• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage

    2022-11-21 09:28:54WenjunYan閆文君ZhishenJin金志燊ZhengyangLin林政揚(yáng)ShiyuZhou周詩(shī)瑜YonghaiDu杜永海YulongChen陳宇龍andHoupanZhou周后盤
    Chinese Physics B 2022年11期
    關(guān)鍵詞:金志

    Wenjun Yan(閆文君) Zhishen Jin(金志燊) Zhengyang Lin(林政揚(yáng)) Shiyu Zhou(周詩(shī)瑜)Yonghai Du(杜永海) Yulong Chen(陳宇龍) and Houpan Zhou(周后盤)

    1School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3Institute of Microelectronics,University of Macau,Avenida da Universidade,Taipa,Macau,China

    Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites,and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However,the traditional SnO2 sensor,with a single signal,cannot demonstrate intelligent multi-gas recognition. Here,a single dual-mode(direct and alternating current modes)SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2,released in different states of Li-ion batteries,together with principal component analysis(PCA)analysis. This work provides insight into the intelligent technology of single gas sensors.

    Keywords: gas sensors,single dual-mode,multivariable sensors,Li-batteries,early safety warning

    1. Introduction

    To alleviate ever-growing energy consumption, electrochemical energy storage technology has been a topic of wide concern in recent years.[1,2]In particular,lithium(Li)-ion batteries (LIBs) have dominated both electronics and automotive applications due to their high energy density and reduced cost.[1,2]Unfortunately, LIB safety issues have emerged due to the flammable organic electrolytes and the intrinsic thermal properties during charge and discharge,which could result in explosion and casualties.[3–6]For the development of largescale LIB energy storage equipment,effective safety warnings,as early as possible,are necessary and urgently required.

    The current battery management system (BMS) is regarded as a crucial LIB protection system, which can detect the voltage, state of charge (SOC), and external surface temperature of the battery cell. However, the BMS is unable to detect LIB safety issues in the early stages.[1,4]For example,the external voltage of a leaking battery could be kept at almost the same level as that of a pristine battery for several hours.[4]As reported, special gas detection of LIBs could detect LIB safety issues at an earlier stage.[1,4]In particular, H2, generated by the reaction of Li dendrites with a polymer binder,could be captured first, and over 10 min earlier than smoke and fire,in cases of LIB failure.[1]Furthermore,LIB failure is often associated with electrolyte leakage.[6,7]The main components of the LIBs’electrolyte are volatile and redox neutral solvents, such as dimethyl carbonate(DMC), diethyl carbonate(DEC),ethyl methyl carbonate(EMC)and propylene carbonate(PC).[4,8]

    As is well known, semiconductor sensors have been widely used for various hazardous and flammable gases in the internet of things (IoT) due to their high sensitivity, simple mechanism and real-time response.[9,10]However, selectivity has always been the bottleneck of semiconductor gas sensors,and further limits the recognizability and intelligentization of individual sensors. Combining sensors into arrays is a common method used to mitigate the poor selectivity of sensors,with up to thousands of individual sensors.[11]Obviously,sensor arrays cannot fulfill the convenience of sensors well.

    Recently, new multivariable gas sensors have been reported.[12,13]These multivariable sensors involve a sensing material and a multivariable transducer,to provide diverse and independent responses to different gases and to provide multigas recognition and rejection of interferences.[14,15]The measurable response signals of chemi-electrical sensors include current, capacitance, and resistance/impedance. In contrast to the single signal of DC resistive sensors, AC impedance sensors can provide a multidimensional response over a fitted frequency range, which results from the further extraction of parameters, including the dielectric constant, charge transfer resistance, double-layer capacitance and diffusion constant,and are attracting increasing attention.[6,16–18]AC sensors are characterized not only by low cost and a simple device configuration,but also by different frequencies producing various signals.[6]

    Herein,we use DC–AC dual mode to detect organic electrolytes and H2possibly venting from the failed LIBs, taking a SnO2-based sensor as an example. Multi-sensing parameters extracted from the DC current,as well as AC impedance,and the corresponding phase angle,dissipation factor and frequency data,are comprehensively analyzed. According to the principal component analysis (PCA) of multi-sensing parameters, clear discrimination of electrolyte vapors(DEC,DMC,and PC)and H2is proved,which could improve the accuracy and reliability of the LIBs’early safety warning system.

