• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface modulated electron mobility enhancement in core–shell nanowires

    2022-11-21 09:34:26YanHe賀言HuaKaiXu許華慨andGangOuyang歐陽鋼
    Chinese Physics B 2022年11期
    關(guān)鍵詞:歐陽

    Yan He(賀言) Hua-Kai Xu(許華慨) and Gang Ouyang(歐陽鋼)

    1College of Science,Guangdong University of Petrochemical Technology,Maoming 525000,China

    2Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    The transport properties of core–shell nanowires(CSNWs)under interface modulation and confinement are investigated based on the atomic-bond-relaxation(ABR)correlation mechanism and Fermi’s golden rule.An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size,shell thickness and alloyed layer on effective mass, band structures, and deformation potential constant are studied. It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment, but also participate in the carrier transport for enhancing mobility. Moreover, the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified. The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices.

    Keywords: core–shell nanowires,interface modulated,electron mobility

    1. Introduction

    Core–shell nanowires (CSNWs) have drawn significant attraction due to their outstanding electronic and transport properties, which provide a really possibility for improving the performance of catalytic, field effect transistors, and photovoltaic devices.[1–3]To date, an abundance of reports, experimental and theoretical,have shown that the epitaxial layer of shell can not only decay the surface state and defects to reduce the impurity and phonon scattering,[4,5]but also offer a radical channel for the rapid transport and separation to carriers for enhancing carrier collection efficiency.[6,7]However, some results are anxious for the unimaginably tunable interface phonon scattering and band structures induced by the lattice mismatch between core and shell parts,which exert an important influence on the performance of nanoelectronic devices.[8,9]Therefore, understanding the influence of interface strain on the transport properties and designing an optimized interface structures to achieve the sharpness interface in CSNWs become significant challenging problems in fundamental scientific and technological applications.

    In general,the bottom-up approach is required for achieving a uniform coating of the shell materials during the particle formation and the core–shell transition can occur discontinuously (a “hard” interface) or may expect to be accompanied by interdiffusionions at the interface to smooth the confinement potential (called “interface engineering”), resulting in forming an alloyed transition region(a“soft”interface).[10,11]Nanowires (NWs) with hard or soft interfaces can have different transport and dynamical properties. Atomic-bondrelaxation (ABR) correlation mechanism[12,13]reveals that since a hard interface in CSNWs provides an additional driving induced by lattice mismatch and imperfect coordination numbers(CNs)that forces the interface atoms to deviate from intrinsic position, the mismatch strain and strain energy will take place.The magnitude of the strain energies determined by size,shell thickness and lattice parameters,and it may involve in chemical bonds to modify the Hamiltonian and band structure or even modulate the morphology to induce the charge redistribution.[14,15]Moreover,a sharpness interface modified by the interface modulation to form a soft interface will have less mismatch strain and strain energy as the lattice parameters changes gradually.[16]Contributions have shown that the alloying layer can reduce or eliminate the mixing of conductionband and valence-band to provide a more gradual change in the confinement potential for optimizing the band structure and eventually to improve the charge injection or collection at interface.[17–20]

    Additionally, some studies shave revealed that the interface morphology modulation also plays a significant role in the carrier behaviors as it may provide a large interface area.[21,22]However,although considerable efforts have been made to investigate the effects of sharpness and softness interface on optical and electronic properties, the investigation of the influence of interface modulation on transport properties is still limited by two aspects. (i) Some one attempts to clarify that the epitaxial layer can participate in the carrier transport and provide a strong response to gate biasviathe Stark effect due to the lattice mismatch at the core–shell interface,[23]but there is a lack of quantitative calculation for the transport properties improving with the thickness of epitaxial layer increasing. (ii)Even though experimental measurements and theories have confirmed that the alloyed layer can reduce the interface lattice mismatch strain to optimize the band alignment and improve the carriers’lifetime,[24]the quantitative relationship between mismatch strain and transport properties is unclear. Therefore,in order to evaluate the influence of interface mismatch modulation on the transport properties of CSNWs and establish the relationship between theirs, we propose an analytical model to clarify the effects of size, shell thickness and alloy layer on effective mass,band structure and formation potential constant based on the ABR correlation mechanism and Fermi’s golden rule. The results show that the soft interface is helpful in blocking the phonon scattering and also in increasing the electron mobility as it decays the lattice mismatch strain,which may optimize the band structures and the participation in the carrier transport.Moreover,the difference between electron mobilities in CSNWs with cylinder and elliptic interface are also compared.

