• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering cerebral folding in brain organoids

    2022-11-23 12:52:50GlenScottYuHuang

    Glen Scott, Yu Huang

    Valuable implement to the animal neurological models:Neurological diseases remain the largest cause of death and disability.The discovery of effective therapies is chiefly hindered by the lack of realistic neurological models.Unlike other tissues, it is infeasible or unethical to access primary human neural samples in bulk.But animal models often fail to replicate the complex human-specific neuronal factors presentin vivo.Conventionalin vitrocultures lack native three-dimensional (3D) morphologies,polarity, and receptor expression, as well astissue-level interactions (Jensen et al., 2018).

    Human brain organoids (HBOs) are viable solutions to model complex human brain tissues.Their use has become essential in studying the pathology of various diseases,including the newly discovered neural infection of the SARS-CoV-2 virus (Ramani et al., 2020).Organoids are stem cell-derived 3D cultures that often self-organize into tissue-like structures (Jensen et al., 2018).Unlike the conventionalin vitrocultures,they mimic the complex morphology,architectures, and even functionality of the deriving human tissues.This mimicry permits their use in the etiology study in immediate relevance.Besides, organoids can arise from patient-derived cells, providing the hope of personalized medicine (Jensen et al., 2018).HBOs are organoids guided in a neuroepithelium path, recapitulating the human brain’s key structures and cell lineages.For instance, the lumen (brain cavity) and the surrounding ventricular zone are present in HBOs, but missing in otherin vitromodels.Such vital brain features supply neuron stem cells that maintain proper cerebral development.Their disruption results in abnormal neurogenesis or catastrophic neurodegeneration.

    Herein, we focus on the studies of gyrification, another key human brain structure that organoids may form.Gyrification is an essential and unique folding process of the human cortical brain.By increasing neuronal packing volume,gyrification maximizes the effective cortical surface area to support high-volume signaling and complex brain functionality(Tallinen et al., 2014).Its formation is not fully understood, but is considered the result of rapid growth and expansion of the cerebral cortex (an outer layer of the brain).As created from rapid growth and spatial confinement, the stresses lead to the buckling of the cortical layer into wavy structures, with outward ridges known as gyri and inward furrows called sulci (Figure 1A).As a unique feature for humans and some other primates, high-level gyrification is suggested essential to complex behaviors(e.g., language, social communication) (Del Maschio et al., 2019).In contrast, the brains of small animals (e.g., commonly used rodents) exhibit little to no gyrification.

    Gyrification-like folding in HBOs:Although gyrification-like folding sometimes appeared in the HBOs, it was seldomly characterized in these systems, substantially less than other structural features (e.g., lumens,ventricular zone).This is likely because the formation of these folding structures is highly inconsistent and mostly missing.More concerning, the formed folding is significantly weaker than the healthy human brain’s.Recently, techniques were explored to develop gyrification with deep folding and high reproducibility.These techniques can be grouped into three categories, as elaborated in this section.

    Induction through genetic manipulation:The phosphatase and tensin homolog(PTEN) gene was found to promote folding in HBOs.This gene mutation is pathologically linked to macrocephaly in humans (cortical overgrowth), by inducing rampant proliferation of neural progenitor cells and delaying terminal differentiation.Li and colleagues genetically inactivated PTEN in both human and mouse brain organoids through CRISPR-Cas9 (Li et al., 2017).After 4 weeks, the mutated human organoids exhibited clear signs of folding.After 6-8 weeks, PTEN-mutated HBOs had substantially increased in surface area, overall volume,and folding density (Figure 1B), while simultaneously decreasing sphericity.The same mutations also made the mouse organoids progressively larger, but did not significantly increase surface folding and remained smooth and spherical throughout their development.

    This PTEN-mutated human organoid was then used as an infection model for Zika virus.Within only 10 days after the viral infection, the organoid model displayed severely hampered growth in both size and surface folding.After infection, PTEN-mutated HBOs shrank to 30%, and their folding area density decreased from~1.7% to < 0.3%.Interestingly, the PTEN-mutated organoids were found significantly more susceptible to Zika viral infection.In particular, the regions associated with highlevel folding exhibited substantially increased cell apoptosis.This is not surprising because the PTEN mutation enriched these folded regions with NP cells (Li et al., 2017),which are major targets of the Zika virus(Ramani et al., 2020).Thus, such genetic manipulation successfully created highlevel cortical folding and modeled the degenerated folding in diseased conditions.However, there is a major concern about the PTEN mutation, which is well known to lead to macrocephaly disorder and tumoral phenotype.By genetically inducing excessive neural proliferation, this model is questionable in representing a healthy brain vs.macrocephaly and tumoral conditions.