    2. Experimental details

    2.1. Material preparation and characterization

    The SnO2-based sensing material here was prepared by following Ref. [19]. Typically, 500 g of as-received SnO2micro-powder(2–5 μm in diameter,Jinxin Advanced Materials,China)was mixed with 1425 g deionized water under magnetic stirring, followed by addition of 75 g triethanolamine(Usolf Chemical, China)as a dispersant. Stirring and dispersion continued for 10 mins. Next,the mixture was ball-milled(WG-1L,Vgreen Nanometer Technology,China)for 2 h with balls 300 μm in diameter to produce a uniform dispersion. Finally, 1 g of tetraamminepalladium nitrate (H12N6O6Pd, Aladdin, China) was added to 12 g of the as-obtained dispersion. Consequently,the acquired stable nano-dispersion,with a solid content of 15%,was the Pd-dopped SnO2material utilized for this work.

    The morphologies of the as-prepared material were characterized using scanning electron microscopy (SEM, FEI Nanosem 430).Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with CuKαradiation(λ ≈1.54 ?A).

    2.2. Gas sensing experiment design

    A schematic of the bare sensor device with a pair of interdigital electrodes(IDEs)integrating a microheater is shown in Fig. S1a (supporting information). The microheater was fabricated based on silicon micro-electromechanical system(MEMS) technology, reported in our previous work.[20]The fabrication details are also described in the supporting information.The typical relationship of the heating temperature vs.the applied voltage of the microheater is shown in Fig. S1b.The complete sensor device was fabricated by facile dropcoating. Afterwards, the device was heated and maintained at 300°C for 7 days to promote SnO2deposition and device aging to obtain reliable testing data.

    The gas sensing tests were performed using a homemade system with an 8-L test chamber, as reported in our previous work.[21]For the analyte sensing test,a fitting concentration of the analyte(standard H2gas of 10×10-6mol/mol,and DMC,DEC and PC vapor) was injected into the chamber. All the sensing tests were taken at ambient temperature of about 25°C and 40%relative humidity,adjusted by an air conditioner and a humidifier. The heating temperature of the microheater was precisely controlled using a bias voltage applied by a Keithley 2602B source-meter. The sensor DC and AC signals were collected by a Keithley 2602B source-meter and a Keysight 1732C LCR meter, respectively. Principal component analysis(PCA)was calculated using the inbuilt library function of Python.

    3. Results and discussion

    3.1. Material analysis

    The SEM image in Fig. 1(a) shows the homogeneity of the as-prepared SnO2powder. The XRD pattern of the asprepared SnO2is shown in Fig. 1(b). Due to the tiny Pd additive, no obvious Pd peaks are detected. All the peaks are assigned to SnO2of tetragonal rutile (JCPDS No. 41-1445).The obvious peaks at 2θ= 26.7°, 33.9°, and 38°correspond to the (110), (101), and (200) planes of SnO2, respectively.Furthermore, the SnO2grain size is~30–40 nm, calculated according to the XRD data.

    Fig.1.(a)An SEM image,and(b)the XRD pattern of the as-prepared SnO2 powder.

    3.2. Gas sensing characteristics

    We chose DEC,DMC,PC and H2as analyte gases,which are mainly produced by failed Li batteries. And the gas sensing performances were investigated via the DC current signal,AC impedance,θand D signals at different frequencies. A similar AC signal response of an IDE sensor device has been reported in our previous work.[22]Figure 2 shows the relative DC and AC signal variations of one sensor device to various analyte concentrations(200,160,120,80,40,and 20 ppm of DEC,DMC,and PC,respectively;200,150,100,50,10,and 5 ppm of H2).

    Fig.2. Continuous response characteristics to different gases. DC current relative change(I/I0)to a)DEC,(b)DMC,(c)PC and(d)H2. AC impedance relative change(Z0/Z)at the frequency of 100 Hz to(e)DEC,(f)DMC,(g)PC,and(h)H2.AC impedance relative change(Z0/Z)and θ relative change(θ0/θ) at the frequency of 1 kHz to (i) DEC, (j) DMC, and (k) PC. AC impedance relative change (Z0/Z), θ relative change (θ0/θ), and D relative change(D/D0)at the frequency of 10 kHz to l)DEC,(m)DMC,(n)PC,and(o)H2. Here, I0 (Z0, θ0 and D0)and I (Z, θ and D)are the sensor DC current(AC impedance,phase angle,and dissipation factor)in ambient air and the real-time value in analyte gas,respectively.

