• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage

    2022-11-21 09:28:54WenjunYan閆文君ZhishenJin金志燊ZhengyangLin林政揚(yáng)ShiyuZhou周詩(shī)瑜YonghaiDu杜永海YulongChen陳宇龍andHoupanZhou周后盤
    Chinese Physics B 2022年11期
    關(guān)鍵詞:金志

    Wenjun Yan(閆文君) Zhishen Jin(金志燊) Zhengyang Lin(林政揚(yáng)) Shiyu Zhou(周詩(shī)瑜)Yonghai Du(杜永海) Yulong Chen(陳宇龍) and Houpan Zhou(周后盤)

    1School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3Institute of Microelectronics,University of Macau,Avenida da Universidade,Taipa,Macau,China

    Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites,and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However,the traditional SnO2 sensor,with a single signal,cannot demonstrate intelligent multi-gas recognition. Here,a single dual-mode(direct and alternating current modes)SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2,released in different states of Li-ion batteries,together with principal component analysis(PCA)analysis. This work provides insight into the intelligent technology of single gas sensors.

    Keywords: gas sensors,single dual-mode,multivariable sensors,Li-batteries,early safety warning

    1. Introduction

    To alleviate ever-growing energy consumption, electrochemical energy storage technology has been a topic of wide concern in recent years.[1,2]In particular,lithium(Li)-ion batteries (LIBs) have dominated both electronics and automotive applications due to their high energy density and reduced cost.[1,2]Unfortunately, LIB safety issues have emerged due to the flammable organic electrolytes and the intrinsic thermal properties during charge and discharge,which could result in explosion and casualties.[3–6]For the development of largescale LIB energy storage equipment,effective safety warnings,as early as possible,are necessary and urgently required.

    The current battery management system (BMS) is regarded as a crucial LIB protection system, which can detect the voltage, state of charge (SOC), and external surface temperature of the battery cell. However, the BMS is unable to detect LIB safety issues in the early stages.[1,4]For example,the external voltage of a leaking battery could be kept at almost the same level as that of a pristine battery for several hours.[4]As reported, special gas detection of LIBs could detect LIB safety issues at an earlier stage.[1,4]In particular, H2, generated by the reaction of Li dendrites with a polymer binder,could be captured first, and over 10 min earlier than smoke and fire,in cases of LIB failure.[1]Furthermore,LIB failure is often associated with electrolyte leakage.[6,7]The main components of the LIBs’electrolyte are volatile and redox neutral solvents, such as dimethyl carbonate(DMC), diethyl carbonate(DEC),ethyl methyl carbonate(EMC)and propylene carbonate(PC).[4,8]

    As is well known, semiconductor sensors have been widely used for various hazardous and flammable gases in the internet of things (IoT) due to their high sensitivity, simple mechanism and real-time response.[9,10]However, selectivity has always been the bottleneck of semiconductor gas sensors,and further limits the recognizability and intelligentization of individual sensors. Combining sensors into arrays is a common method used to mitigate the poor selectivity of sensors,with up to thousands of individual sensors.[11]Obviously,sensor arrays cannot fulfill the convenience of sensors well.

    Recently, new multivariable gas sensors have been reported.[12,13]These multivariable sensors involve a sensing material and a multivariable transducer,to provide diverse and independent responses to different gases and to provide multigas recognition and rejection of interferences.[14,15]The measurable response signals of chemi-electrical sensors include current, capacitance, and resistance/impedance. In contrast to the single signal of DC resistive sensors, AC impedance sensors can provide a multidimensional response over a fitted frequency range, which results from the further extraction of parameters, including the dielectric constant, charge transfer resistance, double-layer capacitance and diffusion constant,and are attracting increasing attention.[6,16–18]AC sensors are characterized not only by low cost and a simple device configuration,but also by different frequencies producing various signals.[6]

    Herein,we use DC–AC dual mode to detect organic electrolytes and H2possibly venting from the failed LIBs, taking a SnO2-based sensor as an example. Multi-sensing parameters extracted from the DC current,as well as AC impedance,and the corresponding phase angle,dissipation factor and frequency data,are comprehensively analyzed. According to the principal component analysis (PCA) of multi-sensing parameters, clear discrimination of electrolyte vapors(DEC,DMC,and PC)and H2is proved,which could improve the accuracy and reliability of the LIBs’early safety warning system.