    A similar study induced folding in HBOs through G protein-coupled receptors.Wang et al.(2020) discovered that the dopamine D1 receptor plays a vital role in the embryonic brain by influencing the differentiation and proliferation level of neural stem cells.By inhibiting the dopamine D1 receptors, they could increase the proliferation and hinder the differentiation of human neural stem cells, thus inducing excessive expansion and folding in cerebral organoids.This was accomplished in two routes, either by inhibiting the receptor directly with its inverse agonists or through CRISPR-Cas9 introducing a point mutation(A229T).The mutated organoids increased in volume from 0.5 to 0.7 mm3and in surface area from 4 to 6 mm2compared to the control group (Figure 1C), while the sphericity was reduced to half the control value.The folding density increased from virtually zero to 4% of the total area in the mutated organoids.In contrast, the control group maintained a smooth surface with a folding density of essentially zero (Wang et al., 2020).

    NR2F1 is another gene that potentially regulates brain folding.TheNR2F1gene is implicated with Boonstra-Bosch-Schaff optic atrophy syndrome, a rare disorder related to the structurally malformed parietal and occipital cortex, causing vision impairment and intellectual disability in human patients.Bertacchi et al.(2020)explored the role of theNR2F1gene as an area-specific transcriptional regulator for brain morphology.In mouse animal models,they found eliminating NR2F1 expression upregulated PAX6, a cortical area patterning gene that promoted neural proliferation and neurogenesis.The resulting mouse brains exhibited malformations similar to Boonstra-Bosch-Schaff optic atrophy syndrome patients.Similarly increased PAX6 expression was also observed in HBOs, where NR2F1 was genetically down-regulated.These studies demonstrated that NR2F1 controls factors which are typically associated with increased folding (i.e., cell proliferation,delayed differentiation) (Bertacchi et al.,2020).Although no increased folding was directly measured, they proposed that the NR2F1 gene orchestrates cortical size and folding, which are intriguing to HBO researchers.

    All the above studies targeted the genes and transcription factors that regulate the levels of proliferation and differentiation in the brain.This is reasonable, as the HBOs aim to recreate a developmental process thatwould take 4-5 times longer in the native human body.Thus, means to expedite this developmental process may sometimes be inevitable.This effect may be specific to the human organoids, as suggested in the PTEN study (Li et al., 2017).However, we should also be aware of its potential danger to introduce over-proliferation characteristics or even tumoral behaviors into the organoids.

    Promotion through mechanical interaction:Another promising approach was explored that induces folding through the mechanical confinement during the embryoid body(EB) formation.EB is the precursor of HBOs and a special spheroid that forms three developmental germ layers (i.e.,endoderm, ectoderm, mesoderm).Although spheroids were commonly generated using this method, no HBO formation has been explored via the microwell-cultured EBs until recently.

    Our lab generated organoids through microwell-cultured EBs, devoid of using Matrigel.The resulting organoids demonstrated typical 3D organoid structures(e.g., lumen) in the conventional Matrigelpresent methods.These 3D-printed microwells were tunable in shape and size,and subsequently, the physical confinement(Chen et al., 2020).The more confined microwells were found to generate larger organoids, suggesting promoted proliferation.Moreover, the folding level was also highly promoted by the confinement,measured by the wrinkling index (WI).WI is a 2D measurement of gyrification, defined as the ratio of the length of the organoid outline to the circumference of a circle with a similar area (Figure 1D).A higher WI indicates deeper folding.By day 20,the most optimized microwell achieved a wrinkling factor of more than 1.5.The device with these results was a high-resolution 3D printed device with a curved base.This value is comparable to that of a neonatal human brain, but achieved in a remarkedly shorter period.