    Under DC mode,upon exposure to each analyte,the sensor current increases rapidly, and then decreases back to the original baseline when the analyte is off. DEC, DMC, PC and H2are all electron donors. Each of the analytes adsorbed on the n-type SnO2surface could contribute electrons to the conduction band of SnO2, leading to an increase in the concentrations of the majority of electron carriers, consequently increasing the current of the SnO2device.

    Under AC mode at the frequency of 100 Hz, only an impedance response could be detected for each analyte. Notably, at AC frequency of 1 kHz, both impedance and phase angle (θ) responses to DEC, DMC, and PC are obvious, but no responses to H2. At AC frequency of 10 kHz, all the impedance,θ, and dissipation factor (D) responses to DEC,DMC, and PC are excellent, while only an impedance response to H2could be detected. Interestingly, the sensor impedance decreases quickly when exposed to each analyte,at different AC frequencies, and then quickly increases back to the original baseline when the analyte is off. Moreover,the phase angle has the same response and recovery trend, while theDhas the opposite response and recovery trend to each analyte. A detailed explanation will be given in the following section.

    Figure S2 shows that the gas response values increase as each analyte concentration increases. According to reported electrochemical gas sensors,the response could be empirically linearly expressed as[23]

    whereCrepresents the analyte concentration,andaandbare constants, depending on the type of gas sensor and sensing material. Figure 3 displays linear plots of logarithms of the response value as a function of the logarithms of each analyte concentration under different modes,except for the impedance response to H2at 10 kHz. A similar linear relationship is seen in a previous report.[24]The relative parameters(slope, intercept, andR2) of each fitting equation are summarized in Table 1.

    Fig.3. The relationship of response values vs. concentration in logarithmic terms for different gases. DEC:(a)DC current, (b)AC impedance at the frequency of 100 Hz,(c)AC impedance and θ at the frequency of 1 kHz,(d)AC impedance,θ and D at the frequency of 10 kHz. DMC:(e)DC current,(f) AC impedance at the frequency of 100 Hz, (g) AC impedance and θ at the frequency of 1 kHz, (h) AC impedance, θ and D at the frequency of 10 kHz. PC:(i)DC current, (j)AC impedance at the frequency of 100 Hz, (k)AC impedance and θ at the frequency of 1 kHz, (l)AC impedance, θ and D at the frequency of 10 kHz. H2: (m)DC current,(n)AC impedance at the frequency of 100 Hz,(o)AC impedance,θ and D at the frequency of 10 kHz. The symbols are response values;the lines are the fitting of response values vs. concentration.

    Table 1. Slope,intercept,and R2 values of the fitting equations of response vs. concentration for different gases under DC and AC dual modes.

    Moreover,a comparison of response values to different analytes(200 ppm DEC,DMC,PC,and H2)under different modes is shown in Fig. 4. Obviously, for different signal modes, the selectivity of the sensor to the various analytes is different. The different selectivity enables various analyte recognition using one device.

    Fig.4. A comparison of response values towards different gases under DC and AC modes(200 ppm DEC,DMC,PC and H2).

    In contrast to the operating principle of the DC current mode, the AC responses (includingZ0/Z,θ0/θ, andD/D0)are closely related to not only the conductivity of the sensing layer,but also the permittivity of the sensing material and analytes.[12]The equivalent circuit of the SnO2sensor with IDEs could be simply regarded as a typical Randles circuit,as depicted in Fig.5.Here,R1andC1represent the time-constant resistance and capacitance of the SnO2layer,respectively.The parallel circuit element(R2‖C2)corresponds to the resistance and capacitance of gas-dependent interfaces,which dominate the AC responses of the device.[12,25]The Warburg impedance,ascribed asZw,is as a result of the gas diffusion process,and only observed in the low-frequency regime(<10 kHz).[25–27]The imaginary and real parts of impedance can be described by

    whereεis the relative permittivity (dielectric constant),ε0is the vacuum permittivity,eis the electron charge,Ndis the majority carrier concentration,Eis the applied electrical potential,kis the Boltzmann constant,andTis the absolute temperature.