    2. Experimental details

    2.1. Material preparation and characterization

    The SnO2-based sensing material here was prepared by following Ref. [19]. Typically, 500 g of as-received SnO2micro-powder(2–5 μm in diameter,Jinxin Advanced Materials,China)was mixed with 1425 g deionized water under magnetic stirring, followed by addition of 75 g triethanolamine(Usolf Chemical, China)as a dispersant. Stirring and dispersion continued for 10 mins. Next,the mixture was ball-milled(WG-1L,Vgreen Nanometer Technology,China)for 2 h with balls 300 μm in diameter to produce a uniform dispersion. Finally, 1 g of tetraamminepalladium nitrate (H12N6O6Pd, Aladdin, China) was added to 12 g of the as-obtained dispersion. Consequently,the acquired stable nano-dispersion,with a solid content of 15%,was the Pd-dopped SnO2material utilized for this work.

    The morphologies of the as-prepared material were characterized using scanning electron microscopy (SEM, FEI Nanosem 430).Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with CuKαradiation(λ ≈1.54 ?A).

    2.2. Gas sensing experiment design

    A schematic of the bare sensor device with a pair of interdigital electrodes(IDEs)integrating a microheater is shown in Fig. S1a (supporting information). The microheater was fabricated based on silicon micro-electromechanical system(MEMS) technology, reported in our previous work.[20]The fabrication details are also described in the supporting information.The typical relationship of the heating temperature vs.the applied voltage of the microheater is shown in Fig. S1b.The complete sensor device was fabricated by facile dropcoating. Afterwards, the device was heated and maintained at 300°C for 7 days to promote SnO2deposition and device aging to obtain reliable testing data.

    The gas sensing tests were performed using a homemade system with an 8-L test chamber, as reported in our previous work.[21]For the analyte sensing test,a fitting concentration of the analyte(standard H2gas of 10×10-6mol/mol,and DMC,DEC and PC vapor) was injected into the chamber. All the sensing tests were taken at ambient temperature of about 25°C and 40%relative humidity,adjusted by an air conditioner and a humidifier. The heating temperature of the microheater was precisely controlled using a bias voltage applied by a Keithley 2602B source-meter. The sensor DC and AC signals were collected by a Keithley 2602B source-meter and a Keysight 1732C LCR meter, respectively. Principal component analysis(PCA)was calculated using the inbuilt library function of Python.

    3. Results and discussion

    3.1. Material analysis

    The SEM image in Fig. 1(a) shows the homogeneity of the as-prepared SnO2powder. The XRD pattern of the asprepared SnO2is shown in Fig. 1(b). Due to the tiny Pd additive, no obvious Pd peaks are detected. All the peaks are assigned to SnO2of tetragonal rutile (JCPDS No. 41-1445).The obvious peaks at 2θ= 26.7°, 33.9°, and 38°correspond to the (110), (101), and (200) planes of SnO2, respectively.Furthermore, the SnO2grain size is~30–40 nm, calculated according to the XRD data.

    Fig.1.(a)An SEM image,and(b)the XRD pattern of the as-prepared SnO2 powder.

    3.2. Gas sensing characteristics

    We chose DEC,DMC,PC and H2as analyte gases,which are mainly produced by failed Li batteries. And the gas sensing performances were investigated via the DC current signal,AC impedance,θand D signals at different frequencies. A similar AC signal response of an IDE sensor device has been reported in our previous work.[22]Figure 2 shows the relative DC and AC signal variations of one sensor device to various analyte concentrations(200,160,120,80,40,and 20 ppm of DEC,DMC,and PC,respectively;200,150,100,50,10,and 5 ppm of H2).

    Fig.2. Continuous response characteristics to different gases. DC current relative change(I/I0)to a)DEC,(b)DMC,(c)PC and(d)H2. AC impedance relative change(Z0/Z)at the frequency of 100 Hz to(e)DEC,(f)DMC,(g)PC,and(h)H2.AC impedance relative change(Z0/Z)and θ relative change(θ0/θ) at the frequency of 1 kHz to (i) DEC, (j) DMC, and (k) PC. AC impedance relative change (Z0/Z), θ relative change (θ0/θ), and D relative change(D/D0)at the frequency of 10 kHz to l)DEC,(m)DMC,(n)PC,and(o)H2. Here, I0 (Z0, θ0 and D0)and I (Z, θ and D)are the sensor DC current(AC impedance,phase angle,and dissipation factor)in ambient air and the real-time value in analyte gas,respectively.