    Karzbrun et al.(2018) cultured “organoids”in a microfluidic device, an even more confined space that squashed the EBs into a 150 μm tall laminated slice.These were not classical organoids, as the formation of 3D structures and culture lifespan were limited.Yet, the flattened layout provided a unique imaging advantage, so that individual cell movement was successfully traced and demonstrated inter-layer migration of cells during the wrinkling formation (Karzbrun et al., 2018).Also, the strong confinement in the z-dimension seemed to introduce deep folding, based on the WI measurement(Figure 1E).By day 20, their organoids achieved a WI > 2, which is even higher than the microwell-formed ones, although only 2D.

    Rothenbücher and colleagues created another brain organoid with a flattened morphology, calling them engineered flat brain organoids.They accomplished this byseeding EBs on a sheet of are honeycombshaped scaffold, which was 3D-printed out of polycaprolactone.The flattened morphology was created to better facilitate the diffusion of nutrients, and better tuning the tissue characteristics.Strong folding was observed after 20 days of culturing, although the gyrification level was not quantified.The researchers believed that the elongated cell migration path and a high number of starting cells gave rise to a high number of NPs, leading to gyrification (Rothenbücher et al., 2021).However, this folding occurred primarily in the ventricle zone, unlike other systems that generate folding in more matured cortical layers.

    Theoretical studies:Cortical folding can be easily realized in mathematical models,which could provide a powerful complement to futurein vitroHBO studies.Although impossible to function directly as the etiology models, the theoretical studies provided exciting insights into the underlying mechanism of folding.Engstrom and colleagues’ mathematical model recreated out-of-phase oscillations (miss-alignment of thick portions between layers).This behavior exists in the cerebellum and HBOs,but contradicts the theory that the elastic instability/mismatch induces tissue folding(Engstrom et al., 2018).Per the simulated result, it requires the exchanges of neighbor cells in a fluidlike matter to attain the cerebellum’s unique shapes.Their model can also be used to infer the tissue cell types and quantity from tissue morphology.

    Tallinen et al.(2014) built a finite element model to simulate the folding process and deep sulci formation.Their model demonstrated that gyrification is a nonlinear consequence of mechanical instability(buckling) driven by the tangential expansion of the gray matter constrained by the white matter.Various folding characteristics were derived through this model, including gyrification extent, sulcus dimensions, and folding morphology (Figure 1F).These characteristics were determined by the tangential expansion rate and relative brain size, highly consistent within vivoobservations and their physical model(Tallinen et al., 2014).

    Summary and future perspectives:Most of the above studies increased gyrification to or near the human brain level.But the based measurements vary from the volume, surface area, WI, sphericity, to folding density.Lack of standardized measurement or conversion makes it hard to compare these studies to each other and to the native brain that uses the 3D gyrification index (the area ratio of surface to convex hull).Furthermore,these studies neglected the subtle variation of folding levels within the brain, which ranges widely from one region to another(Del Maschio et al., 2019).It is critical for the models to fine-tune the folding level to the desired range accordingly.Levels of folding also vary with the organism’s age,an important consideration when setting up experiments (Del Maschio et al., 2019).

    Further studies are still needed.Genetic methods of inducing folding often relied on over-proliferative neural growth.This raises concerns about yielding a tumoral genotype,which needs to be comprehensively assessed in follow-up studies.In contrast,the physical-constraint methods through micro-devices elegantly circumvented this problem by posing an alternative to genetic manipulation.Their moderate effects on promoting proliferation and folding were thought to attribute to the constraintinduced mechanical instability.Followup studies should define the underlying molecular mechanism of how HBOs translate mechanical instability into folding stimuli.Furthermore, response tests of these microengineered models to neurodegenerative conditions (ZIKA, traumatic brain injury, etc.)are desired.This could provide insight into whether the mechanically induced folding can be used to model diseases, compared to genetically mutated ones.

    The mathematical models have demonstrated powerful prototypability by providing rapid results with high-volume iterations.They can also complement the biological models with more faithful features.For example, the PTEN-mutated organoids often lack deep sulcus, which is easy to create in the finite element model.But currently, further applications suffer from the lack of live model support in initiating parameters and verifying the results.Better integration of mathematical and live models in organoid folding would foster unprecedented new opportunities that further our understanding of how gyrification occurs.

