,Freundlich,and Temkin isotherm adsorption models.R2values demonstrated that the Freundlich model was best fitted in comparison to the Langmuir and Temkin models.It showed that the adsorption of TC by HP-Ni-Cu-BTC(1∶2)was more consistent with the Freundlich equation for multilayer adsorption.These results were consistent with the kinetic fitting results,suggesting that the adsorption mechanism involved chemisorption processes.

    Fig.7 (a)Adsorption isotherms of TC adsorption on HP-Ni-Cu-BTC(1∶2)and the corresponding(b)Freundlich fit,(c)Langmuir fit,and(d)Temkin fit

    Table 3 Corresponding three model parameters of TC adsorption on HP-Ni-Cu-BTC(1∶2)

    2.2.3 Adsorption mechanism

    Possible mechanisms were proposed based on the available experimental results(pH,kinetics,isotherms),as shown in Fig.8.It is well known TC is a ternary acid and appears as differently charged ions in different pH environments,and its three acid dissociation constants are 3.3,7.7 and 9.7,respectively[33-35].Fig.S1 showed that the ζ potential of the adsorbent was negatively charged in the pH solution from 4 to 8.When pH from 4 to 7,the adsorbent and TC were heterogeneously charged and electrostatic attraction enhanced the adsorption performance.For pH>7.7,adsorbent and TC were negatively charged and electrostatic phase repulsion weakened the adsorption.Furthermore,in kinetic experiments,it was shown that chemisorption dominated the process of TC adsorption by HP-Ni-Cu-BTC(1∶2),suggesting TC may also interact with functional groups on the adsorbent,with π -π bonds and hydrogen bonds[36].In addition,from the results of TC adsorption by different adsorbents,it can be concluded that the adsorption capacity of Ni(Ⅱ)doped HP-Cu-BTC was significantly higher than the other three adsorbents,indicating that the hierarchical porous structure facilitates the diffusion of TC to the active sites inside the material and that the doping of Ni(Ⅱ)can provide valence electrons and increase the adsorption sites,thus improving the adsorption capacity.

    Fig.8 Main adsorption mechanism of TC on HP-Ni-Cu-BTC(1∶2)

    In actual wastewater,TC molecules may coexist with other inorganic ions.Therefore,we investigated the effect of HP-Ni-Cu-BTC(1∶2)on the adsorption of TC in the presence of 40 mmol·L-1Cl-and CO2-3(Fig.9a).Among them,Cl-ions had a slight effect on the adsorption performance,while the effect of CO2-3ions was obvious,indicating that CO32-may compete with TC molecules for adsorption sites,leading to a decrease in the adsorption capacity of TC[37].

    Recoverability is another essential factor to evaluate the adsorption performance of the adsorbent.In the experiment,HP-Ni-Cu-BTC(1∶2)was collected by centrifugation and soaked in ethanol after the first adsorption,and the adsorption efficiency was 71.45% in the 4th cycle(Fig.9b),showing good reproducibility of HP-Ni-Cu-BTC(1∶2).In addition,Fig.S2 showed the XRD patterns of HP-Ni-Cu-BTC(1∶2)before and after the adsorption reaction.After adsorption,the positions of the characteristic diffraction peaks of the adsorbent were basically the same as before.It showed that HP-Ni-Cu-BTC(1∶2)had good stability during the adsorption of TC.

    Fig.9 (a)Effect of coexisting anions(Cl-,CO32-)on TC adsorption by HP-Ni-Cu-BTC(cTC,0=50 mg·L-1,m=5 mg,V=30 mL);(b)Reusability of HP-Ni-Cu-BTC(1∶2)