    2. Principle

    Physically,the transition rate for an electron in an initial statekto a final statek′can be calculated in terms of Fermi’s golden rule[25,26]

    where ˉhωkand ˉhωk′ are the electron energy of initial state and final state,ˉhωqis the phonon energy,Mk′kis the transition matrix elements,ψk= eik·ruk(r) is the wavefunction of a specific state,andV(r)is the scattering potential.

    Generally, the above equation can be solved by the deformation potential theory and virtual-crystals approach.[27,28]By using the effectivemas approximation and the electron–phonon scattering mechanism,the relaxation time involves in an integral equation(see section S1 in the supporting information for details)and is expressed as

    The acoustic deformation potential is proportional to the stretching-induced band-edge shift. We consider ΔEC, which is the conduction-band-edgeupward shift, while ΔEVis the valence-band-edgedownward shift. According to the thermodynamic approach,[29,30]we have (see section S2 in the supporting information for details)

    wherem*eandm*hare the effective mass of electron and hole,respectively.

    Moreover, for the AxB1-xalloy at the interface of A/B core–shell nanowires, the band edge energy can be approximated as[28]

    whereEAandEBare the band edge energy of A and B,respectively,andxis the concentration of A atoms of AxB1-xalloy.Additionally,the electron effective massm*is the electron effective mass,specifically,

    whereEis the electron energy. Moreover, the interaction of long-wavelength longitudinal–vibrational modes with the longitudinal-collective excitations becomes important when the free-carrier plasmon frequencyωpapproaches to the LOphonon frequencyωiwherem*=ne2/ω2pε0ε∞,[31]nandeare the electron concentration and electronic charge,ε0andε∞present are the permittivity of free space and high frequency dielectric constant, respectively. According to the ABR correlation mechanism,the dielectric constant relates to the band gapEgof specimen,andEg/EBg=f(D),[32]f(D)is a function of size andEBgdenotes the band gap of bulk case. Therefore,the effective mass with size and shell thickness can be deduced as follows:

    whereεBandxmare the bulk dielectric constant and molar ratio,zi(zb) andEi(Eb) represent the coordination number and single bond energy ofi-th layer(bulk), ˉzandEc-sdenote the average coordination number and formation enthalpy of an interfacial bond,γiandγintare the surface-to-volume ratio(SVR)and interface-to-volume ratio,zrr(Err),zθθ(Eθθ),andzzz(Ezz)are the CNs(single bond energy)in the radial direction,the tangential direction,and the axial direction.

    Therefore, the change of deformation potential constantDawith the influence of shell and alloy layer can be expressed as

    whereεRis the lattice strain induced by the size effect (see section S2 in the supporting information for details), Δais a small change of lattice constant that results in a position shift ΔEin the energy band near the Fermi surface.

    Consequentially, considering the discrepancies of transport properties between core and interface of AxB1-xalloy layers, the mobility of core can be given by a weight factors=Salloy/(Salloy+Score),whereSalloyandScoreare the area of alloy and the area of core. Thus,

    3. Results and discussion

    In order to clarify the influence of epitaxial layer and geometric shape on the transport properties,Si/Ge core–shell NW with an interface Si0.5Ge0.5alloy layer is considered. Moreover,to solve the Eq.(2),we consider that the relaxation time that involves in an integral equation can be solved numerically,for the scattering of sub-bands is not important for the considered cases and the approximation works well for the lowest sub-band which is the main contributor to mobility.[33]Therefore, we expect the main difference in comparison with the different wires to come from the deformation potentials.