    GS was partially supported by USU’s Engineering Undergraduate Research Program; GS and YH were partially supported by NIH NIGMS fund, No.R15GM132877; YH was also partially supported by NIH NIGMS fund, No.R35GM143194.

    Glen Scott, Yu Huang*Biological Engineering, College of Engineering,Utah State University, Logan, UT, USA

    *Correspondence to:Yu Huang, PhD,yu.huang@usu.edu.https://orcid.org/0000-0002-1859-3380(Yu Huang)

    Date of submission:July 18, 2021

    Date of decision:September 2, 2021

    Date of acceptance:November 14, 2021

    Date of web publication:March 23, 2022

    https://doi.org/10.4103/1673-5374.335789

    How to cite this article:Scott G, Huang Y (2022)Engineering cerebral folding in brain organoids.Neural Regen Res 17(11):2420-2422.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License,which allows others to remix, tweak, and buildupon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    午夜精品国产一区二区电影| 国产av在哪里看| 男女之事视频高清在线观看| 麻豆久久精品国产亚洲av| 欧美中文综合在线视频| 亚洲国产欧美一区二区综合| 亚洲男人天堂网一区| 久久国产精品影院| 精品第一国产精品| 操美女的视频在线观看| 一边摸一边抽搐一进一小说| 丝袜美腿诱惑在线| 琪琪午夜伦伦电影理论片6080| 亚洲,欧美精品.| 久久久国产欧美日韩av| 国产精品久久久久久亚洲av鲁大| 亚洲激情在线av| 国产一区二区激情短视频| av视频在线观看入口| 操出白浆在线播放| 老司机福利观看| 精品久久久久久久久久免费视频| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频不卡| bbb黄色大片| 亚洲精品国产一区二区精华液| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 美女大奶头视频| 亚洲,欧美精品.| 91av网站免费观看| 成年女人毛片免费观看观看9| 91大片在线观看| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 在线观看一区二区三区| 国产亚洲精品久久久久5区| 一本久久中文字幕| 黄色丝袜av网址大全| 美国免费a级毛片| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲欧美一区二区三区黑人| 很黄的视频免费| 亚洲精品国产一区二区精华液| 国产1区2区3区精品| 中文亚洲av片在线观看爽| 亚洲伊人色综图| 国产免费av片在线观看野外av| or卡值多少钱| 波多野结衣一区麻豆| 色综合欧美亚洲国产小说| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 在线观看一区二区三区| 亚洲成人国产一区在线观看| 最近最新中文字幕大全免费视频| 老司机午夜十八禁免费视频| 国产99久久九九免费精品| 欧美国产精品va在线观看不卡| 韩国av一区二区三区四区| 一级a爱视频在线免费观看| 婷婷精品国产亚洲av在线| 亚洲国产看品久久| 91av网站免费观看| 成人手机av| 精品久久久久久成人av| 好看av亚洲va欧美ⅴa在| 国产亚洲精品久久久久久毛片| 无遮挡黄片免费观看| www.999成人在线观看| 搡老妇女老女人老熟妇| 午夜成年电影在线免费观看| 国产伦一二天堂av在线观看| ponron亚洲| 欧美在线黄色| 欧美日韩中文字幕国产精品一区二区三区 | 少妇被粗大的猛进出69影院| 久久久久九九精品影院| 国产日韩一区二区三区精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 亚洲国产精品成人综合色| 一个人免费在线观看的高清视频| 午夜亚洲福利在线播放| 91av网站免费观看| 香蕉丝袜av| 中文字幕另类日韩欧美亚洲嫩草| 高清毛片免费观看视频网站| 国内精品久久久久久久电影| 国产熟女午夜一区二区三区| 母亲3免费完整高清在线观看| 亚洲无线在线观看| 后天国语完整版免费观看| 美女高潮到喷水免费观看| 大型av网站在线播放| 在线观看免费午夜福利视频| 亚洲一区二区三区不卡视频| 亚洲美女黄片视频| 国产午夜精品久久久久久| 日韩高清综合在线| 日韩大尺度精品在线看网址 | 丁香欧美五月| 国内毛片毛片毛片毛片毛片| 操美女的视频在线观看| 精品久久久久久久人妻蜜臀av | 婷婷精品国产亚洲av在线| 国产成年人精品一区二区| 日本 欧美在线| www.www免费av| 国产av又大| 