• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction

    2022-11-21 09:28:54YongZhang張勇XiugangGuo郭秀剛andHaigangYang楊海剛
    Chinese Physics B 2022年11期
    關(guān)鍵詞:張勇

    Yong Zhang(張勇) Xiugang Guo(郭秀剛) and Haigang Yang(楊海剛)

    1Department of Physics,Tonghua Normal University,Tonghua 134002,China

    2Weifang University of Science and Technology,Shouguang 262700,China

    A global potential energy surface(PES)of the ground state of SiH+2 system is built by using neural network method based on 18223 ab initio points. The topographic properties of PES are presented and compared with previous theoretical and experimental studies. The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data. In order to further verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction. The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.

    Keywords: potential energy surface,integral cross section,rate constant,time-dependent wave packet

    1. Introduction

    The Si++ H2reaction as one of ion–molecule reactions was received relatively less attention when compared with other reactions, such as O++ H2and C++ H2.[1–4]However, the studies of the Si++ H2reaction and its reverse reaction are of great practical significance, because the SiH+ion is postulated as an intermediate specie in the manufacturing process of amorphous silicon films in chemical vapor deposition process.[5–7]Furthermore, the Si++H2reaction and its reverse reaction are of considerable interest in astrophysics and spectroscopy. For example, the SiH radical and SiH+ion have been observed in the Sun’s photosphere.[8,9]Therefore,the spectroscopic and dynamics information of SiH2and SiH+2systems are very important for the modeling of star atmospheres.

    Since Curtis and co-workers[10]reported the ?A2B1(Π)←?X2A1transition electronic spectrum of SiH+2ion by using laser photofragment spectroscopy in 1985, numbers of theoretical studies have been carried out. The ?X2A1and ?A2B1potential energy surfaces (PESs) of SiH+2ion in collinear geometries have been reported by Hirstet al.[11]in 1986. Later,Gonz′alezet al.[12]also presented a new PES inC∞vandC2vsymmetry and the Si++H2→SiH++H reaction was studied. The PESs of four lowest electronic states of the SiH+2system was constructed by Mort and co-workers[13,14]in 1994. The conical intersection between ground state and excited state has been found and the influence of conical intersection on the photodissociation dynamics has been discussed. In the same year,the three-dimensional potential energy functions of ?X2A1and ?A2B1states of the SiH+2system were reported by Baueret al.[15]and rovibronic spectrum of the SiH+2ion was calculated and compared with experimental values.In 2019,a new global PES for the ground state of the SiH+2system was constructed by Gaoet al.[16]with the many-body expansion method. In addition, the H + SiH+→Si++ H2reaction has been studied by using Chebyshev quantum wave packet method based on the new PES.The reaction probabilities,integral cross sections(ICSs)and the rate constants were reported in their work.Later, Zhaoet al.[17]recalculated the H+SiH+→Si++H2reaction based on Gao’s PES.[16]In their work,the Chebyshev quantum wave packet method is used and the full Coriolis coupling effect is considered.The reaction probabilities,ICSs and rate constants were reported and the results indicated that the Coriolis coupling has large effect on the final dynamical results.

    As discussed above, much less effort has been made in the construction of global PES and related dynamics calculation. The aim of present work is to construct a new global PES for the ground state of the SiH+2system.In order to verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction will be carried out based on the new PES.In this paper,the methods used in theab initiocalculation,fitting processes and dynamics calculation are shown in Section 2. The topographical features of the PES are presented in Section 3 as well as the dynamical results. The conclusions are displayed in Section 4.

