• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering cerebral folding in brain organoids

    2022-11-23 12:52:50GlenScottYuHuang

    Glen Scott, Yu Huang

    Valuable implement to the animal neurological models:Neurological diseases remain the largest cause of death and disability.The discovery of effective therapies is chiefly hindered by the lack of realistic neurological models.Unlike other tissues, it is infeasible or unethical to access primary human neural samples in bulk.But animal models often fail to replicate the complex human-specific neuronal factors presentin vivo.Conventionalin vitrocultures lack native three-dimensional (3D) morphologies,polarity, and receptor expression, as well astissue-level interactions (Jensen et al., 2018).

    Human brain organoids (HBOs) are viable solutions to model complex human brain tissues.Their use has become essential in studying the pathology of various diseases,including the newly discovered neural infection of the SARS-CoV-2 virus (Ramani et al., 2020).Organoids are stem cell-derived 3D cultures that often self-organize into tissue-like structures (Jensen et al., 2018).Unlike the conventionalin vitrocultures,they mimic the complex morphology,architectures, and even functionality of the deriving human tissues.This mimicry permits their use in the etiology study in immediate relevance.Besides, organoids can arise from patient-derived cells, providing the hope of personalized medicine (Jensen et al., 2018).HBOs are organoids guided in a neuroepithelium path, recapitulating the human brain’s key structures and cell lineages.For instance, the lumen (brain cavity) and the surrounding ventricular zone are present in HBOs, but missing in otherin vitromodels.Such vital brain features supply neuron stem cells that maintain proper cerebral development.Their disruption results in abnormal neurogenesis or catastrophic neurodegeneration.

    Herein, we focus on the studies of gyrification, another key human brain structure that organoids may form.Gyrification is an essential and unique folding process of the human cortical brain.By increasing neuronal packing volume,gyrification maximizes the effective cortical surface area to support high-volume signaling and complex brain functionality(Tallinen et al., 2014).Its formation is not fully understood, but is considered the result of rapid growth and expansion of the cerebral cortex (an outer layer of the brain).As created from rapid growth and spatial confinement, the stresses lead to the buckling of the cortical layer into wavy structures, with outward ridges known as gyri and inward furrows called sulci (Figure 1A).As a unique feature for humans and some other primates, high-level gyrification is suggested essential to complex behaviors(e.g., language, social communication) (Del Maschio et al., 2019).In contrast, the brains of small animals (e.g., commonly used rodents) exhibit little to no gyrification.

    Gyrification-like folding in HBOs:Although gyrification-like folding sometimes appeared in the HBOs, it was seldomly characterized in these systems, substantially less than other structural features (e.g., lumens,ventricular zone).This is likely because the formation of these folding structures is highly inconsistent and mostly missing.More concerning, the formed folding is significantly weaker than the healthy human brain’s.Recently, techniques were explored to develop gyrification with deep folding and high reproducibility.These techniques can be grouped into three categories, as elaborated in this section.

    Induction through genetic manipulation:The phosphatase and tensin homolog(PTEN) gene was found to promote folding in HBOs.This gene mutation is pathologically linked to macrocephaly in humans (cortical overgrowth), by inducing rampant proliferation of neural progenitor cells and delaying terminal differentiation.Li and colleagues genetically inactivated PTEN in both human and mouse brain organoids through CRISPR-Cas9 (Li et al., 2017).After 4 weeks, the mutated human organoids exhibited clear signs of folding.After 6-8 weeks, PTEN-mutated HBOs had substantially increased in surface area, overall volume,and folding density (Figure 1B), while simultaneously decreasing sphericity.The same mutations also made the mouse organoids progressively larger, but did not significantly increase surface folding and remained smooth and spherical throughout their development.

    This PTEN-mutated human organoid was then used as an infection model for Zika virus.Within only 10 days after the viral infection, the organoid model displayed severely hampered growth in both size and surface folding.After infection, PTEN-mutated HBOs shrank to 30%, and their folding area density decreased from~1.7% to < 0.3%.Interestingly, the PTEN-mutated organoids were found significantly more susceptible to Zika viral infection.In particular, the regions associated with highlevel folding exhibited substantially increased cell apoptosis.This is not surprising because the PTEN mutation enriched these folded regions with NP cells (Li et al., 2017),which are major targets of the Zika virus(Ramani et al., 2020).Thus, such genetic manipulation successfully created highlevel cortical folding and modeled the degenerated folding in diseased conditions.However, there is a major concern about the PTEN mutation, which is well known to lead to macrocephaly disorder and tumoral phenotype.By genetically inducing excessive neural proliferation, this model is questionable in representing a healthy brain vs.macrocephaly and tumoral conditions.