    Figure 1 shows the curves of size-dependent effective mass in various orientations of Si NWs. Evidently,m*increases with the decrease of diameter of Si and thickness of epitaxial layer. Those results are similar to other results that the electron effective mass of semiconductors is observed to decrease with band gap increasing.[34]Moreover, the results indicate that the existence of shell can not only reduce the quantum effect and Coulomb interaction,but also diminish the surface state and CNs defects,resulting in enhancing the cohesive energy and reducing the periodic potential and the effective mass. In our case,there are a lot of dangling bonds in the surface of bare nanostructures, which play an important role in its physical and chemical properties. However,an epitaxial layer coated on the surface of nanostructure is of great benefit to reducing the dangling bonds. As a result,the CNs’defects on the surface and surface state of the nanostructures will decrease dramatically. Our predictions are consistent with those in Refs.[35,36],whereas they deviate from some calculations due to the discrepancy between approximate methods.

    Fig.1.Size-and shell-dependent effective mass of Si NWs,with inset showings schematic illustration of Si/Ge core–shell NWs.

    The influence of interface modulation on band edge energy is studied, figure 2(a) shows the conduction-band-edge upward shift and valence-band-edge downward shift with size increasing, and the shift of bands decreases with shell thickness increasing.Our result is exceedingly well agreement with earlier result. Moreover,the shift of band edges suggests that the deformation potential constant may change with dimensionDand thickness of epitaxial layerHas shown in Fig.2(b).Clearly,the deformation potential constant decreases with core diameter and shell thickness increasing,and it approximates to 9.3 eV which is close to earlier result,9.5 eV.[37]The deformation potential constant is expected to increase since the effective mass approximation has been reported to be ΔE∝D-2,[38]while ABR correlation mechanism proposed that the lattice strain can be expressed asε=Δa/a∝D-1dependence.[39]As a result, the relationship between deformation potential constant and size should satisfyDa∝D-1.Moreover,the decrease ofDaunder a shell coated in Si NWs may be attributed to the reduction of strain. In fact,ΔE∝ΔEcoh∝ε2ζ,[30,39]whereεζis the strain of the core in the radial direction,the tangential direction,and the axial direction(see section S2 in the supporting information for details),then we haveDa∝εζ. Moreover,our results exhibit that the interface Si0.5Ge0.5alloy layer has an effect on the inhibiting of the deformation potential constant due to the reduction of mismatch strain at interfaceviastrain modulation in core–shell NWs with modulating lattice mismatch. The predictions imply that the epitaxial layer and interface alloy play a significant role in the transport properties of NWs.

    Figure 3 shows the curves of mobility of Si NWs as a function of NWs diameter, shell thickness, and alloy layers under various directions. As indicated in Fig. 3(a), mobility decreases with diameter declining. The results demonstrate that the scattering rate determined by electronic structure and mechanical structure,resulting in the different transport properties in the orientations of various crystals due to the discrepancy of effective mass,process of electron transition between energy levels,velocities,etc. Those trends are expected to be due to the wave form factor overlap increasing with diameter decreasing, which may enhance the phonon scattering in NWs. In particular,our results show that the influence of epitaxial layers exert a significant effect on the transport properties of NWs in small size. This trend is similar to the earlier results,but slightly larger.[27,37,40]In order to clarify the transport properties of NWs modulated by interface modulation,figure 3(b) shows the electron mobility as a function of alloy Si0.5Ge0.5thicknesst,with diameterDand thicknessHfixed.We find that the increase ofμcan be attributed to the decrease of mismatch strain and scattering rate. In our case, although epitaxial layer is of great benefit to the decreasing of the surface coordination bonds and surface states,the interface effect and lattice strain will occur as the discrepancy between the lattice constants in core Si and shell Ge.[41,42]The alloying layers may decay or even eliminate the interface effect and lattice mismatch between Si and Ge,resulting in optimization of the band structure of core. Additionally,since the SiGe alloy has a different electronic structure from Si,it can offer a real possibility for optimizing band structures and reducing scattering rate. Note that we may overestimate the carrier mobility due to the fact that the calculations did not take into account the intervalley scattering or alloy scattering.[43]