    3 Conclusions

    In conclusion,Ni(Ⅱ)-doped hierarchical porous Cu-BTC was successfully constructed in this study.Compared with microporous Cu-BTC,HP-Ni-Cu-BTC not only had hierarchical pores structure but also provided additional valence electrons to bring more active sites,which together significantly improved the adsorption capacity with 2.28 times higher adsorption capacity for TC.In addition,various characterizations showed that the Ni(Ⅱ)doping modification did not change the morphology,crystal structure,and functional groups of the HP-Cu-BTC.The adsorption kinetics and adsorption isotherm studies showed that the adsorption process was following the pseudo-second-order and Freundlich models.The adsorbent showed good reusability in the recyclability experiments.We believe that Ni(Ⅱ)-doped hierarchical porous Cu-BTC can be used as a multifunctional adsorbent with great potential for environmental remediation.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    思文艷霞工程學(xué)院
    捧卷傍春山
    牡丹(2023年1期)2023-01-14 06:36:22
    福建工程學(xué)院
    敬廉 守廉 踐廉
    福建工程學(xué)院
    笨狗
    程璐、思文:你的笑點(diǎn)我知道
    婦女(2020年7期)2020-07-29 09:06:44
    程璐思文:相愛就是你的笑點(diǎn)我知道
    家庭百事通(2020年2期)2020-03-19 08:46:59
    福建工程學(xué)院
    福建工程學(xué)院
    An Analysis on Application and development of COCA Corpus in Translation Practice
    国产成人精品久久二区二区免费| 国产精品 欧美亚洲| 久久久久性生活片| 国产91精品成人一区二区三区| 99久久精品热视频| 嫩草影院精品99| 久久久久久久精品吃奶| 99riav亚洲国产免费| 久久久久久久久久黄片| 亚洲精品在线美女| 最好的美女福利视频网| 亚洲美女黄片视频| 国产三级在线视频| 亚洲av美国av| 国产精品av久久久久免费| 美女高潮喷水抽搐中文字幕| 精品国产美女av久久久久小说| 国产成人福利小说| 亚洲,欧美精品.| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 一个人免费在线观看电影 | 精品一区二区三区av网在线观看| 精品久久久久久久人妻蜜臀av| 久久精品国产综合久久久| 亚洲中文日韩欧美视频| 久久精品亚洲精品国产色婷小说| 曰老女人黄片| 三级国产精品欧美在线观看 | 一进一出抽搐动态| 性欧美人与动物交配| 伦理电影免费视频| 日日夜夜操网爽| 天天一区二区日本电影三级| 国产精品久久久久久久电影 | 久久天堂一区二区三区四区| 偷拍熟女少妇极品色| 免费看十八禁软件| 操出白浆在线播放| 真人一进一出gif抽搐免费| 少妇裸体淫交视频免费看高清| 高清毛片免费观看视频网站| 首页视频小说图片口味搜索| 99国产精品99久久久久| 国产亚洲精品久久久久久毛片| 久久久国产欧美日韩av| 亚洲无线在线观看| 麻豆av在线久日| bbb黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久中文| 黄色成人免费大全| 三级国产精品欧美在线观看 | 在线观看午夜福利视频| 两人在一起打扑克的视频| 日韩欧美国产在线观看| 成人永久免费在线观看视频| 国产成+人综合+亚洲专区| 久久国产精品影院| 一二三四在线观看免费中文在| 成人国产一区最新在线观看| 中文字幕人妻丝袜一区二区| 丝袜人妻中文字幕| 欧美极品一区二区三区四区| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 巨乳人妻的诱惑在线观看| 日韩三级视频一区二区三区| 色精品久久人妻99蜜桃| 日本 欧美在线| 日本黄色片子视频| 少妇的逼水好多| 日本黄色视频三级网站网址| 美女大奶头视频| 国产亚洲欧美在线一区二区| 精品久久久久久久末码| 成人鲁丝片一二三区免费| 国产激情偷乱视频一区二区| 日本熟妇午夜| 999久久久国产精品视频| 丰满的人妻完整版| 亚洲欧美一区二区三区黑人| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区免费观看 | 亚洲国产精品合色在线| 欧美三级亚洲精品| 一a级毛片在线观看| or卡值多少钱| 久久性视频一级片| 亚洲国产精品久久男人天堂| 国产熟女xx| 男人舔女人的私密视频| 色吧在线观看| 香蕉丝袜av| 午夜激情福利司机影院| 成人精品一区二区免费| 91字幕亚洲| 长腿黑丝高跟| 亚洲精华国产精华精| 首页视频小说图片口味搜索| 日本五十路高清| 成年版毛片免费区| 亚洲成人久久性| 午夜免费成人在线视频| 最新中文字幕久久久久 | 午夜免费激情av| 特大巨黑吊av在线直播| 精品国产乱子伦一区二区三区| 国产精品1区2区在线观看.