    A similar study induced folding in HBOs through G protein-coupled receptors.Wang et al.(2020) discovered that the dopamine D1 receptor plays a vital role in the embryonic brain by influencing the differentiation and proliferation level of neural stem cells.By inhibiting the dopamine D1 receptors, they could increase the proliferation and hinder the differentiation of human neural stem cells, thus inducing excessive expansion and folding in cerebral organoids.This was accomplished in two routes, either by inhibiting the receptor directly with its inverse agonists or through CRISPR-Cas9 introducing a point mutation(A229T).The mutated organoids increased in volume from 0.5 to 0.7 mm3and in surface area from 4 to 6 mm2compared to the control group (Figure 1C), while the sphericity was reduced to half the control value.The folding density increased from virtually zero to 4% of the total area in the mutated organoids.In contrast, the control group maintained a smooth surface with a folding density of essentially zero (Wang et al., 2020).

    NR2F1 is another gene that potentially regulates brain folding.TheNR2F1gene is implicated with Boonstra-Bosch-Schaff optic atrophy syndrome, a rare disorder related to the structurally malformed parietal and occipital cortex, causing vision impairment and intellectual disability in human patients.Bertacchi et al.(2020)explored the role of theNR2F1gene as an area-specific transcriptional regulator for brain morphology.In mouse animal models,they found eliminating NR2F1 expression upregulated PAX6, a cortical area patterning gene that promoted neural proliferation and neurogenesis.The resulting mouse brains exhibited malformations similar to Boonstra-Bosch-Schaff optic atrophy syndrome patients.Similarly increased PAX6 expression was also observed in HBOs, where NR2F1 was genetically down-regulated.These studies demonstrated that NR2F1 controls factors which are typically associated with increased folding (i.e., cell proliferation,delayed differentiation) (Bertacchi et al.,2020).Although no increased folding was directly measured, they proposed that the NR2F1 gene orchestrates cortical size and folding, which are intriguing to HBO researchers.

    All the above studies targeted the genes and transcription factors that regulate the levels of proliferation and differentiation in the brain.This is reasonable, as the HBOs aim to recreate a developmental process thatwould take 4-5 times longer in the native human body.Thus, means to expedite this developmental process may sometimes be inevitable.This effect may be specific to the human organoids, as suggested in the PTEN study (Li et al., 2017).However, we should also be aware of its potential danger to introduce over-proliferation characteristics or even tumoral behaviors into the organoids.

    Promotion through mechanical interaction:Another promising approach was explored that induces folding through the mechanical confinement during the embryoid body(EB) formation.EB is the precursor of HBOs and a special spheroid that forms three developmental germ layers (i.e.,endoderm, ectoderm, mesoderm).Although spheroids were commonly generated using this method, no HBO formation has been explored via the microwell-cultured EBs until recently.

    Our lab generated organoids through microwell-cultured EBs, devoid of using Matrigel.The resulting organoids demonstrated typical 3D organoid structures(e.g., lumen) in the conventional Matrigelpresent methods.These 3D-printed microwells were tunable in shape and size,and subsequently, the physical confinement(Chen et al., 2020).The more confined microwells were found to generate larger organoids, suggesting promoted proliferation.Moreover, the folding level was also highly promoted by the confinement,measured by the wrinkling index (WI).WI is a 2D measurement of gyrification, defined as the ratio of the length of the organoid outline to the circumference of a circle with a similar area (Figure 1D).A higher WI indicates deeper folding.By day 20,the most optimized microwell achieved a wrinkling factor of more than 1.5.The device with these results was a high-resolution 3D printed device with a curved base.This value is comparable to that of a neonatal human brain, but achieved in a remarkedly shorter period.