    To further understand the influence of interface modulation on transport properties, CSNWs with elliptic interfaces are deliberately considered as shown in the inset of Fig.4.The transport properties of Si NWs with cylinder and elliptic interface are compared in Fig.4,and we find the NW with elliptic interface exhibits more excellent electron mobility. The reason may be due to the difference between mechanical structure and electronic structure induced by the SVR. In fact, on the one hand, Si NW with elliptic interface has lower SVR than that of cylinder interface, which suppresses the size effect and quantum effect to disturb the Hamiltonian. On the other hand,since the elliptical interface in core/shell NW has a wider range of interface extension than that of cylinder interface, more donors will provide Si core with alloy layer for taking part in the carrier transport.

    Fig.4. Curves of change of electron mobility with thickness of alloy layer in Si/SiGe/Ge core–shell NWs with elliptic interface,with inset showing the schematic illustration of Si/SiGe/Ge core–shell NWs with elliptic interfaces and electron mobility of Si NWs versus Ra/Rb.

    Additionally,as indicated in the inset of Fig.4,the electron mobility of Si NWs with elliptical interface demonstrates a first rapid increase with size increasing and then it become a constant whenRa/Rb>4. This result may be due to the fact that the electron mobility of elliptic interface withRa/Rb>4 can be treated as a two-dimensional phonon scattering rather than one-dimensional scattering as the transformation effect from one-dimensional to two-dimensional structures.

    4. Conclusions

    In this work, we proposed an analytical model to clarify the influence of interface modulation on the transport properties of core–shell NWs based on Fermi’s golden rule and ABR correlation mechanism. Our results indicate that the size and shell thickness exert a significant effect on phonon scattering and transport properties as the deformation potential constant and band structure change. We find the thick size and epitaxial layer reduce the surface state and wave overlap, resulting in the increase of electron mobility. In particular, the core/alloying/shell NWs,leading to the“smoothing”confinement potential, can dramatically enhance the transport properties of NWs as the alloy layer can decay or even eliminate the interface effect and lattice mismatch to optimize the band structures and participate in the carrier transport. Moreover,benefited from the low SVR and wider range of interface extension in elliptic interface, NWs with elliptic interface exhibits more excellent electron mobility than that of cylinder interface.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91833302 and U2001215),the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515010989), and the Special Project in Key Fields of Guandong Universities,China(Grant No.2022ZDZX3015).