    The phase angle (θ) can be calculated by the following equation:

    Upon exposure to the analytes of electron donors, under AC modes, electrons will contribute to the SnO2surface due to analyte adsorption,and will result in a decrease in the gasdependent interface resistanceR2. Beyond this,changes in the dielectric properties of analyte-dependent interfaces in a fixed frequency could also contribute to the impedance responses,according to Eqs. (1)–(4). The permittivities of DEC, DMC,PC and H2are 2.805, 3.107, 64.92 and 1, respectively.[29]Based on reports, the gas-dependent interface capacitanceC2mainly relies on the dielectric constants of analytes.[25,30]Hence,C2has no significant effect on the AC responses of SnO2to DEC and DMC, due to their low permittivities. But for PC with high permittivity,C2generates an obvious AC response improvement,except for theθresponse at 10 kHz.

    Fig. 5. The AC equivalent circuit of the SnO2 sensor. R0 represents phase constant contact resistance. The parallel circuit element(R1‖C1)represents capacitance and resistance of the SnO2 sensing layer. The parallel element(R2 ‖C2) is the equivalent resistance and capacitance of the analyte-gasdependent interface. The Warburg impedance is described as the Zw.

    Furthermore, the only detectedZresponse to each analyte at 100 Hz indicates that electronic resistance properties of gas-dependent interfaces mainly controls the sensing response. When the frequency increased to 1 kHz, an obvious capacitance effect appears, resulting in the detectedZandθresponse;when the frequency further increased to 10 kHz,an additionalDresponse could be detected with more capacitance effect(Figs.2–3).

    Interestingly, the impedance response of H2at 100 Hz was increased dramatically compared to the DC current response, although the permittivity of H2is also small. According to previous reports, it is proposed that the chemical species induced by H2adsorption enhances the AC impedance response at the low frequency of 100 Hz, via generation of a polarization potential in the H2–SnO2interface.[12,31,32]When the AC frequency increases to 1 kHz, no AC impedancerelated parameter responses to H2could be detected. A similar sharp response decrement with the frequency increasing has previously been reported.[31,32]When the AC frequency further increases to 10 kHz,quick diffusion of H2plays an important role,with more capacitor effects(Zw)due to the small molecular size, resulting in a non-linear impedance response to concentration.

    3.3. Principal component analysis

    PCA is a commonly used effective method in exploratory data analysis and classification. In the present work, differences in the various parameter responses to each analyte provide the possibility of multi-gas recognition based on one device. Utilizing Python and the PCA function in the Sklearn Library,the database was projected into a 2D plane.Visualization in a two-dimensional graph in Fig.6 reveals that the electrolyte vapors and H2are actually and clearly discriminated.The mathematic derivation in the PCA code is attached in the supporting information. The cumulative variance of the principal components of over 97%(PC1 90.48%and PC2 6.52%)indicates that the major information is maintained from the raw database.

    Fig.6. (a)PCA-assisted classification and regression of electrolyte vapors(red dots)and H2(black dots). (b)Nine characteristic values of the covariance matrix for PCA.

    4. Conclusions

    In summary, smart and clear classification of electrolyte vapors and H2has been realized using a single common SnO2sensor,by combining DC current signals and AC impedancerelated signals.Due to the dielectric properties of analytes,the SnO2sensing layer, and the analyte adsorption on the SnO2surface, diverse sensing parameters were obtained under DC and AC dual test modes, which enable the single sensor to build signature-difference patterns for tested gases via PCA analysis. The accurate distinction of electrolyte vapors and H2would contribute to the monitoring of the operating conditions of LIBs. This robust method for the classification and recognition of various chemical vapors using an individual device paves the way toward applications in intelligent identification of multi-gas with very few sensors.

    Acknowledgements

    This research was supported by the Zhejiang Science and Technology Foundation(Grant No.LQ20F040006).