| 搡老岳熟女国产| 国产黄a三级三级三级人| 国产精品久久视频播放| 国产成人影院久久av| 久久九九热精品免费| 首页视频小说图片口味搜索| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 曰老女人黄片| 午夜免费成人在线视频| 亚洲av美国av| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 91老司机精品| 婷婷精品国产亚洲av| 精品人妻1区二区| 99热只有精品国产| 国产成人精品无人区| 中文字幕精品亚洲无线码一区| 制服人妻中文乱码| 日本熟妇午夜| 日本五十路高清| 成年女人永久免费观看视频| 男人和女人高潮做爰伦理| 国产精品 欧美亚洲| 亚洲国产精品合色在线| 国产野战对白在线观看| 十八禁人妻一区二区| 亚洲人成网站高清观看| 最好的美女福利视频网| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| 美女cb高潮喷水在线观看 | 一个人免费在线观看电影 | 午夜福利免费观看在线| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 视频区欧美日本亚洲| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品综合一区二区三区| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 亚洲成人久久性| 国产精品av久久久久免费| 美女扒开内裤让男人捅视频| 999精品在线视频| 淫秽高清视频在线观看| 日本在线视频免费播放| 国内少妇人妻偷人精品xxx网站 | 成年女人看的毛片在线观看| 一个人免费在线观看电影 | or卡值多少钱| 国产aⅴ精品一区二区三区波| 午夜福利高清视频| 亚洲精华国产精华精| 亚洲avbb在线观看| 日本熟妇午夜| 神马国产精品三级电影在线观看| 99久久精品热视频| 嫩草影院入口| 最新在线观看一区二区三区| 国产伦精品一区二区三区四那| 国产极品精品免费视频能看的| 国产私拍福利视频在线观看| 夜夜爽天天搞| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻,人人澡人人爽秒播| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清专用| 久久热在线av| 亚洲人成网站在线播放欧美日韩| 99久久精品热视频| 久久精品91无色码中文字幕| 高清在线国产一区| 变态另类成人亚洲欧美熟女| 一进一出好大好爽视频| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区| 色在线成人网| 欧美日韩福利视频一区二区| 精品不卡国产一区二区三区| 日本a在线网址| 国产在线精品亚洲第一网站| 日本与韩国留学比较| 在线观看午夜福利视频| 免费看光身美女| 国产成年人精品一区二区| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 狠狠狠狠99中文字幕| xxx96com| 最新中文字幕久久久久 | 久久香蕉精品热| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 午夜视频精品福利| 亚洲精品久久国产高清桃花| 99国产精品一区二区三区| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 久久香蕉精品热| 免费看美女性在线毛片视频| 免费在线观看日本一区| 18禁国产床啪视频网站| 校园春色视频在线观看| 久久国产乱子伦精品免费另类| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器 | 国产精品一区二区三区四区久久| 久久伊人香网站| 韩国av一区二区三区四区| 国产91精品成人一区二区三区| 色视频www国产| 国产亚洲精品久久久久久毛片| 免费看美女性在线毛片视频| 日韩大尺度精品在线看网址| 免费av毛片视频| 精品无人区乱码1区二区| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 国产激情偷乱视频一区二区| 亚洲,欧美精品.| 成人av在线播放网站| 真实男女啪啪啪动态图| 两个人视频免费观看高清| www.