欧美国产精品va在线观看不卡| 国产精品精品国产色婷婷| 久久天堂一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 天天一区二区日本电影三级 | 女人爽到高潮嗷嗷叫在线视频| www日本在线高清视频| 少妇 在线观看| 在线国产一区二区在线| 少妇的丰满在线观看| 亚洲欧美精品综合久久99| 国产精品久久电影中文字幕| 两个人看的免费小视频| 久久精品亚洲熟妇少妇任你| 咕卡用的链子| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 侵犯人妻中文字幕一二三四区| 男人舔女人下体高潮全视频| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| 久久久久国产精品人妻aⅴ院| 好男人电影高清在线观看| 1024香蕉在线观看| 一本久久中文字幕| 日韩大尺度精品在线看网址 | 亚洲成av片中文字幕在线观看| 亚洲精品中文字幕一二三四区| 欧美中文日本在线观看视频| av免费在线观看网站| 国产男靠女视频免费网站| 午夜福利,免费看| 日韩高清综合在线| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 国产不卡一卡二| 大型av网站在线播放| 黄色丝袜av网址大全| 成人国产综合亚洲| 在线天堂中文资源库| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 波多野结衣高清无吗| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 午夜激情av网站| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 脱女人内裤的视频| 91字幕亚洲| 国产一卡二卡三卡精品| 午夜免费激情av| 一级毛片精品| 在线视频色国产色| 日本免费a在线| 在线播放国产精品三级| av免费在线观看网站| 精品国产一区二区三区四区第35| tocl精华| 久久精品国产综合久久久| 国产精品综合久久久久久久免费 | 精品人妻在线不人妻| 制服诱惑二区| 一本综合久久免费| 老汉色∧v一级毛片| 最好的美女福利视频网| 看免费av毛片| 丁香六月欧美| 欧美黄色淫秽网站| 国产亚洲av嫩草精品影院| 国产麻豆成人av免费视频| 成人18禁高潮啪啪吃奶动态图| 久久精品国产综合久久久| 激情在线观看视频在线高清| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区三| 最近最新免费中文字幕在线| 午夜老司机福利片| 日韩大尺度精品在线看网址 | 午夜福利免费观看在线| 黄片大片在线免费观看| 国产单亲对白刺激| 亚洲成av人片免费观看| or卡值多少钱| 嫩草影视91久久| 亚洲 国产 在线| 精品国产超薄肉色丝袜足j| 国产片内射在线| 级片在线观看| 一区二区三区国产精品乱码| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 免费搜索国产男女视频| 国产欧美日韩一区二区精品| 久久久国产成人精品二区| 国产精品一区二区在线不卡| 午夜激情av网站| av视频免费观看在线观看| 久久午夜亚洲精品久久| av电影中文网址| 国产一卡二卡三卡精品| 国产成人av教育| 精品福利观看| 免费观看人在逋| 国产成人欧美在线观看| 9191精品国产免费久久| 日韩欧美一区二区三区在线观看| 久9热在线精品视频| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 91av网站免费观看| 9色porny在线观看| 嫩草影视91久久| 久久亚洲真实| 丁香六月欧美| 99re在线观看精品视频| 黄片大片在线免费观看| 久久国产亚洲av麻豆专区| 免费看a级黄色片| 一个人观看的视频www高清免费观看 | 99在线人妻在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 不卡一级毛片| 亚洲av电影在线进入| 亚洲天堂国产精品一区在线| 老熟妇仑乱视频hdxx| 精品久久久久久久毛片微露脸| bbb黄色大片| 一边摸一边抽搐一进一出视频| 久久久水蜜桃国产精品网| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲美女久久久| 免费在线观看完整版高清| 一级作爱视频免费观看| 在线十欧美十亚洲十日本专区| 黄色女人牲交| 黄片大片在线免费观看| 在线国产一区二区在线| 国产在线观看jvid| 国产色视频综合| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| 满18在线观看网站| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆 | 亚洲成人免费电影在线观看| 亚洲国产精品成人综合色| 成人精品一区二区免费| 激情视频va一区二区三区| 搡老妇女老女人老熟妇| 色播在线永久视频| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 在线观看免费视频网站a站| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 国产精品久久久久久亚洲av鲁大| 国产高清有码在线观看视频 | 啦啦啦免费观看视频1| 久久久国产成人免费| 一级毛片精品| 国产一区在线观看成人免费| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 免费高清视频大片| 久久热在线av| 