    猜你喜歡
    歐陽
    動(dòng)物怎樣聽和看?
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    雅皮狗(7)
    雅皮狗(6)
    雅皮狗(5)
    雅皮狗(4)
    雅皮狗(1)
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    十八禁高潮呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 日本a在线网址| 久久中文字幕一级| 各种免费的搞黄视频| 老司机影院毛片| av天堂在线播放| 曰老女人黄片| 亚洲熟女精品中文字幕| 五月天丁香电影| 搡老乐熟女国产| 好男人视频免费观看在线| 午夜av观看不卡| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| netflix在线观看网站| 色综合欧美亚洲国产小说| 成年人黄色毛片网站| 国产男女超爽视频在线观看| 欧美在线黄色| 91字幕亚洲| 亚洲熟女毛片儿| 欧美日韩精品网址| 狂野欧美激情性bbbbbb| 一区二区三区四区激情视频| 久久久久国产精品人妻一区二区| 宅男免费午夜| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| 欧美另类一区| 国产在视频线精品| 中文字幕亚洲精品专区| 亚洲,欧美,日韩| 性色av乱码一区二区三区2| 国产精品一国产av| 91麻豆av在线| 成人18禁高潮啪啪吃奶动态图| 久久精品国产综合久久久| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 久久天堂一区二区三区四区| 你懂的网址亚洲精品在线观看| 只有这里有精品99| 一级片'在线观看视频| 久久热在线av| av国产久精品久网站免费入址| 亚洲一区中文字幕在线| 超碰97精品在线观看| 妹子高潮喷水视频| 亚洲伊人色综图| 久久天堂一区二区三区四区| 在线看a的网站| 日本色播在线视频| 欧美国产精品一级二级三级| 欧美亚洲 丝袜 人妻 在线| 久久久精品国产亚洲av高清涩受| 亚洲精品国产一区二区精华液| 国产人伦9x9x在线观看| 欧美精品啪啪一区二区三区 | av视频免费观看在线观看| 日韩,欧美,国产一区二区三区| 久久亚洲国产成人精品v| 国产高清视频在线播放一区 | 成年美女黄网站色视频大全免费| 日本黄色日本黄色录像| 亚洲国产毛片av蜜桃av| 9热在线视频观看99| 啦啦啦在线免费观看视频4| 18禁裸乳无遮挡动漫免费视频| 性色av乱码一区二区三区2| 青青草视频在线视频观看| 丰满人妻熟妇乱又伦精品不卡| 一本—道久久a久久精品蜜桃钙片| 夫妻午夜视频| 777米奇影视久久| 人体艺术视频欧美日本| 欧美在线一区亚洲| 久久女婷五月综合色啪小说| 波野结衣二区三区在线| 成在线人永久免费视频| 免费女性裸体啪啪无遮挡网站| 成年美女黄网站色视频大全免费| 纵有疾风起免费观看全集完整版| 亚洲黑人精品在线| 亚洲国产欧美一区二区综合| 久久精品国产a三级三级三级| 久久国产精品影院| 狂野欧美激情性bbbbbb| 秋霞在线观看毛片| 黄网站色视频无遮挡免费观看| 手机成人av网站| 免费在线观看视频国产中文字幕亚洲 | 狂野欧美激情性xxxx| 久9热在线精品视频| 日本av免费视频播放| 亚洲天堂av无毛| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩伦理黄色片| 国产麻豆69| 麻豆av在线久日| 汤姆久久久久久久影院中文字幕| 十八禁人妻一区二区| 伊人亚洲综合成人网| 亚洲欧美精品自产自拍| 美女大奶头黄色视频| 91精品三级在线观看| 精品久久久久久久毛片微露脸 | 亚洲欧洲精品一区二区精品久久久| 中文字幕最新亚洲高清| 精品一区二区三区av网在线观看 | 婷婷色麻豆天堂久久| 久久99精品国语久久久| 欧美日韩视频精品一区| 操出白浆在线播放| 国产精品av久久久久免费| 精品免费久久久久久久清纯 | 午夜精品国产一区二区电影| 啦啦啦啦在线视频资源| 成年av动漫网址| 国产精品一区二区精品视频观看| 美女扒开内裤让男人捅视频| 可以免费在线观看a视频的电影网站| 国产97色在线日韩免费| 久久久国产一区二区| 满18在线观看网站| 亚洲av美国av| 精品国产一区二区三区四区第35| 老汉色av国产亚洲站长工具| 亚洲一码二码三码区别大吗| 丝袜人妻中文字幕| 中文字幕人妻熟女乱码| 七月丁香在线播放| 两个人看的免费小视频| 国产成人a∨麻豆精品| 老司机在亚洲福利影院| 亚洲av综合色区一区| 午夜福利视频在线观看免费| 成年动漫av网址| 久久人妻福利社区极品人妻图片 | 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 999久久久国产精品视频| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 