熟女人妻精品国产| 国产午夜福利久久久久久| 亚洲国产精品sss在线观看| 91av网站免费观看| 成人18禁在线播放| 亚洲成人久久性| 国产精品九九99| 欧美黑人巨大hd| 欧美最黄视频在线播放免费| 美女大奶头视频| 免费看十八禁软件| 欧美日本视频| 久久香蕉精品热| 黄色女人牲交| 露出奶头的视频| 香蕉国产在线看| 日韩欧美在线二视频| 国产精品99久久久久久久久| 精品电影一区二区在线| 久久亚洲精品不卡| 免费高清视频大片| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 日韩欧美在线乱码| 国产精品综合久久久久久久免费| 亚洲中文av在线| 久久久色成人| 高清在线国产一区| 99精品在免费线老司机午夜| 国产亚洲av高清不卡| 国产又色又爽无遮挡免费看| 51午夜福利影视在线观看| e午夜精品久久久久久久| 亚洲国产日韩欧美精品在线观看 | 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 99热6这里只有精品| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 非洲黑人性xxxx精品又粗又长| 91在线观看av| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 国产真实乱freesex| 亚洲人成网站高清观看| 国产精品一区二区精品视频观看| 97人妻精品一区二区三区麻豆| 最近最新中文字幕大全免费视频| 亚洲天堂国产精品一区在线| 国产精品98久久久久久宅男小说| 18禁观看日本| 国产精品av视频在线免费观看| 亚洲七黄色美女视频| 欧美日韩一级在线毛片| 国产高清videossex| 久久国产精品影院| 国产美女午夜福利| 欧美成人免费av一区二区三区| 色综合婷婷激情| 国内揄拍国产精品人妻在线| 搡老妇女老女人老熟妇| 国产单亲对白刺激| av黄色大香蕉| 亚洲专区国产一区二区| 国产私拍福利视频在线观看| 国产成人精品久久二区二区91| 麻豆成人午夜福利视频| 黑人欧美特级aaaaaa片| 国内精品美女久久久久久| 日韩欧美三级三区| 在线观看午夜福利视频| 国产精品 欧美亚洲| 欧美日韩精品网址| av中文乱码字幕在线| 国产91精品成人一区二区三区| 岛国在线免费视频观看| 精品午夜福利视频在线观看一区| 欧美三级亚洲精品| 国产av不卡久久| 日韩av在线大香蕉| 成人18禁在线播放| 我的老师免费观看完整版| 久久精品国产清高在天天线| 青草久久国产| 日韩大尺度精品在线看网址| 不卡一级毛片| 床上黄色一级片| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| 不卡一级毛片| 丁香欧美五月| 久久香蕉国产精品| 国产精品久久视频播放| 亚洲欧美激情综合另类| 午夜成年电影在线免费观看| 欧美精品啪啪一区二区三区| 一进一出抽搐gif免费好疼| av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 两性夫妻黄色片| 激情在线观看视频在线高清| 日韩免费av在线播放| 久久久久久久精品吃奶| 美女被艹到高潮喷水动态| 国产毛片a区久久久久| 久久久久国产一级毛片高清牌| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 久久精品夜夜夜夜夜久久蜜豆| 青草久久国产| 久久久久国产精品人妻aⅴ院| 丰满的人妻完整版| 婷婷丁香在线五月| 久久久久亚洲av毛片大全| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看 | 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人妻少妇| 中亚洲国语对白在线视频| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 国产成人精品无人区| 成人欧美大片| 国产主播在线观看一区二区| 国产成人影院久久av| 国产精品亚洲美女久久久| 亚洲一区二区三区色噜噜| 国产高清视频在线观看网站| 精品一区二区三区视频在线 | 亚洲欧美日韩东京热| 男女床上黄色一级片免费看| 啪啪无遮挡十八禁网站| 欧美一级毛片孕妇| 国产精品国产高清国产av| 搡老岳熟女国产| 99国产精品一区二区蜜桃av| netflix在线观看网站| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 国内精品美女久久久久久| 亚洲国产欧美一区二区综合| 韩国av一区二区三区四区| 国产高清视频在线观看网站| 这个男人来自地球电影免费观看| 亚洲男人的天堂狠狠| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 又黄又粗又硬又大视频| 色综合站精品国产| 免费看日本二区| 曰老女人黄片| 岛国视频午夜一区免费看| 黄色片一级片一级黄色片| 精品不卡国产一区二区三区| 亚洲无线在线观看| 观看免费一级毛片| 最新中文字幕久久久久 | 校园春色视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲激情在线av| 久久午夜亚洲精品久久| 无限看片的www在线观看| 极品教师在线免费播放| 久久久久久久久免费视频了| 国产伦精品一区二区三区视频9 | 亚洲精品色激情综合| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美免费精品| www国产在线视频色| 精品福利观看| 久久精品影院6| 美女 人体艺术 gogo| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 久久久久久久精品吃奶| 亚洲精品乱码久久久v下载方式 | 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 免费看美女性在线毛片视频| av片东京热男人的天堂| 亚洲中文日韩欧美视频| av中文乱码字幕在线| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 男人舔女人的私密视频| 中国美女看黄片| 国产精品1区2区在线观看.