99久久久亚洲精品蜜臀av| 日韩av在线大香蕉| 日日夜夜操网爽| 国产蜜桃级精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 天堂动漫精品| 亚洲成国产人片在线观看| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩黄片免| 精品免费久久久久久久清纯| 91九色精品人成在线观看| 欧美精品亚洲一区二区| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 波多野结衣av一区二区av| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 在线天堂中文资源库| 人妻久久中文字幕网| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| svipshipincom国产片| 一区二区三区高清视频在线| 99国产精品一区二区蜜桃av| 午夜福利影视在线免费观看| 国产成年人精品一区二区| 很黄的视频免费| 纯流量卡能插随身wifi吗| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 国产一卡二卡三卡精品| 日韩高清综合在线| 最新美女视频免费是黄的| 在线国产一区二区在线| 少妇粗大呻吟视频| 欧美激情 高清一区二区三区| 高清黄色对白视频在线免费看| 首页视频小说图片口味搜索| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 91成人精品电影| 黄色视频,在线免费观看| 日日干狠狠操夜夜爽| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 免费在线观看影片大全网站| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清 | 欧美中文综合在线视频| 午夜视频精品福利| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 久久精品91无色码中文字幕| 91在线观看av| 91麻豆精品激情在线观看国产| 国产区一区二久久| 纯流量卡能插随身wifi吗| 69av精品久久久久久| 最近最新中文字幕大全电影3 | www.精华液| 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 一级毛片高清免费大全| 亚洲自拍偷在线| 午夜a级毛片| 亚洲五月天丁香| 亚洲色图综合在线观看| 午夜免费观看网址| 久久人妻av系列| 中文亚洲av片在线观看爽| 日本 欧美在线| 亚洲专区字幕在线| 99国产精品免费福利视频| 亚洲在线自拍视频| 美女午夜性视频免费| 欧美色视频一区免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美日韩在线播放| 一级作爱视频免费观看| 成人国产一区最新在线观看| 亚洲人成电影观看| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 一级毛片精品| 欧美在线黄色| 成人18禁在线播放| 波多野结衣高清无吗| 人人妻人人澡人人看| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av| 青草久久国产| 欧美不卡视频在线免费观看 | 少妇 在线观看| 国产精品一区二区在线不卡| 亚洲第一av免费看| 丁香欧美五月| 亚洲片人在线观看| 性少妇av在线| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看视频国产中文字幕亚洲| 我的亚洲天堂| 亚洲国产看品久久| 免费看美女性在线毛片视频| 日韩一卡2卡3卡4卡2021年| 亚洲成人免费电影在线观看| 涩涩av久久男人的天堂| 国产精华一区二区三区| 嫁个100分男人电影在线观看| 在线播放国产精品三级| 此物有八面人人有两片| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 长腿黑丝高跟| 欧美大码av| 国产成人欧美| 精品欧美国产一区二区三| 悠悠久久av| 老汉色av国产亚洲站长工具| 久久久水蜜桃国产精品网| 成人三级做爰电影| 在线观看一区二区三区| av片东京热男人的天堂| ponron亚洲| 好男人在线观看高清免费视频 | 首页视频小说图片口味搜索| www.自偷自拍.com| 国产精品精品国产色婷婷| 国产成人欧美在线观看| 久久人人精品亚洲av| bbb黄色大片| www日本在线高清视频| 一夜夜www| 在线观看舔阴道视频| 亚洲成人国产一区在线观看| 人成视频在线观看免费观看| 夜夜躁狠狠躁天天躁| 一区二区日韩欧美中文字幕| 国产精品美女特级片免费视频播放器 | 91av网站免费观看| 欧美中文日本在线观看视频| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 精品欧美国产一区二区三| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| cao死你这个sao货| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮喷水抽搐中文字幕| 最新美女视频免费是黄的| 国产免费av片在线观看野外av| 国产亚洲欧美精品永久| 97碰自拍视频| 国产国语露脸激情在线看| 老熟妇乱子伦视频在线观看| 给我免费播放毛片高清在线观看| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 