    The authors acknowledge L. M. for help with the SEM and XRD characterizations. Yan W.J.acknowledges the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    猜你喜歡
    金志
    Robust free-space optical frequency transfer in time-varying link distances conditions
    從炮兵團(tuán)戰(zhàn)士到關(guān)愛團(tuán)團(tuán)長(zhǎng)
    基于AquaCrop模型的茶葉產(chǎn)量和開采期預(yù)報(bào)*
    5次赴朝尋找,他要把父親帶回家
    婦女生活(2021年1期)2021-02-23 02:38:04
    金志文發(fā)行最新EP專輯《路遙知馬力》
    青年歌聲(2017年9期)2017-03-15 03:33:36
    韓劇迷傷別“奶奶專業(yè)戶”
    會(huì)變的云姑娘
    金志文的向日葵愛情
    閱讀(2013年3期)2013-04-23 03:31:34
    乘火車
    乘火車
    少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 精品国产国语对白av| 青草久久国产| a级毛片a级免费在线| 久久欧美精品欧美久久欧美| 熟妇人妻久久中文字幕3abv| 精品久久蜜臀av无| 日韩av在线大香蕉| 亚洲精品色激情综合| 韩国精品一区二区三区| 国产熟女xx| 法律面前人人平等表现在哪些方面| tocl精华| 91av网站免费观看| 两个人免费观看高清视频| 亚洲欧美日韩无卡精品| 色婷婷久久久亚洲欧美| 国产激情偷乱视频一区二区| 亚洲欧美精品综合久久99| 欧美成狂野欧美在线观看| videosex国产| 精华霜和精华液先用哪个| 国产精品亚洲一级av第二区| 中文字幕最新亚洲高清| 19禁男女啪啪无遮挡网站| 黄片播放在线免费| 免费av毛片视频| 成人亚洲精品av一区二区| 亚洲国产精品999在线| 一进一出抽搐动态| 999久久久国产精品视频| 久99久视频精品免费| 欧美一区二区精品小视频在线| 首页视频小说图片口味搜索| 国产蜜桃级精品一区二区三区| 欧美国产精品va在线观看不卡| 黑人欧美特级aaaaaa片| 美女 人体艺术 gogo| 久久精品91无色码中文字幕| 亚洲人成77777在线视频| 国产精品二区激情视频| 久久久久久人人人人人| 成人国产综合亚洲| 欧美一级a爱片免费观看看 | 看黄色毛片网站| 亚洲人成电影免费在线| 国产一区二区激情短视频| 成人特级黄色片久久久久久久| 国产片内射在线| 两性夫妻黄色片| 啦啦啦 在线观看视频| 91字幕亚洲| 又黄又粗又硬又大视频| 亚洲男人的天堂狠狠| 久久九九热精品免费| 19禁男女啪啪无遮挡网站| 自线自在国产av| 欧美乱码精品一区二区三区| 精品久久久久久成人av| 在线观看午夜福利视频| 天天添夜夜摸| 97碰自拍视频| 国产精品亚洲一级av第二区| 丁香六月欧美| 很黄的视频免费| 69av精品久久久久久| 一个人免费在线观看的高清视频| avwww免费| 999精品在线视频| 久久国产乱子伦精品免费另类| 亚洲国产日韩欧美精品在线观看 | 亚洲色图 男人天堂 中文字幕| 大型av网站在线播放| 国产一区二区激情短视频| 天堂动漫精品| 一区二区日韩欧美中文字幕| 人人妻,人人澡人人爽秒播| 国产一级毛片七仙女欲春2 | 日韩视频一区二区在线观看| 日韩精品免费视频一区二区三区| 最好的美女福利视频网| 国产一级毛片七仙女欲春2 | 免费女性裸体啪啪无遮挡网站| 哪里可以看免费的av片| 久久精品国产清高在天天线| 欧美av亚洲av综合av国产av| 亚洲av成人不卡在线观看播放网| 999久久久精品免费观看国产| 老司机在亚洲福利影院| 国产亚洲精品av在线| 伦理电影免费视频| 女人被狂操c到高潮| 精品熟女少妇八av免费久了| 99riav亚洲国产免费| 亚洲国产欧美一区二区综合| 日韩欧美免费精品| 久久久久久久久久黄片| 国产免费av片在线观看野外av| 亚洲欧美日韩无卡精品| 好男人电影高清在线观看| 白带黄色成豆腐渣| 香蕉久久夜色| 日日摸夜夜添夜夜添小说| 狂野欧美激情性xxxx| 亚洲免费av在线视频| 欧美日韩一级在线毛片| 国产精品久久视频播放| 18美女黄网站色大片免费观看| 久久亚洲真实| 免费看十八禁软件| 午夜亚洲福利在线播放| 国产一区二区在线av高清观看| 亚洲专区中文字幕在线| 悠悠久久av| 此物有八面人人有两片| 成人国产一区最新在线观看| 丝袜在线中文字幕| 身体一侧抽搐| 午夜福利高清视频| 99久久久亚洲精品蜜臀av| 999久久久国产精品视频| 999久久久国产精品视频| 18禁观看日本| 精品人妻1区二区| 午夜福利18| 国产精品久久久久久亚洲av鲁大| 日韩精品青青久久久久久| 成人国产一区最新在线观看| 男人舔奶头视频| 日韩精品青青久久久久久| 天天躁夜夜躁狠狠躁躁| 午夜福利成人在线免费观看| 欧美黄色淫秽网站| 一卡2卡三卡四卡精品乱码亚洲| 丰满人妻熟妇乱又伦精品不卡| 两个人看的免费小视频| 日日摸夜夜添夜夜添小说| 中文字幕av电影在线播放| 亚洲国产欧美网| 热re99久久国产66热| 成人永久免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 一级a爱视频在线免费观看| 国语自产精品视频在线第100页| 色综合婷婷激情| 久久久久久久久中文| 人人妻人人看人人澡| 一区二区三区国产精品乱码| 黑人操中国人逼视频| 熟妇人妻久久中文字幕3abv| 不卡av一区二区三区| netflix在线观看网站| 亚洲av片天天在线观看| 看黄色毛片网站| 欧美 亚洲 国产 日韩一| 国产99久久九九免费精品| 观看免费一级毛片| 亚洲av电影不卡..