| 一个人免费在线观看电影 | 在线免费观看的www视频| 国产精品 欧美亚洲| 亚洲国产看品久久| 最近在线观看免费完整版| 十八禁网站免费在线| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 国内揄拍国产精品人妻在线| 99久国产av精品| 日韩成人在线观看一区二区三区| 国产日本99.免费观看| 国产乱人视频| tocl精华| 精品国产亚洲在线| 丝袜人妻中文字幕| 激情在线观看视频在线高清| 日本a在线网址| 免费看日本二区| 国产激情久久老熟女| 欧美又色又爽又黄视频| 精品欧美国产一区二区三| 日本黄大片高清| 国产淫片久久久久久久久 | 露出奶头的视频| 欧美一级a爱片免费观看看| 搡老岳熟女国产| 一级作爱视频免费观看| 久久香蕉精品热| 日本与韩国留学比较| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕日韩| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 欧美大码av| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 中文字幕人成人乱码亚洲影| bbb黄色大片| 日本黄大片高清| 国产精华一区二区三区| h日本视频在线播放| 久久久久久久精品吃奶| 99国产精品一区二区三区| 国产精品av久久久久免费| 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 99热只有精品国产| 久久热在线av| 色吧在线观看| 国产综合懂色| 久久这里只有精品中国| 午夜成年电影在线免费观看| 亚洲片人在线观看| 亚洲男人的天堂狠狠| 最新中文字幕久久久久 | 黄色成人免费大全| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| 国产成人精品无人区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 窝窝影院91人妻| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 视频区欧美日本亚洲| 亚洲午夜理论影院| 精品久久久久久久末码| 国产精品久久久久久亚洲av鲁大| svipshipincom国产片| 色综合站精品国产| 国产精品1区2区在线观看.| 国产美女午夜福利| 国产高清激情床上av| 成人欧美大片| 男女视频在线观看网站免费| 国产视频一区二区在线看| 国产亚洲精品久久久com| 日韩欧美 国产精品| 99久久精品国产亚洲精品| 九九久久精品国产亚洲av麻豆 | 久久天堂一区二区三区四区| 亚洲成av人片在线播放无| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 国产 一区 欧美 日韩| 叶爱在线成人免费视频播放| 亚洲中文字幕日韩| 欧美中文日本在线观看视频| 中文字幕人妻丝袜一区二区| 少妇熟女aⅴ在线视频| 久久九九热精品免费| 91av网一区二区| 久久久久久久久免费视频了| 香蕉丝袜av| 亚洲中文字幕日韩| 免费看日本二区| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器 | 久99久视频精品免费| 在线观看一区二区三区| 成人一区二区视频在线观看| 夜夜爽天天搞| 神马国产精品三级电影在线观看| 中文在线观看免费www的网站| 叶爱在线成人免费视频播放| 国产99白浆流出| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 免费av不卡在线播放| 欧美色欧美亚洲另类二区| 丰满人妻一区二区三区视频av | 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 老汉色av国产亚洲站长工具| 成人国产综合亚洲| 午夜激情福利司机影院| 免费电影在线观看免费观看| 欧美绝顶高潮抽搐喷水| 国产淫片久久久久久久久 | 国产亚洲精品久久久久久毛片| 国产亚洲欧美98| 午夜免费观看网址| 搞女人的毛片| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 国产精品久久电影中文字幕| 88av欧美| 亚洲午夜精品一区,二区,三区| 热99re8久久精品国产| 午夜免费观看网址| 超碰成人久久| 女警被强在线播放| 色吧在线观看| 久久久久国产精品人妻aⅴ院| 女警被强在线播放| 色吧在线观看| 亚洲国产精品合色在线| 中文字幕精品亚洲无线码一区| 1024香蕉在线观看| 少妇熟女aⅴ在线视频| 狂野欧美白嫩少妇大欣赏| 国产91精品成人一区二区三区| 一个人看视频在线观看www免费 | 看黄色毛片网站| 午夜福利视频1000在线观看| 国产一区二区在线观看日韩 | 老司机福利观看| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 99精品久久久久人妻精品| 99久久精品热视频| 又黄又粗又硬又大视频| 可以在线观看的亚洲视频| 色吧在线观看| 国产毛片a区久久久久| 国内精品久久久久久久电影| 51午夜福利影视在线观看| av在线蜜桃| 国产精品久久电影中文字幕| 国产精品av久久久久免费| 日韩欧美 国产精品| 天堂影院成人在线观看| 日日干狠狠操夜夜爽| 国产精品影院久久| 怎么达到女性高潮| 成人无遮挡网站| 亚洲国产精品999在线|