    Karzbrun et al.(2018) cultured “organoids”in a microfluidic device, an even more confined space that squashed the EBs into a 150 μm tall laminated slice.These were not classical organoids, as the formation of 3D structures and culture lifespan were limited.Yet, the flattened layout provided a unique imaging advantage, so that individual cell movement was successfully traced and demonstrated inter-layer migration of cells during the wrinkling formation (Karzbrun et al., 2018).Also, the strong confinement in the z-dimension seemed to introduce deep folding, based on the WI measurement(Figure 1E).By day 20, their organoids achieved a WI > 2, which is even higher than the microwell-formed ones, although only 2D.

    Rothenbücher and colleagues created another brain organoid with a flattened morphology, calling them engineered flat brain organoids.They accomplished this byseeding EBs on a sheet of are honeycombshaped scaffold, which was 3D-printed out of polycaprolactone.The flattened morphology was created to better facilitate the diffusion of nutrients, and better tuning the tissue characteristics.Strong folding was observed after 20 days of culturing, although the gyrification level was not quantified.The researchers believed that the elongated cell migration path and a high number of starting cells gave rise to a high number of NPs, leading to gyrification (Rothenbücher et al., 2021).However, this folding occurred primarily in the ventricle zone, unlike other systems that generate folding in more matured cortical layers.

    Theoretical studies:Cortical folding can be easily realized in mathematical models,which could provide a powerful complement to futurein vitroHBO studies.Although impossible to function directly as the etiology models, the theoretical studies provided exciting insights into the underlying mechanism of folding.Engstrom and colleagues’ mathematical model recreated out-of-phase oscillations (miss-alignment of thick portions between layers).This behavior exists in the cerebellum and HBOs,but contradicts the theory that the elastic instability/mismatch induces tissue folding(Engstrom et al., 2018).Per the simulated result, it requires the exchanges of neighbor cells in a fluidlike matter to attain the cerebellum’s unique shapes.Their model can also be used to infer the tissue cell types and quantity from tissue morphology.

    Tallinen et al.(2014) built a finite element model to simulate the folding process and deep sulci formation.Their model demonstrated that gyrification is a nonlinear consequence of mechanical instability(buckling) driven by the tangential expansion of the gray matter constrained by the white matter.Various folding characteristics were derived through this model, including gyrification extent, sulcus dimensions, and folding morphology (Figure 1F).These characteristics were determined by the tangential expansion rate and relative brain size, highly consistent within vivoobservations and their physical model(Tallinen et al., 2014).

    Summary and future perspectives:Most of the above studies increased gyrification to or near the human brain level.But the based measurements vary from the volume, surface area, WI, sphericity, to folding density.Lack of standardized measurement or conversion makes it hard to compare these studies to each other and to the native brain that uses the 3D gyrification index (the area ratio of surface to convex hull).Furthermore,these studies neglected the subtle variation of folding levels within the brain, which ranges widely from one region to another(Del Maschio et al., 2019).It is critical for the models to fine-tune the folding level to the desired range accordingly.Levels of folding also vary with the organism’s age,an important consideration when setting up experiments (Del Maschio et al., 2019).

    Further studies are still needed.Genetic methods of inducing folding often relied on over-proliferative neural growth.This raises concerns about yielding a tumoral genotype,which needs to be comprehensively assessed in follow-up studies.In contrast,the physical-constraint methods through micro-devices elegantly circumvented this problem by posing an alternative to genetic manipulation.Their moderate effects on promoting proliferation and folding were thought to attribute to the constraintinduced mechanical instability.Followup studies should define the underlying molecular mechanism of how HBOs translate mechanical instability into folding stimuli.Furthermore, response tests of these microengineered models to neurodegenerative conditions (ZIKA, traumatic brain injury, etc.)are desired.This could provide insight into whether the mechanically induced folding can be used to model diseases, compared to genetically mutated ones.

    The mathematical models have demonstrated powerful prototypability by providing rapid results with high-volume iterations.They can also complement the biological models with more faithful features.For example, the PTEN-mutated organoids often lack deep sulcus, which is easy to create in the finite element model.But currently, further applications suffer from the lack of live model support in initiating parameters and verifying the results.Better integration of mathematical and live models in organoid folding would foster unprecedented new opportunities that further our understanding of how gyrification occurs.

    GS was partially supported by USU’s Engineering Undergraduate Research Program; GS and YH were partially supported by NIH NIGMS fund, No.R15GM132877; YH was also partially supported by NIH NIGMS fund, No.R35GM143194.