    Under DC mode,upon exposure to each analyte,the sensor current increases rapidly, and then decreases back to the original baseline when the analyte is off. DEC, DMC, PC and H2are all electron donors. Each of the analytes adsorbed on the n-type SnO2surface could contribute electrons to the conduction band of SnO2, leading to an increase in the concentrations of the majority of electron carriers, consequently increasing the current of the SnO2device.

    Under AC mode at the frequency of 100 Hz, only an impedance response could be detected for each analyte. Notably, at AC frequency of 1 kHz, both impedance and phase angle (θ) responses to DEC, DMC, and PC are obvious, but no responses to H2. At AC frequency of 10 kHz, all the impedance,θ, and dissipation factor (D) responses to DEC,DMC, and PC are excellent, while only an impedance response to H2could be detected. Interestingly, the sensor impedance decreases quickly when exposed to each analyte,at different AC frequencies, and then quickly increases back to the original baseline when the analyte is off. Moreover,the phase angle has the same response and recovery trend, while theDhas the opposite response and recovery trend to each analyte. A detailed explanation will be given in the following section.

    Figure S2 shows that the gas response values increase as each analyte concentration increases. According to reported electrochemical gas sensors,the response could be empirically linearly expressed as[23]

    whereCrepresents the analyte concentration,andaandbare constants, depending on the type of gas sensor and sensing material. Figure 3 displays linear plots of logarithms of the response value as a function of the logarithms of each analyte concentration under different modes,except for the impedance response to H2at 10 kHz. A similar linear relationship is seen in a previous report.[24]The relative parameters(slope, intercept, andR2) of each fitting equation are summarized in Table 1.

    Fig.3. The relationship of response values vs. concentration in logarithmic terms for different gases. DEC:(a)DC current, (b)AC impedance at the frequency of 100 Hz,(c)AC impedance and θ at the frequency of 1 kHz,(d)AC impedance,θ and D at the frequency of 10 kHz. DMC:(e)DC current,(f) AC impedance at the frequency of 100 Hz, (g) AC impedance and θ at the frequency of 1 kHz, (h) AC impedance, θ and D at the frequency of 10 kHz. PC:(i)DC current, (j)AC impedance at the frequency of 100 Hz, (k)AC impedance and θ at the frequency of 1 kHz, (l)AC impedance, θ and D at the frequency of 10 kHz. H2: (m)DC current,(n)AC impedance at the frequency of 100 Hz,(o)AC impedance,θ and D at the frequency of 10 kHz. The symbols are response values;the lines are the fitting of response values vs. concentration.

    Table 1. Slope,intercept,and R2 values of the fitting equations of response vs. concentration for different gases under DC and AC dual modes.

    Moreover,a comparison of response values to different analytes(200 ppm DEC,DMC,PC,and H2)under different modes is shown in Fig. 4. Obviously, for different signal modes, the selectivity of the sensor to the various analytes is different. The different selectivity enables various analyte recognition using one device.

    Fig.4. A comparison of response values towards different gases under DC and AC modes(200 ppm DEC,DMC,PC and H2).

    In contrast to the operating principle of the DC current mode, the AC responses (includingZ0/Z,θ0/θ, andD/D0)are closely related to not only the conductivity of the sensing layer,but also the permittivity of the sensing material and analytes.[12]The equivalent circuit of the SnO2sensor with IDEs could be simply regarded as a typical Randles circuit,as depicted in Fig.5.Here,R1andC1represent the time-constant resistance and capacitance of the SnO2layer,respectively.The parallel circuit element(R2‖C2)corresponds to the resistance and capacitance of gas-dependent interfaces,which dominate the AC responses of the device.[12,25]The Warburg impedance,ascribed asZw,is as a result of the gas diffusion process,and only observed in the low-frequency regime(<10 kHz).[25–27]The imaginary and real parts of impedance can be described by

    whereεis the relative permittivity (dielectric constant),ε0is the vacuum permittivity,eis the electron charge,Ndis the majority carrier concentration,Eis the applied electrical potential,kis the Boltzmann constant,andTis the absolute temperature.