日韩,欧美,国产一区二区三区| 国产成人91sexporn| 高清av免费在线| 99国产精品99久久久久| 亚洲av综合色区一区| 黄片小视频在线播放| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 国产免费一区二区三区四区乱码| 亚洲自偷自拍图片 自拍| 久久久久久久国产电影| 久久鲁丝午夜福利片| 满18在线观看网站| 考比视频在线观看| 99热全是精品| 成在线人永久免费视频| www.999成人在线观看| 久久久国产欧美日韩av| 国产不卡av网站在线观看| 国产欧美日韩一区二区三 | 嫩草影视91久久| 亚洲精品美女久久av网站| 欧美在线一区亚洲| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 国语对白做爰xxxⅹ性视频网站| 狂野欧美激情性bbbbbb| 乱人伦中国视频| 亚洲第一青青草原| 欧美精品人与动牲交sv欧美| 青草久久国产| av片东京热男人的天堂| 18在线观看网站| 青草久久国产| 国产精品一区二区在线不卡| 人妻人人澡人人爽人人| 亚洲伊人色综图| 欧美日韩综合久久久久久| 亚洲人成电影免费在线| 久久人人爽av亚洲精品天堂| 一级毛片我不卡| 亚洲成人免费电影在线观看 | 黄色片一级片一级黄色片| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 另类亚洲欧美激情| 又大又爽又粗| 91老司机精品| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 午夜av观看不卡| 国产av国产精品国产| 悠悠久久av| 日韩,欧美,国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美网| 99久久人妻综合| 国产男女超爽视频在线观看| 久久精品成人免费网站| 一本—道久久a久久精品蜜桃钙片| 老司机深夜福利视频在线观看 | 国产精品99久久99久久久不卡| 亚洲成人免费电影在线观看 | 亚洲国产精品国产精品| 精品久久久精品久久久| 日韩大码丰满熟妇| 国产精品成人在线| 久久久久视频综合| av天堂久久9| 色婷婷久久久亚洲欧美| 激情视频va一区二区三区| av线在线观看网站| 日韩制服丝袜自拍偷拍| 国产午夜精品一二区理论片| 欧美激情 高清一区二区三区| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区| 国产色视频综合| 日本一区二区免费在线视频| 色婷婷av一区二区三区视频| www.精华液| av国产精品久久久久影院| 国产1区2区3区精品| 亚洲国产精品成人久久小说| 飞空精品影院首页| 美女视频免费永久观看网站| 丝袜在线中文字幕| 亚洲中文字幕日韩| 欧美日韩黄片免| 黄网站色视频无遮挡免费观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲av在线观看美女高潮| 日韩电影二区| 久久鲁丝午夜福利片| 国产三级黄色录像| 99国产精品一区二区蜜桃av | 精品国产一区二区三区四区第35| 99国产精品免费福利视频| 黄色视频不卡| 久久99热这里只频精品6学生| 一级毛片 在线播放| 制服人妻中文乱码| 亚洲色图综合在线观看| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 国产老妇伦熟女老妇高清| 手机成人av网站| 亚洲精品在线美女| 日本五十路高清| 亚洲国产欧美日韩在线播放| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区四区第35| 精品一品国产午夜福利视频| 国产精品熟女久久久久浪| 亚洲欧美成人综合另类久久久| 精品一区二区三区四区五区乱码 | 黄频高清免费视频| 极品少妇高潮喷水抽搐| 尾随美女入室| 国产成人影院久久av| 亚洲欧洲精品一区二区精品久久久| 在线 av 中文字幕| 亚洲国产精品国产精品| 国产精品国产av在线观看| 老汉色av国产亚洲站长工具| 天天操日日干夜夜撸| 婷婷色麻豆天堂久久| 欧美另类一区| 国产精品久久久久成人av| 国产xxxxx性猛交| 黄色一级大片看看| 日本av免费视频播放| 大陆偷拍与自拍| 午夜av观看不卡| 人人澡人人妻人| 国产精品免费视频内射| 日本av手机在线免费观看| 亚洲精品日本国产第一区| 丰满饥渴人妻一区二区三| 老熟女久久久| 国产精品久久久人人做人人爽| 国产一区二区激情短视频 | 精品少妇内射三级| 久久精品亚洲av国产电影网| 在线观看www视频免费| 日韩精品免费视频一区二区三区| 国产伦人伦偷精品视频| 成人国产av品久久久| 夫妻午夜视频| av在线播放精品| 欧美日韩av久久| 国产淫语在线视频| 欧美日韩综合久久久久久| 只有这里有精品99| 后天国语完整版免费观看| 国产精品国产三级专区第一集| 黄色片一级片一级黄色片| 一边摸一边抽搐一进一出视频| 日韩欧美一区视频在线观看| 