    Glen Scott, Yu Huang*Biological Engineering, College of Engineering,Utah State University, Logan, UT, USA

    *Correspondence to:Yu Huang, PhD,yu.huang@usu.edu.https://orcid.org/0000-0002-1859-3380(Yu Huang)

    Date of submission:July 18, 2021

    Date of decision:September 2, 2021

    Date of acceptance:November 14, 2021

    Date of web publication:March 23, 2022

    https://doi.org/10.4103/1673-5374.335789

    How to cite this article:Scott G, Huang Y (2022)Engineering cerebral folding in brain organoids.Neural Regen Res 17(11):2420-2422.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License,which allows others to remix, tweak, and buildupon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    免费av观看视频| 国产欧美日韩精品一区二区| 国产亚洲一区二区精品| 精品久久久精品久久久| 久久人人爽av亚洲精品天堂 | 日韩精品有码人妻一区| 国产午夜精品久久久久久一区二区三区| 日本熟妇午夜| 久热这里只有精品99| 国产色婷婷99| 新久久久久国产一级毛片| 美女视频免费永久观看网站| 国产精品一二三区在线看| 热99国产精品久久久久久7| 99热全是精品| 亚洲精品一二三| 交换朋友夫妻互换小说| 日韩av免费高清视频| 免费观看无遮挡的男女| 婷婷色av中文字幕| 国产一区二区三区综合在线观看 | 激情五月婷婷亚洲| 99热全是精品| 高清视频免费观看一区二区| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 我的老师免费观看完整版| 精品一区二区免费观看| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 亚洲,欧美,日韩| 91午夜精品亚洲一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品日韩av片在线观看| 国产淫片久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区三区四区免费观看| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 熟妇人妻不卡中文字幕| 欧美最新免费一区二区三区| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频 | 一级毛片 在线播放| 精品久久久久久久末码| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 身体一侧抽搐| 在线观看三级黄色| 水蜜桃什么品种好| 欧美老熟妇乱子伦牲交| av国产免费在线观看| 视频中文字幕在线观看| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 欧美bdsm另类| 亚洲精品国产av成人精品| 老女人水多毛片| 亚洲av中文字字幕乱码综合| 亚洲精品一二三| 久久久午夜欧美精品| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 中文字幕久久专区| 2022亚洲国产成人精品| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 欧美最新免费一区二区三区| 大码成人一级视频| 少妇 在线观看| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 超碰av人人做人人爽久久| 国产视频内射| 五月开心婷婷网| 视频区图区小说| 91精品伊人久久大香线蕉| 国产爽快片一区二区三区| 九草在线视频观看| 国产一区二区在线观看日韩| 禁无遮挡网站| 久久精品国产亚洲av天美| 成人综合一区亚洲| 日日啪夜夜撸| 国产免费视频播放在线视频| 真实男女啪啪啪动态图| 久久精品人妻少妇| 国产精品女同一区二区软件| 日本三级黄在线观看| 免费av不卡在线播放| 亚洲怡红院男人天堂| 一本久久精品| 欧美变态另类bdsm刘玥| 久久国产乱子免费精品| 精品久久久久久久末码| 免费少妇av软件| 久久精品人妻少妇| 一个人观看的视频www高清免费观看| 欧美成人午夜免费资源| 亚洲精品aⅴ在线观看| 欧美国产精品一级二级三级 | 久久久色成人| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 国产精品久久久久久av不卡| 