搡老妇女老女人老熟妇| 老司机午夜十八禁免费视频| 精品国产乱子伦一区二区三区| 亚洲国产高清在线一区二区三 | 精品人妻在线不人妻| 久久伊人香网站| 国产又爽黄色视频| 国产麻豆成人av免费视频| 亚洲国产欧美日韩在线播放| 成人手机av| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| 91字幕亚洲| 三级毛片av免费| 日韩成人在线观看一区二区三区| 久久久国产成人精品二区| 久久婷婷人人爽人人干人人爱 | 亚洲人成网站在线播放欧美日韩| 欧美日韩一级在线毛片| 日韩免费av在线播放| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 亚洲男人的天堂狠狠| 国产在线观看jvid| 9色porny在线观看| 深夜精品福利| 亚洲av片天天在线观看| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| www.www免费av| 国产精品98久久久久久宅男小说| 免费看十八禁软件| 黄网站色视频无遮挡免费观看| 十八禁人妻一区二区| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| 国产成人系列免费观看| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 一本大道久久a久久精品| 久久精品国产亚洲av高清一级| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲狠狠婷婷综合久久图片| 搡老妇女老女人老熟妇| 中文字幕av电影在线播放| 久久精品人人爽人人爽视色| 日本三级黄在线观看| 国产一区在线观看成人免费| √禁漫天堂资源中文www| 午夜a级毛片| 亚洲精华国产精华精| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 一级作爱视频免费观看| 欧美+亚洲+日韩+国产| 女人精品久久久久毛片| 亚洲国产精品sss在线观看| 欧美一级毛片孕妇| 久久狼人影院| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 天天一区二区日本电影三级 | 国产精品二区激情视频| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 国产麻豆成人av免费视频| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 午夜福利影视在线免费观看| 国产精品久久视频播放| 亚洲专区国产一区二区| 99国产综合亚洲精品| 欧美成人免费av一区二区三区| 日本 av在线| 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 日本免费a在线| 精品国产超薄肉色丝袜足j| 国产午夜精品久久久久久| 看黄色毛片网站| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| av欧美777| 久久国产亚洲av麻豆专区| 天天添夜夜摸| 色尼玛亚洲综合影院| 午夜福利免费观看在线| 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 国产精品久久电影中文字幕| 亚洲第一青青草原| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久人妻精品电影| 多毛熟女@视频| 成人永久免费在线观看视频| 51午夜福利影视在线观看| 欧美国产精品va在线观看不卡| 国产伦人伦偷精品视频| 国产精品98久久久久久宅男小说| 搡老岳熟女国产| 69av精品久久久久久| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 国产片内射在线| 午夜福利,免费看| 中文字幕精品免费在线观看视频| videosex国产| 欧美性长视频在线观看| 亚洲成人精品中文字幕电影| 黄色片一级片一级黄色片| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 一进一出好大好爽视频| 欧美中文日本在线观看视频| 国产精品久久久久久精品电影 | 国产精品 国内视频| 久久精品91蜜桃| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看 | 啦啦啦免费观看视频1| 91大片在线观看| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 啦啦啦 在线观看视频| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人一区二区三| 久久性视频一级片| 婷婷精品国产亚洲av在线| 成人亚洲精品av一区二区| 欧美国产精品va在线观看不卡| 亚洲中文av在线| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 国产一区二区三区在线臀色熟女| 一二三四在线观看免费中文在| 精品国产美女av久久久久小说| 黑人操中国人逼视频| 性色av乱码一区二区三区2| 亚洲国产欧美日韩在线播放| 18禁裸乳无遮挡免费网站照片 | 午夜日韩欧美国产| а√天堂www在线а√下载| 久久久久久人人人人人| 伦理电影免费视频| 性色av乱码一区二区三区2| 午夜精品国产一区二区电影| 亚洲欧洲精品一区二区精品久久久| 少妇裸体淫交视频免费看高清 | 亚洲性夜色夜夜综合| 9色porny在线观看| 亚洲九九香蕉| 亚洲中文字幕日韩|