    The phase angle (θ) can be calculated by the following equation:

    Upon exposure to the analytes of electron donors, under AC modes, electrons will contribute to the SnO2surface due to analyte adsorption,and will result in a decrease in the gasdependent interface resistanceR2. Beyond this,changes in the dielectric properties of analyte-dependent interfaces in a fixed frequency could also contribute to the impedance responses,according to Eqs. (1)–(4). The permittivities of DEC, DMC,PC and H2are 2.805, 3.107, 64.92 and 1, respectively.[29]Based on reports, the gas-dependent interface capacitanceC2mainly relies on the dielectric constants of analytes.[25,30]Hence,C2has no significant effect on the AC responses of SnO2to DEC and DMC, due to their low permittivities. But for PC with high permittivity,C2generates an obvious AC response improvement,except for theθresponse at 10 kHz.

    Fig. 5. The AC equivalent circuit of the SnO2 sensor. R0 represents phase constant contact resistance. The parallel circuit element(R1‖C1)represents capacitance and resistance of the SnO2 sensing layer. The parallel element(R2 ‖C2) is the equivalent resistance and capacitance of the analyte-gasdependent interface. The Warburg impedance is described as the Zw.

    Furthermore, the only detectedZresponse to each analyte at 100 Hz indicates that electronic resistance properties of gas-dependent interfaces mainly controls the sensing response. When the frequency increased to 1 kHz, an obvious capacitance effect appears, resulting in the detectedZandθresponse;when the frequency further increased to 10 kHz,an additionalDresponse could be detected with more capacitance effect(Figs.2–3).

    Interestingly, the impedance response of H2at 100 Hz was increased dramatically compared to the DC current response, although the permittivity of H2is also small. According to previous reports, it is proposed that the chemical species induced by H2adsorption enhances the AC impedance response at the low frequency of 100 Hz, via generation of a polarization potential in the H2–SnO2interface.[12,31,32]When the AC frequency increases to 1 kHz, no AC impedancerelated parameter responses to H2could be detected. A similar sharp response decrement with the frequency increasing has previously been reported.[31,32]When the AC frequency further increases to 10 kHz,quick diffusion of H2plays an important role,with more capacitor effects(Zw)due to the small molecular size, resulting in a non-linear impedance response to concentration.

    3.3. Principal component analysis

    PCA is a commonly used effective method in exploratory data analysis and classification. In the present work, differences in the various parameter responses to each analyte provide the possibility of multi-gas recognition based on one device. Utilizing Python and the PCA function in the Sklearn Library,the database was projected into a 2D plane.Visualization in a two-dimensional graph in Fig.6 reveals that the electrolyte vapors and H2are actually and clearly discriminated.The mathematic derivation in the PCA code is attached in the supporting information. The cumulative variance of the principal components of over 97%(PC1 90.48%and PC2 6.52%)indicates that the major information is maintained from the raw database.

    Fig.6. (a)PCA-assisted classification and regression of electrolyte vapors(red dots)and H2(black dots). (b)Nine characteristic values of the covariance matrix for PCA.

    4. Conclusions

    In summary, smart and clear classification of electrolyte vapors and H2has been realized using a single common SnO2sensor,by combining DC current signals and AC impedancerelated signals.Due to the dielectric properties of analytes,the SnO2sensing layer, and the analyte adsorption on the SnO2surface, diverse sensing parameters were obtained under DC and AC dual test modes, which enable the single sensor to build signature-difference patterns for tested gases via PCA analysis. The accurate distinction of electrolyte vapors and H2would contribute to the monitoring of the operating conditions of LIBs. This robust method for the classification and recognition of various chemical vapors using an individual device paves the way toward applications in intelligent identification of multi-gas with very few sensors.

    Acknowledgements

    This research was supported by the Zhejiang Science and Technology Foundation(Grant No.LQ20F040006).