男人添女人高潮全过程视频| 男女边摸边吃奶| 99九九线精品视频在线观看视频| av黄色大香蕉| 亚洲av国产av综合av卡| 嫩草影院入口| 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 国产 一区 欧美 日韩| 午夜视频国产福利| 不卡视频在线观看欧美| 伦理电影大哥的女人| 在线a可以看的网站| 国产精品一区二区性色av| 国产精品偷伦视频观看了| 久久国产乱子免费精品| 日日撸夜夜添| 欧美97在线视频| 亚洲三级黄色毛片| 精品酒店卫生间| 免费看a级黄色片| av在线播放精品| 精品亚洲乱码少妇综合久久| 亚洲精品视频女| 嫩草影院新地址| 又爽又黄a免费视频| 国产女主播在线喷水免费视频网站| 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| 人妻夜夜爽99麻豆av| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频 | 久久精品国产亚洲av天美| 在线看a的网站| 狂野欧美激情性xxxx在线观看| 一级av片app| 在线a可以看的网站| 少妇人妻一区二区三区视频| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| freevideosex欧美| av国产久精品久网站免费入址| 人妻系列 视频| 亚洲欧美成人精品一区二区| 亚洲精品成人久久久久久| 国产亚洲午夜精品一区二区久久 | 亚洲av男天堂| 国产视频内射| 欧美xxⅹ黑人| 国产视频首页在线观看| 一级av片app| 国产av码专区亚洲av| 97在线视频观看| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 91在线精品国自产拍蜜月| 又爽又黄a免费视频| 国内少妇人妻偷人精品xxx网站| 偷拍熟女少妇极品色| 高清毛片免费看| 交换朋友夫妻互换小说| 美女内射精品一级片tv| 男人添女人高潮全过程视频| 男女下面进入的视频免费午夜| 久久久久九九精品影院| av在线亚洲专区| 美女主播在线视频| 一本色道久久久久久精品综合| 欧美激情国产日韩精品一区| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 九九久久精品国产亚洲av麻豆| 69人妻影院| 乱系列少妇在线播放| 国产 一区 欧美 日韩| 国产精品.久久久| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 亚洲高清免费不卡视频| 嘟嘟电影网在线观看| 午夜免费观看性视频| 人体艺术视频欧美日本| eeuss影院久久| av国产精品久久久久影院| 狂野欧美白嫩少妇大欣赏| 人人妻人人爽人人添夜夜欢视频 | 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 有码 亚洲区| 国产欧美日韩一区二区三区在线 | 色视频www国产| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 少妇人妻精品综合一区二区| 免费观看在线日韩| 69av精品久久久久久| 日韩欧美一区视频在线观看 | 亚洲真实伦在线观看| 日韩欧美精品免费久久| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 尤物成人国产欧美一区二区三区| av播播在线观看一区| 欧美日韩国产mv在线观看视频 | 国产精品成人在线| 日韩亚洲欧美综合| 免费av不卡在线播放| 日韩强制内射视频| 成人美女网站在线观看视频| 日韩精品有码人妻一区| 超碰97精品在线观看| 九九在线视频观看精品| 久久97久久精品| 男人添女人高潮全过程视频| 一级毛片 在线播放| 美女高潮的动态| 在线a可以看的网站| 一级二级三级毛片免费看| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 下体分泌物呈黄色| av.在线天堂| 视频中文字幕在线观看| 美女被艹到高潮喷水动态| 亚洲国产av新网站| 久热久热在线精品观看| 男人舔奶头视频| 丰满少妇做爰视频| 国产精品.久久久| 国产精品爽爽va在线观看网站| 老女人水多毛片| 亚洲天堂av无毛| 久久久久网色| 人体艺术视频欧美日本| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 激情五月婷婷亚洲| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91 | 一个人看的www免费观看视频| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 国产精品伦人一区二区| 十八禁网站网址无遮挡 | 天堂网av新在线| 国产高潮美女av| 九色成人免费人妻av| 国产亚洲精品久久久com| 99热这里只有是精品50| 国产黄片美女视频| 国产欧美另类精品又又久久亚洲欧美| 久久久久精品性色| 亚洲无线观看免费| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 成人欧美大片| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久久久免| 