免费女性裸体啪啪无遮挡网站| 中文精品一卡2卡3卡4更新| 欧美乱码精品一区二区三区| 日韩视频在线欧美| 日韩av不卡免费在线播放| 在线观看国产h片| 自线自在国产av| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 精品一区二区三区av网在线观看 | 日韩大片免费观看网站| 欧美精品一区二区大全| 久久这里只有精品19| 王馨瑶露胸无遮挡在线观看| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看 | 精品欧美一区二区三区在线| 亚洲欧美一区二区三区国产| 亚洲视频免费观看视频| 观看av在线不卡| av电影中文网址| 亚洲第一av免费看| 男女边摸边吃奶| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 满18在线观看网站| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 欧美少妇被猛烈插入视频| 久久人人97超碰香蕉20202| 人成视频在线观看免费观看| 久久综合国产亚洲精品| a级片在线免费高清观看视频| 国产男人的电影天堂91| 美女午夜性视频免费| 99久久精品国产亚洲精品| 黄色 视频免费看| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 国产女主播在线喷水免费视频网站| 日韩免费高清中文字幕av| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 国产一卡二卡三卡精品| 男女国产视频网站| 午夜福利一区二区在线看| 中文字幕色久视频| 丁香六月天网| 十分钟在线观看高清视频www| 国产高清视频在线播放一区 | 久久久国产一区二区| 免费黄频网站在线观看国产| 99久久精品国产亚洲精品| 在线亚洲精品国产二区图片欧美| 日本色播在线视频| 国产高清视频在线播放一区 | 一级毛片电影观看| 热99久久久久精品小说推荐| av天堂久久9| 一区福利在线观看| 美女扒开内裤让男人捅视频| 日韩电影二区| 夫妻午夜视频| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 国产伦理片在线播放av一区| 人人澡人人妻人| 国产成人一区二区在线| 看免费av毛片| 亚洲中文av在线| 中文字幕av电影在线播放| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 久久精品国产亚洲av涩爱| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 午夜福利免费观看在线| 91九色精品人成在线观看| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 日本a在线网址| 曰老女人黄片| 只有这里有精品99| 纯流量卡能插随身wifi吗| 最黄视频免费看| 亚洲国产成人一精品久久久| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网 | 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 国产免费一区二区三区四区乱码| 最近中文字幕2019免费版| 一级毛片我不卡| 亚洲七黄色美女视频| 一级毛片我不卡| 亚洲成色77777| netflix在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| av国产久精品久网站免费入址| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 精品人妻在线不人妻| 激情五月婷婷亚洲| 精品人妻熟女毛片av久久网站| 看免费av毛片| 色网站视频免费| av电影中文网址| 国产成人精品无人区| 少妇 在线观看| 日韩大码丰满熟妇| 中文字幕亚洲精品专区| 精品久久久久久电影网| 精品一区二区三卡| 欧美精品av麻豆av| 岛国毛片在线播放| 亚洲自偷自拍图片 自拍| 欧美精品人与动牲交sv欧美| 免费看av在线观看网站| 亚洲国产av影院在线观看| 波多野结衣av一区二区av| 777米奇影视久久| av视频免费观看在线观看| 国产精品一区二区在线不卡| 亚洲中文av在线| 国产在视频线精品| 日韩av在线免费看完整版不卡| 在线观看www视频免费| 操出白浆在线播放| videos熟女内射| 91麻豆av在线| 尾随美女入室| 色播在线永久视频| 亚洲七黄色美女视频| 国产精品免费视频内射| 美女主播在线视频| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 人妻一区二区av| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 成年人黄色毛片网站| 成年av动漫网址| 极品人妻少妇av视频| www.