    The authors acknowledge L. M. for help with the SEM and XRD characterizations. Yan W.J.acknowledges the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    猜你喜歡
    金志
    Robust free-space optical frequency transfer in time-varying link distances conditions
    從炮兵團(tuán)戰(zhàn)士到關(guān)愛團(tuán)團(tuán)長(zhǎng)
    基于AquaCrop模型的茶葉產(chǎn)量和開采期預(yù)報(bào)*
    5次赴朝尋找,他要把父親帶回家
    婦女生活(2021年1期)2021-02-23 02:38:04
    金志文發(fā)行最新EP專輯《路遙知馬力》
    青年歌聲(2017年9期)2017-03-15 03:33:36
    韓劇迷傷別“奶奶專業(yè)戶”
    會(huì)變的云姑娘
    金志文的向日葵愛情
    閱讀(2013年3期)2013-04-23 03:31:34
    乘火車
    乘火車
    十八禁网站免费在线| 亚洲黑人精品在线| 1024手机看黄色片| 久99久视频精品免费| bbb黄色大片| 午夜视频精品福利| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 国产亚洲精品久久久久5区| 两个人看的免费小视频| 日韩av在线大香蕉| 日本熟妇午夜| 欧美黄色片欧美黄色片| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区免费| 久久久久国内视频| 90打野战视频偷拍视频| 日韩欧美国产一区二区入口| svipshipincom国产片| 黄色视频不卡| 美女国产高潮福利片在线看| 国产成人av教育| 亚洲成人精品中文字幕电影| 久久精品国产综合久久久| www.熟女人妻精品国产| 久久久久久久久久黄片| 亚洲熟女毛片儿| 黄色毛片三级朝国网站| 国产精品美女特级片免费视频播放器 | 日韩中文字幕欧美一区二区| 欧美成人免费av一区二区三区| 在线天堂中文资源库| 午夜福利高清视频| 国产亚洲欧美精品永久| 日韩三级视频一区二区三区| 99久久精品国产亚洲精品| 脱女人内裤的视频| 国产野战对白在线观看| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 亚洲第一欧美日韩一区二区三区| 久久中文看片网| 亚洲欧美精品综合久久99| 免费高清视频大片| 欧美乱色亚洲激情| 操出白浆在线播放| 国产又色又爽无遮挡免费看| 国产又黄又爽又无遮挡在线| 国产精品日韩av在线免费观看| 国产99白浆流出| 美女 人体艺术 gogo| 精品久久久久久久末码| 亚洲中文字幕日韩| 法律面前人人平等表现在哪些方面| 国产一区二区激情短视频| 在线十欧美十亚洲十日本专区| 久久久国产成人免费| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 99热6这里只有精品| 国产免费av片在线观看野外av| 50天的宝宝边吃奶边哭怎么回事| 色综合站精品国产| 亚洲五月色婷婷综合| 狂野欧美激情性xxxx| 国产精品九九99| 在线观看www视频免费| 欧美大码av| 国产真实乱freesex| 99热只有精品国产| 精品国产超薄肉色丝袜足j| 制服人妻中文乱码| 后天国语完整版免费观看| 国产精品综合久久久久久久免费| 国产激情欧美一区二区| 亚洲色图 男人天堂 中文字幕| 久久国产精品影院| 国产视频内射| 满18在线观看网站| 国产欧美日韩一区二区三| 国产精品一区二区精品视频观看| 午夜久久久在线观看| 叶爱在线成人免费视频播放| 日韩免费av在线播放| 一区二区三区国产精品乱码| 最近在线观看免费完整版| 男女做爰动态图高潮gif福利片| 91在线观看av| 给我免费播放毛片高清在线观看| 午夜福利一区二区在线看| av免费在线观看网站| 欧美国产日韩亚洲一区| 嫁个100分男人电影在线观看| 他把我摸到了高潮在线观看| 亚洲午夜精品一区,二区,三区| 亚洲成a人片在线一区二区| 露出奶头的视频| 欧美又色又爽又黄视频| av电影中文网址| 国产亚洲欧美98| 露出奶头的视频| 久久精品人妻少妇| 国产伦在线观看视频一区| 国产成人av教育| 亚洲av日韩精品久久久久久密| 女人高潮潮喷娇喘18禁视频| 又黄又爽又免费观看的视频| 人人妻人人澡人人看| 天堂√8在线中文| 久久精品人妻少妇| 亚洲国产欧美网| 成人三级做爰电影| 夜夜爽天天搞| 欧美午夜高清在线| 亚洲欧美精品综合一区二区三区| www.