在线观看| 中出人妻视频一区二区| 18禁黄网站禁片午夜丰满| 在线观看日韩欧美| 久久久精品国产亚洲av高清涩受| 在线观看日韩欧美| 美女扒开内裤让男人捅视频| 中文字幕精品亚洲无线码一区 | 欧洲精品卡2卡3卡4卡5卡区| 国内久久婷婷六月综合欲色啪| 级片在线观看| 国产在线精品亚洲第一网站| 国产激情欧美一区二区| 欧美日本视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产一区二区三区四区第35| 久热这里只有精品99| 免费高清视频大片| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 制服丝袜大香蕉在线| 国产黄色小视频在线观看| 黄频高清免费视频| 大型av网站在线播放| 成人手机av| 99久久国产精品久久久| 在线av久久热| 伦理电影免费视频| 99国产精品99久久久久| 搞女人的毛片| 久久香蕉精品热| 韩国精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 2021天堂中文幕一二区在线观 | 午夜福利视频1000在线观看| 日韩高清综合在线| 青草久久国产| 精品无人区乱码1区二区| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 亚洲人成网站高清观看| 日本熟妇午夜| 精品一区二区三区视频在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 在线视频色国产色| 黄色女人牲交| 成人亚洲精品一区在线观看| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频| 国产日本99.免费观看| 伦理电影免费视频| 亚洲午夜理论影院| 熟女电影av网| 亚洲 国产 在线| av在线播放免费不卡| 国产欧美日韩精品亚洲av| 久久人妻福利社区极品人妻图片| 男女视频在线观看网站免费 | 久久久久国内视频| 日本一区二区免费在线视频| 亚洲第一欧美日韩一区二区三区| 久久热在线av| 国产伦在线观看视频一区| 国产精品一区二区精品视频观看| 精品少妇一区二区三区视频日本电影| 国产成人欧美| 一a级毛片在线观看| 亚洲精品粉嫩美女一区| 性色av乱码一区二区三区2| www.www免费av| 夜夜夜夜夜久久久久| 亚洲人成网站高清观看| 国产免费男女视频| 在线观看www视频免费| 嫩草影视91久久| 国产午夜精品久久久久久| 国产蜜桃级精品一区二区三区| 午夜福利一区二区在线看| 黄色视频不卡| 两个人视频免费观看高清| 高清毛片免费观看视频网站| 人人妻人人澡人人看| 久久久久国产一级毛片高清牌| 国产aⅴ精品一区二区三区波| 亚洲中文日韩欧美视频| 香蕉久久夜色| 日本成人三级电影网站| 无遮挡黄片免费观看| 国产精品免费一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区蜜桃av| 18禁黄网站禁片午夜丰满| 观看免费一级毛片| 欧美性长视频在线观看| 18禁观看日本| 久久99热这里只有精品18| 国产精品爽爽va在线观看网站 | 国产久久久一区二区三区| 成人精品一区二区免费| 亚洲三区欧美一区| 无遮挡黄片免费观看| 哪里可以看免费的av片| 免费观看人在逋| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 久久国产亚洲av麻豆专区| 精品国产超薄肉色丝袜足j| 亚洲国产毛片av蜜桃av| 亚洲自拍偷在线| 国产乱人伦免费视频| 欧美精品啪啪一区二区三区| 午夜福利高清视频| 女同久久另类99精品国产91| 啦啦啦观看免费观看视频高清| 男人的好看免费观看在线视频 | av免费在线观看网站| 动漫黄色视频在线观看| 村上凉子中文字幕在线| 午夜免费观看网址| 精品久久久久久久毛片微露脸| 一区二区三区精品91| aaaaa片日本免费| 正在播放国产对白刺激| 好看av亚洲va欧美ⅴa在| 老汉色∧v一级毛片| 巨乳人妻的诱惑在线观看| 99在线人妻在线中文字幕| 国产成人精品无人区| 亚洲人成电影免费在线| 老司机福利观看| 看黄色毛片网站| 欧美精品啪啪一区二区三区| 亚洲精品中文字幕在线视频| 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| 久久久久久久精品吃奶| 日本一区二区免费在线视频| 欧美大码av| 亚洲中文日韩欧美视频| 一级黄色大片毛片| 韩国精品一区二区三区| 国产精品香港三级国产av潘金莲| 久久香蕉国产精品| 日韩高清综合在线| 国产成人啪精品午夜网站| 精品高清国产在线一区| 国产亚洲av高清不卡| 啦啦啦免费观看视频1| 亚洲无线在线观看| 亚洲久久久国产精品| 99国产精品一区二区蜜桃av| 国产真实乱freesex| 精品日产1卡2卡| 中文字幕av电影在线播放| 亚洲欧美精品综合一区二区三区| 神马国产精品三级电影在线观看 | 成人三级黄色视频| 欧美性猛交黑人性爽| 一进一出抽搐动态| 国产日本99.