一区二区三区精品91| 在线免费十八禁| 人体艺术视频欧美日本| 欧美xxxx黑人xx丫x性爽| 亚洲在久久综合| 我的女老师完整版在线观看| 欧美成人午夜免费资源| 少妇丰满av| a级毛色黄片| 亚洲av欧美aⅴ国产| av国产久精品久网站免费入址| 亚洲在久久综合| 久久久精品94久久精品| 秋霞伦理黄片| av又黄又爽大尺度在线免费看| 欧美高清性xxxxhd video| 22中文网久久字幕| 国产 精品1| 插逼视频在线观看| 男男h啪啪无遮挡| 国产毛片在线视频| 激情 狠狠 欧美| 日韩视频在线欧美| 亚洲国产欧美在线一区| 国产日韩欧美亚洲二区| 日本wwww免费看| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 婷婷色综合www| 国产毛片a区久久久久| a级毛色黄片| 国产毛片a区久久久久| 欧美一区二区亚洲| 在线播放无遮挡| 亚洲国产欧美人成| 成人一区二区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | a级毛色黄片| 国产午夜福利久久久久久| 色播亚洲综合网| 不卡视频在线观看欧美| 国产精品精品国产色婷婷| 99热这里只有是精品50| 久久久久久伊人网av| 18禁动态无遮挡网站| 久久99精品国语久久久| 日本黄色片子视频| 免费看a级黄色片| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 亚洲国产精品成人综合色| av在线亚洲专区| 久久久久久久午夜电影| 另类亚洲欧美激情| 久久精品综合一区二区三区| 人人妻人人看人人澡| 亚洲精品乱久久久久久| 国产 一区 欧美 日韩| 深夜a级毛片| 久久久久九九精品影院| 五月开心婷婷网| 观看美女的网站| kizo精华| 成人漫画全彩无遮挡| 男女无遮挡免费网站观看| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 美女视频免费永久观看网站| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影 | 精品人妻熟女av久视频| 男的添女的下面高潮视频| 国产亚洲av嫩草精品影院| 人人妻人人澡人人爽人人夜夜| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 国产爽快片一区二区三区| av免费观看日本| 婷婷色av中文字幕| 精品久久久久久久久亚洲| 成人毛片a级毛片在线播放| av天堂中文字幕网| 各种免费的搞黄视频| 亚洲欧美一区二区三区国产| av福利片在线观看| 精品久久国产蜜桃| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 欧美一区二区亚洲| 如何舔出高潮| av在线蜜桃| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 人妻夜夜爽99麻豆av| 亚洲,一卡二卡三卡| 久久亚洲国产成人精品v| 有码 亚洲区| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 国产69精品久久久久777片| 午夜福利高清视频| 日本一二三区视频观看| 久久久久国产网址| 日日撸夜夜添| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 少妇的逼水好多| xxx大片免费视频| 亚洲天堂国产精品一区在线| 国产精品秋霞免费鲁丝片| 美女高潮的动态| 汤姆久久久久久久影院中文字幕| 丝袜脚勾引网站| 大话2 男鬼变身卡| 性插视频无遮挡在线免费观看| 在线观看一区二区三区激情| 日日撸夜夜添| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 一边亲一边摸免费视频| 亚洲av成人精品一区久久| 精品国产三级普通话版| a级毛色黄片| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 国产精品av视频在线免费观看| 欧美极品一区二区三区四区| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的 | 国产成人精品婷婷| 18禁动态无遮挡网站| 国产 一区精品| 成人二区视频| 日日啪夜夜撸| 国产亚洲av嫩草精品影院| 看免费成人av毛片| 九色成人免费人妻av| av黄色大香蕉| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看| 最近中文字幕2019免费版| 69人妻影院| 日本一本二区三区精品| 精品一区二区免费观看| 精品亚洲乱码少妇综合久久| kizo精华| 一级毛片电影观看| 波多野结衣巨乳人妻| 丰满乱子伦码专区| 久热这里只有精品99| 97在线视频观看| 国产色婷婷99| 精品国产三级普通话版| 极品教师在线视频| 汤姆久久久久久久影院中文字幕| 一本久久精品| 精品酒店卫生间| 久久ye,这里只有精品| 另类亚洲欧美激情| 久久精品综合一区二区三区| 国产成人精品一,二区| 亚洲av.av天堂| 国产爽快片一区二区三区| 神马国产精品三级电影在线观看| 