熟女人妻精品国产| 一边摸一边抽搐一进一小说| 日韩欧美三级三区| 嫩草影视91久久| 久久精品亚洲精品国产色婷小说| 国产单亲对白刺激| 欧美日韩乱码在线| 日韩精品免费视频一区二区三区| 成年版毛片免费区| 在线播放国产精品三级| 中国美女看黄片| 美女午夜性视频免费| 美女国产高潮福利片在线看| 国内久久婷婷六月综合欲色啪| 嫁个100分男人电影在线观看| 亚洲精品美女久久久久99蜜臀| 久久香蕉精品热| 亚洲 欧美一区二区三区| av片东京热男人的天堂| 黄色视频,在线免费观看| 国产主播在线观看一区二区| 日本成人三级电影网站| 制服人妻中文乱码| aaaaa片日本免费| 免费女性裸体啪啪无遮挡网站| 久热这里只有精品99| 亚洲电影在线观看av| 日日夜夜操网爽| 欧美黄色淫秽网站| 国产成人影院久久av| 免费高清视频大片| 免费看a级黄色片| 美女国产高潮福利片在线看| 久久国产精品人妻蜜桃| 1024手机看黄色片| 成在线人永久免费视频| 老鸭窝网址在线观看| 日韩有码中文字幕| 校园春色视频在线观看| 精品卡一卡二卡四卡免费| 操出白浆在线播放| 美女扒开内裤让男人捅视频| 亚洲欧美日韩高清在线视频| 99国产精品一区二区三区| 欧美成人午夜精品| 国产午夜福利久久久久久| 女人高潮潮喷娇喘18禁视频| 长腿黑丝高跟| 国产精品 国内视频| 国产亚洲av嫩草精品影院| 国产亚洲欧美精品永久| 麻豆一二三区av精品| 日韩中文字幕欧美一区二区| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 真人一进一出gif抽搐免费| 国产人伦9x9x在线观看| 色老头精品视频在线观看| 女人高潮潮喷娇喘18禁视频| 黄色视频不卡| 男人的好看免费观看在线视频 | 性欧美人与动物交配| 啦啦啦韩国在线观看视频| 亚洲成人免费电影在线观看| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 不卡一级毛片| 国产精品香港三级国产av潘金莲| 俄罗斯特黄特色一大片| av福利片在线| 精品久久久久久久久久免费视频| 国产免费男女视频| 91字幕亚洲| 女性生殖器流出的白浆| 午夜精品在线福利| 国产高清videossex| 国产精品1区2区在线观看.| 午夜a级毛片| 搡老妇女老女人老熟妇| 日韩一卡2卡3卡4卡2021年| 成人一区二区视频在线观看| 亚洲精品在线美女| 亚洲男人天堂网一区| 久久天躁狠狠躁夜夜2o2o| 老司机午夜十八禁免费视频| 真人做人爱边吃奶动态| 在线观看www视频免费| 欧美午夜高清在线| 1024视频免费在线观看| 国产v大片淫在线免费观看| 中文资源天堂在线| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 欧美大码av| 中文亚洲av片在线观看爽| 精品国产美女av久久久久小说| 满18在线观看网站| 国产视频内射| 在线观看舔阴道视频| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 国产亚洲av嫩草精品影院| 91大片在线观看| 亚洲五月色婷婷综合| 草草在线视频免费看| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 91成人精品电影| 国产一区二区三区在线臀色熟女| 国产极品粉嫩免费观看在线| 丁香六月欧美| 色哟哟哟哟哟哟| 亚洲精品色激情综合| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 成人特级黄色片久久久久久久| 亚洲片人在线观看| 99国产精品一区二区蜜桃av| 中出人妻视频一区二区| 亚洲av五月六月丁香网| 亚洲第一av免费看| 少妇裸体淫交视频免费看高清 | 国产伦人伦偷精品视频| 99久久精品国产亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | 观看免费一级毛片| 亚洲三区欧美一区| 宅男免费午夜| 99riav亚洲国产免费| 一本精品99久久精品77| 日本成人三级电影网站| 天堂动漫精品| 中文字幕人妻熟女乱码| 真人做人爱边吃奶动态| 韩国精品一区二区三区| 天天添夜夜摸| 国产亚洲欧美98| 色婷婷久久久亚洲欧美| 亚洲国产看品久久| 男女之事视频高清在线观看| 精品久久蜜臀av无| 激情在线观看视频在线高清| 久久精品夜夜夜夜夜久久蜜豆 | 国产一卡二卡三卡精品| 一本久久中文字幕| 黄片播放在线免费| 老司机靠b影院| 成人免费观看视频高清| 国产精品美女特级片免费视频播放器 | 91成人精品电影| 男女之事视频高清在线观看| 精品欧美一区二区三区在线| 久久久久免费精品人妻一区二区 | 天天添夜夜摸| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 色综合站精品国产| 老司机午夜十八禁免费视频| 看黄色毛片网站| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 亚洲avbb在线观看| 国产亚洲av高清不卡| 午夜免费观看网址| 亚洲精品久久国产高清桃花| 正在播放国产对白刺激| 麻豆久久精品国产亚洲av| 欧美激情极品国产一区二区三区| 国产极品粉嫩免费观看在线| 韩国av一区二区三区四区| 国产色视频综合| 一级毛片精品| 91字幕亚洲| 俄罗斯特黄特色一大片| 国产v大片淫在线免费观看| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| 禁无遮挡网站| 精品国产乱子伦一区二区三区| 亚洲国产欧美日韩在线播放| 