免费观看| 欧美一级毛片孕妇| 成人精品一区二区免费| 亚洲av成人一区二区三| 18禁观看日本| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 中文字幕高清在线视频| 亚洲一区二区三区色噜噜| 黄片小视频在线播放| 久久久久国内视频| www.精华液| 欧美日韩精品网址| 欧美在线黄色| 制服丝袜大香蕉在线| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天添夜夜摸| 亚洲欧美精品综合久久99| 日韩精品中文字幕看吧| av欧美777| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 久久国产精品影院| 亚洲片人在线观看| 夜夜爽天天搞| 久久青草综合色| 黄色成人免费大全| 国产又色又爽无遮挡免费看| 色播亚洲综合网| 亚洲第一电影网av| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 亚洲aⅴ乱码一区二区在线播放 | 三级毛片av免费| 国产亚洲精品av在线| 亚洲真实伦在线观看| 久久久久久国产a免费观看| 后天国语完整版免费观看| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 久久精品成人免费网站| 亚洲国产中文字幕在线视频| 熟妇人妻久久中文字幕3abv| 91成人精品电影| 久久人妻福利社区极品人妻图片| 亚洲免费av在线视频| 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 女警被强在线播放| 人妻丰满熟妇av一区二区三区| 欧美亚洲日本最大视频资源| 亚洲熟妇熟女久久| 国产麻豆成人av免费视频| 热re99久久国产66热| 18禁观看日本| 免费高清在线观看日韩| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观 | 91大片在线观看| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| 国产麻豆成人av免费视频| 欧美性长视频在线观看| 搡老岳熟女国产| 制服丝袜大香蕉在线| 成年免费大片在线观看| 精品高清国产在线一区| 亚洲自拍偷在线| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 国产精品国产高清国产av| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 国产精品 欧美亚洲| 久热爱精品视频在线9| 黄片小视频在线播放| 国产熟女午夜一区二区三区| 可以在线观看毛片的网站| 午夜福利在线在线| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 不卡一级毛片| 天天添夜夜摸| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 中文字幕精品免费在线观看视频| 国产蜜桃级精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 国产精品香港三级国产av潘金莲| 午夜免费激情av| 亚洲av中文字字幕乱码综合 | 亚洲成a人片在线一区二区| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 黄片播放在线免费| 大型黄色视频在线免费观看| 国产午夜精品久久久久久| 国产成人欧美在线观看| 女同久久另类99精品国产91| 久久久久久久午夜电影| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 久久人妻福利社区极品人妻图片| 成人18禁在线播放| 老司机靠b影院| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 一区二区三区激情视频| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 亚洲av成人一区二区三| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| 91老司机精品| 国产亚洲精品第一综合不卡| cao死你这个sao货| 最近最新中文字幕大全电影3 | 岛国视频午夜一区免费看| 99久久综合精品五月天人人| 色哟哟哟哟哟哟| 淫秽高清视频在线观看| 精品欧美一区二区三区在线| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| 国产单亲对白刺激| 亚洲专区国产一区二区| 久久香蕉国产精品| 99热这里只有精品一区 | 此物有八面人人有两片| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 亚洲自拍偷在线| 成年人黄色毛片网站| 国产精品国产高清国产av| 国产欧美日韩精品亚洲av| 久久草成人影院| 亚洲午夜理论影院| 久热爱精品视频在线9| 国产一区二区激情短视频| 校园春色视频在线观看| 此物有八面人人有两片| 又大又爽又粗| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久精品电影 | 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| av天堂在线播放| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 变态另类丝袜制服| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 精品久久久久久久末码| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 久久中文字幕人妻熟女| 人人澡人人妻人| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 黄频高清免费视频| 国产激情欧美一区二区| av欧美777| x7x7x7水蜜桃| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 国产激情欧美一区二区| 久热这里只有精品99| 女人被狂操c到高潮| 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 亚洲片人在线观看| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频 | 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| ponron亚洲| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 午夜福利18| 别揉我奶头~嗯~啊~动态视频| 久久国产精品影院| 满18在线观看网站| 欧美日本视频| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 成人国产综合亚洲| 男女之事视频高清在线观看| 色播在线永久视频| 在线天堂中文资源库| xxx96com| 亚洲第一青青草原| 国产精品 欧美亚洲| www日本黄色视频网| 亚洲成人久久爱视频| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 亚洲国产精品合色在线| 91成年电影在线观看| 国产精品电影一区二区三区| 久久精品国产清高在天天线| 日本三级黄在线观看| 美女午夜性视频免费| 热99re8久久精品国产| 12—13女人毛片做爰片一| 1024手机看黄色片| 亚洲精品中文字幕在线视频| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 老司机深夜福利视频在线观看| 90打野战视频偷拍视频| 精品高清国产在线一区| 久久久久久久午夜电影| 中文字幕av电影在线播放| www.999成人在线观看| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 久久伊人香网站| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 亚洲全国av大片| 99在线视频只有这里精品首页| 欧美日韩黄片免| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 国产精华一区二区三区| 日本黄色视频三级网站网址| 91国产中文字幕| 欧美三级亚洲精品| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 日本黄色视频三级网站网址| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 1024视频免费在线观看| 一边摸一边做爽爽视频免费| 国产成人影院久久av| 动漫黄色视频在线观看| 后天国语完整版免费观看| 丝袜在线中文字幕| 国产精品美女特级片免费视频播放器 | 国产高清激情床上av| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 岛国视频午夜一区免费看| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 黄色视频不卡| 黑人操中国人逼视频| 亚洲性夜色夜夜综合| 无限看片的www在线观看| 最近最新中文字幕大全免费视频| 曰老女人黄片| 午夜福利在线观看吧| 亚洲中文字幕日韩| 麻豆国产av国片精品| 亚洲全国av大片| 十分钟在线观看高清视频www| 搡老岳熟女国产| 久久伊人香网站| 亚洲激情在线av| 黄色a级毛片大全视频| 国产精品九九99| 黑人操中国人逼视频| 两个人视频免费观看高清| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站 | 久久人人精品亚洲av|