日韩免费高清中文字幕av| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| 精品久久久噜噜| 国产成年人精品一区二区| 在线亚洲精品国产二区图片欧美 | 校园人妻丝袜中文字幕| 亚洲怡红院男人天堂| 天天躁日日操中文字幕| 一级毛片黄色毛片免费观看视频| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 三级国产精品片| 综合色av麻豆| 特级一级黄色大片| 欧美zozozo另类| av福利片在线观看| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 亚洲美女视频黄频| 日本三级黄在线观看| 777米奇影视久久| 小蜜桃在线观看免费完整版高清| 色视频在线一区二区三区| av天堂中文字幕网| 成年人午夜在线观看视频| 男的添女的下面高潮视频| 女人被狂操c到高潮| 久久精品久久久久久噜噜老黄| 又爽又黄a免费视频| 日韩av免费高清视频| 免费看不卡的av| 嫩草影院新地址| 熟女电影av网| 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 中文在线观看免费www的网站| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| av卡一久久| 日本免费在线观看一区| 国产精品99久久99久久久不卡 | 欧美成人午夜免费资源| 午夜激情久久久久久久| 亚洲,欧美,日韩| 好男人视频免费观看在线| 午夜福利高清视频| 美女视频免费永久观看网站| 免费电影在线观看免费观看| 熟女av电影| 69av精品久久久久久| 免费观看av网站的网址| 三级国产精品片| 亚洲av成人精品一二三区| 一级毛片aaaaaa免费看小| 中国国产av一级| 三级男女做爰猛烈吃奶摸视频| 国产片特级美女逼逼视频| 只有这里有精品99| 老师上课跳d突然被开到最大视频| 大片电影免费在线观看免费| 在线精品无人区一区二区三 | 又黄又爽又刺激的免费视频.| 久久精品综合一区二区三区| 国产白丝娇喘喷水9色精品| 美女cb高潮喷水在线观看| freevideosex欧美| 97在线人人人人妻| 九色成人免费人妻av| 亚洲欧美日韩东京热| 亚洲精品国产av成人精品| 亚洲精品乱码久久久久久按摩| 成人亚洲精品av一区二区| 国产成年人精品一区二区| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品一区二区性色av| 蜜桃亚洲精品一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 欧美xxxx黑人xx丫x性爽| 亚洲精品aⅴ在线观看| 中文字幕亚洲精品专区| 国产男人的电影天堂91| 十八禁网站网址无遮挡 | 精品久久久久久久末码| 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 国产亚洲91精品色在线| 岛国毛片在线播放| 久久久久网色| 最新中文字幕久久久久| 成年女人在线观看亚洲视频 | 免费观看在线日韩| 韩国高清视频一区二区三区| 国产精品一及| 97超碰精品成人国产| 国产精品久久久久久av不卡| 亚洲精品视频女| 欧美成人午夜免费资源| 综合色av麻豆| 老司机影院毛片| 国产精品国产三级国产专区5o| 亚洲怡红院男人天堂| 国产午夜精品一二区理论片| 亚洲高清免费不卡视频| 亚洲激情五月婷婷啪啪| 久久精品国产a三级三级三级| 国产亚洲午夜精品一区二区久久 | 在线免费十八禁| 亚洲精品成人久久久久久| 男女无遮挡免费网站观看| 69人妻影院| 国产爱豆传媒在线观看| 免费看av在线观看网站| 大码成人一级视频| 精品酒店卫生间| 国产精品一区www在线观看| 亚洲av成人精品一二三区| 午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 亚洲av国产av综合av卡| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 亚洲av日韩在线播放| 成年av动漫网址| 国产黄a三级三级三级人| 久久女婷五月综合色啪小说 | 身体一侧抽搐| 中文字幕亚洲精品专区| 色哟哟·www| 白带黄色成豆腐渣| 免费在线观看成人毛片| 色吧在线观看| 不卡视频在线观看欧美| 亚洲精品日本国产第一区| 26uuu在线亚洲综合色| 国产又色又爽无遮挡免| 插阴视频在线观看视频| 欧美日韩在线观看h| 精品久久久噜噜| 91精品伊人久久大香线蕉| 男女啪啪激烈高潮av片| 真实男女啪啪啪动态图| 色视频在线一区二区三区| 中文天堂在线官网| 亚洲美女搞黄在线观看| av在线天堂中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 夜夜爽夜夜爽视频| 最近中文字幕高清免费大全6| 国产乱人视频| 亚洲图色成人| 深爱激情五月婷婷| 精品熟女少妇av免费看| 中文字幕亚洲精品专区| 搡老乐熟女国产| 欧美xxⅹ黑人| 久久精品国产亚洲av天美| 成人漫画全彩无遮挡| 成人毛片60女人毛片免费| 女的被弄到高潮叫床怎么办| 欧美另类一区| 大陆偷拍与自拍| 欧美成人精品欧美一级黄| 日韩av免费高清视频|