久久久久久久午夜电影| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 亚洲国产看品久久| 91国产中文字幕| 中文字幕高清在线视频| 亚洲自拍偷在线| 中国美女看黄片| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 黑人操中国人逼视频| 一区二区日韩欧美中文字幕| 久久性视频一级片| 国产激情偷乱视频一区二区| 亚洲国产精品sss在线观看| 日本 欧美在线| 亚洲欧美日韩高清在线视频| 国产三级在线视频| 大型av网站在线播放| 我的亚洲天堂| 午夜免费成人在线视频| 日日干狠狠操夜夜爽| 久久午夜综合久久蜜桃| 男人舔奶头视频| av超薄肉色丝袜交足视频| 99精品在免费线老司机午夜| 亚洲第一av免费看| 成人手机av| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 日韩一卡2卡3卡4卡2021年| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 哪里可以看免费的av片| 99热6这里只有精品| 又紧又爽又黄一区二区| or卡值多少钱| 正在播放国产对白刺激| 韩国精品一区二区三区| 一级片免费观看大全| 国产成人av激情在线播放| 亚洲欧美日韩无卡精品| 久久精品成人免费网站| 麻豆一二三区av精品| 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 欧美激情久久久久久爽电影| 亚洲av成人av| 色综合欧美亚洲国产小说| 国产成人欧美| 国产成人精品久久二区二区91| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| 亚洲五月婷婷丁香| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜 | 成人18禁高潮啪啪吃奶动态图| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 午夜日韩欧美国产| 在线观看一区二区三区| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| 日韩欧美三级三区| 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 午夜免费成人在线视频| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 国产午夜精品久久久久久| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 男女视频在线观看网站免费 | xxx96com| 亚洲自拍偷在线| 国产精华一区二区三区| 欧美国产精品va在线观看不卡| 亚洲男人天堂网一区| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 亚洲中文字幕一区二区三区有码在线看 | 美女 人体艺术 gogo| av免费在线观看网站| 琪琪午夜伦伦电影理论片6080| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 国产精品久久久av美女十八| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 国产99白浆流出| 欧美在线一区亚洲| 亚洲av成人一区二区三| 国产精品二区激情视频| 特大巨黑吊av在线直播 | 两性夫妻黄色片| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 好男人在线观看高清免费视频 | 免费人成视频x8x8入口观看| 免费观看精品视频网站| 男女下面进入的视频免费午夜 | 91成人精品电影| tocl精华| 亚洲精品一卡2卡三卡4卡5卡| 久久中文字幕人妻熟女| √禁漫天堂资源中文www| 午夜福利高清视频| 1024视频免费在线观看| 超碰成人久久| 久久精品影院6| 精品久久久久久成人av| 午夜福利高清视频| 欧美成人一区二区免费高清观看 | 夜夜爽天天搞| 亚洲av片天天在线观看| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放 | 一本大道久久a久久精品| 国产一区二区在线av高清观看| 欧美中文综合在线视频| av中文乱码字幕在线| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 精品国产乱码久久久久久男人| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| av片东京热男人的天堂| 国产成人欧美| 色精品久久人妻99蜜桃| 欧美 亚洲 国产 日韩一| 亚洲熟妇熟女久久| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦免费观看视频1| 免费在线观看亚洲国产| 国产成人欧美| 俺也久久电影网| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 桃色一区二区三区在线观看| 