自偷自拍.com| 亚洲人成电影免费在线| av不卡在线播放| 曰老女人黄片| 丝袜美腿诱惑在线| 国产免费视频播放在线视频| 国产精品国产av在线观看| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 免费不卡黄色视频| 91麻豆av在线| av在线app专区| 欧美亚洲 丝袜 人妻 在线| 欧美大码av| 久久久久久人人人人人| 日韩av在线免费看完整版不卡| 亚洲自偷自拍图片 自拍| 久久狼人影院| 成人国产av品久久久| 免费少妇av软件| 日韩大码丰满熟妇| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| 成年人黄色毛片网站| 秋霞在线观看毛片| 久久久久久久久久久久大奶| 在现免费观看毛片| 国产亚洲欧美在线一区二区| www日本在线高清视频| 婷婷色麻豆天堂久久| 国产成人欧美| 成年女人毛片免费观看观看9 | 18禁黄网站禁片午夜丰满| 在线观看人妻少妇| 久久午夜综合久久蜜桃| 免费高清在线观看日韩| 丝袜脚勾引网站| 国产精品偷伦视频观看了| 久久久久久久大尺度免费视频| 精品国产一区二区久久| 久久狼人影院| av国产精品久久久久影院| 久久中文字幕一级| 黄网站色视频无遮挡免费观看| 精品一区二区三区四区五区乱码 | 一本—道久久a久久精品蜜桃钙片| 国产午夜精品一二区理论片| 啦啦啦在线免费观看视频4| 国产成人精品久久久久久| 丰满饥渴人妻一区二区三| 两人在一起打扑克的视频| 精品国产一区二区三区四区第35| 亚洲欧美日韩高清在线视频 | 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一出视频| 亚洲天堂av无毛| 在线观看一区二区三区激情| 精品第一国产精品| 国产高清不卡午夜福利| 国产黄色视频一区二区在线观看| 国产成人av教育| 亚洲国产看品久久| 高潮久久久久久久久久久不卡| 国产有黄有色有爽视频| 性色av一级| 操美女的视频在线观看| 国产精品麻豆人妻色哟哟久久| 首页视频小说图片口味搜索 | 久久国产亚洲av麻豆专区| 波野结衣二区三区在线| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 悠悠久久av| 大片电影免费在线观看免费| www.av在线官网国产| 在现免费观看毛片| 99精品久久久久人妻精品| 青春草视频在线免费观看| 高潮久久久久久久久久久不卡| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av涩爱| 国产精品熟女久久久久浪| 一区在线观看完整版| 国产xxxxx性猛交| 日日夜夜操网爽| 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| svipshipincom国产片| 久久女婷五月综合色啪小说| 国产日韩欧美视频二区| 18禁裸乳无遮挡动漫免费视频| 亚洲,欧美,日韩| www日本在线高清视频| av福利片在线| 成人午夜精彩视频在线观看| 精品国产国语对白av| 欧美亚洲 丝袜 人妻 在线| 久久久国产欧美日韩av| 高潮久久久久久久久久久不卡| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| √禁漫天堂资源中文www| 亚洲av电影在线进入| 黄网站色视频无遮挡免费观看| 18禁裸乳无遮挡动漫免费视频| www.999成人在线观看| 国产片特级美女逼逼视频| 又大又黄又爽视频免费| 免费看不卡的av| 夜夜骑夜夜射夜夜干| 久久九九热精品免费| 日韩视频在线欧美| 在线观看免费高清a一片| 国产精品 国内视频| 97在线人人人人妻| 久久热在线av| 国产成人精品无人区| 久久精品熟女亚洲av麻豆精品| 一级毛片女人18水好多 | 亚洲精品国产区一区二| 成人三级做爰电影| 国产成人精品在线电影| 韩国高清视频一区二区三区| 欧美黄色淫秽网站| 成年人免费黄色播放视频| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 亚洲精品美女久久久久99蜜臀 | 99香蕉大伊视频| 午夜福利一区二区在线看| 一本综合久久免费| 别揉我奶头~嗯~啊~动态视频 | 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| xxxhd国产人妻xxx| 日韩av不卡免费在线播放| 日本91视频免费播放| 亚洲,一卡二卡三卡| 这个男人来自地球电影免费观看| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 十八禁人妻一区二区| 国产真人三级小视频在线观看| 丝袜美足系列| 国产一区二区三区av在线| 久热这里只有精品99| 亚洲欧美清纯卡通| 日本一区二区免费在线视频| 久久亚洲国产成人精品v| 亚洲一区中文字幕在线| 国产成人av教育| 一本一本久久a久久精品综合妖精| 亚洲午夜精品一区,二区,三区| 老司机午夜十八禁免费视频|