亚洲成人久久性| 这个男人来自地球电影免费观看| 岛国在线观看网站| or卡值多少钱| 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影 | 91成人精品电影| 免费在线观看黄色视频的| 在线观看www视频免费| 最近最新免费中文字幕在线| 无限看片的www在线观看| 国产精品爽爽va在线观看网站 | 此物有八面人人有两片| 国产亚洲av嫩草精品影院| 一级a爱视频在线免费观看| 久久中文字幕一级| 真人做人爱边吃奶动态| 久久精品影院6| 黄片播放在线免费| 丰满的人妻完整版| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 久99久视频精品免费| 一区二区三区激情视频| 最近最新免费中文字幕在线| 婷婷亚洲欧美| 久久中文字幕一级| 一级毛片高清免费大全| 国产成年人精品一区二区| 久久久久精品国产欧美久久久| 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 日韩成人在线观看一区二区三区| 在线看三级毛片| 男人舔奶头视频| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 1024手机看黄色片| 身体一侧抽搐| 亚洲成av人片免费观看| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影| 看片在线看免费视频| 在线永久观看黄色视频| 免费在线观看亚洲国产| 少妇 在线观看| 色综合站精品国产| 特大巨黑吊av在线直播 | 一二三四社区在线视频社区8| 黄片大片在线免费观看| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 亚洲av成人av| 国产av一区在线观看免费| 亚洲片人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 午夜福利高清视频| 中文字幕人妻熟女乱码| 老汉色∧v一级毛片| 真人一进一出gif抽搐免费| 丝袜在线中文字幕| 国产熟女午夜一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 成人18禁高潮啪啪吃奶动态图| 91麻豆精品激情在线观看国产| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| avwww免费| 精品欧美一区二区三区在线| 啦啦啦免费观看视频1| 国产亚洲欧美精品永久| 亚洲第一av免费看| 亚洲欧美精品综合久久99| 精品国产一区二区三区四区第35| 欧美中文日本在线观看视频| 91成人精品电影| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 成人国语在线视频| 美女午夜性视频免费| 欧美国产日韩亚洲一区| 一区二区日韩欧美中文字幕| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 一本精品99久久精品77| 亚洲精品色激情综合| 国产99久久九九免费精品| 亚洲无线在线观看| 久久精品亚洲精品国产色婷小说| 国产伦人伦偷精品视频| 国产精品国产高清国产av| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 给我免费播放毛片高清在线观看| 亚洲一区二区三区色噜噜| 一级毛片精品| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 看黄色毛片网站| 99国产综合亚洲精品| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 精品福利观看| 日本 欧美在线| 亚洲国产高清在线一区二区三 | 国产精品 欧美亚洲| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 啦啦啦 在线观看视频| 看片在线看免费视频| 久久人妻福利社区极品人妻图片| 国产亚洲精品av在线| 国产高清有码在线观看视频 | 黄色a级毛片大全视频| 亚洲精品国产精品久久久不卡| 久久久久久久久中文| 国产亚洲精品久久久久5区| 亚洲一区中文字幕在线| 久久久久九九精品影院| 欧美一区二区精品小视频在线| 免费在线观看成人毛片| 亚洲第一av免费看| 日本在线视频免费播放| 亚洲激情在线av| 淫妇啪啪啪对白视频| 欧美激情极品国产一区二区三区| 看黄色毛片网站| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 91字幕亚洲| 国产单亲对白刺激| 免费av毛片视频| 欧美一级a爱片免费观看看 | av在线天堂中文字幕| www日本在线高清视频| 高清毛片免费观看视频网站| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 日本五十路高清| 欧美中文综合在线视频| 88av欧美| 亚洲国产日韩欧美精品在线观看 | 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区 | 久久精品国产亚洲av高清一级| 午夜两性在线视频|