    2. Potential energy surface

    2.1. Ab initio calculations

    Theab initiocalculations are carried out with MOLPRO software package[18]and theCssymmetry is used for all configurations.In theab initiocalculation,the aug-cc-pVQZ basis set[19,20]for H atom and cc-pwCVQZ[21]basis set for Si atom and an internally contracted multi-reference configuration interaction (MRCI)[22]method is used. In detail, we first perform the state-averaged complete active space self-consistent field (SA-CASSCF)[23,24]calculations over three electronic states (two2A′and one2A′′) with equal weight. In addition,15 valence electrons of the SiH+2system were involved 13 active orbitals(11a′+2a′′). In detail,the 1s,2s,and 2p orbitals of Si+are closed which related to the 4a′and 1a′′. The active orbitals 7a′and 1a′′were mainly contributed by 1s orbital of H and 3s,3p orbitals of Si+,while the 2s orbital of H and 4s orbital of Si+occupied a relatively small weight. Then, the MRCI calculations were performed with the reference orbitals which provided by the SA-CASSCF calculation. Finally, a total of 21530ab initiopoints was calculated. In fitting process,theab initiopoints about 10 eV larger than the minimum potential energy were abandoned and 18223ab initiopoints were used to construct the PES. The Jacobi coordinates (RQ,RHH,α) were used to sample theab initiopoints.RQis the distance between Si+ion and the midpoint of H2molecule.RHHis the bond length of H2molecule andαis the angle betweenRQandRHH. In detail, 1.0 Bohr≤RQ≤25.0 Bohr,0.6 Bohr≤RHH≤25.0 Bohr,and 1°≤α ≤89°.

    2.2. PES fitting

    The permutation invariant polynomial neural network(PIP-NN)[25,26]method is adopted in this work, which is widely used in the PES construction such as BrH2,[27]KH2,[28]and LiH2[29]system. To avoid the discontinuities of the derivatives around the boundary, PIP method is used to transform the three bond lengths of the SiH+2system. In detail,G1=(PSiH+a+PSiH+b)/2,G2=PSiH+a·PSiH+b,G3=PHH,wherePSiH+a= exp(-0.2·RSiH+a),PSiH+b= exp(-0.2·RSiH+b),andPHH=exp(-0.2·RHH),respectively.In the fitting process,G1,G2,andG3are used as the input term and two hidden layers are used, each of which involves 15 neurons. The neural network expansion can be written as

    Over-fitting has always been a problem of neural network.To deal with this problem,the input data are randomly divided into three parts,namely,training part(90%),testing part(5%)and validation part(5%).The root means square error(RMSE)is used to test the accuracy of PES and it can be presented as

    2.3. Topographical features of the potential energy surface

    To test the accuracy of PES, the spectroscopic parameters of SiH+(X1Σ+) ion and H2(X1Σ+g) molecule obtained from the PES are compared with available theoretical[16]and experimental[30,31]values and the results are shown in Table 1.

    Table 1. The spectroscopic constants of the SiH+ (X1Σ+)and H2 (X1Σ+g)molecules.

    As shown in Table 1,the spectroscopic constants obtained from the PES are in good agreement with experimental data.For the SiH+(X1Σ+) ion, the bond length, harmonic vibrational frequency, and dissociation energy obtained from the PES deviate from the experimental values by 0.0017 Bohr,14.57 cm-1, and 0.015 eV, respectively. It is very clear that present values closer to the experimental data than the results reported by Gaoet al.[16]For the H2molecule,the bond length is same with experimental data, the harmonic vibrational frequency lower than the experimental data by about 2 cm-1,and the dissociation energy is lower than the experimental data by 0.02 eV.As a whole,present PES can give a good description for the two-body term.

    The major topographical features of the newly constructed PES are shown in Figs. 2(a) and 2(b), which correspond to the global minimum and vertically approaching geometries,respectively.It is very clear that present PES shows a smooth and correct behavior over the configuration space studied. Figure 2(a)shows the contour plot for the bending angle fixed at 119.73°. Clearly, only a deep potential well is observed and no potential barrier is found. In addition,Fig.2(a)shows a symmetrical behavior which can be attributed to the exchange symmetry of H atom. Figure 2(b)exhibits the contour plot for the Si+ion approach the H2molecule in theC2vsymmetry. Two potential wells are found which correspond to a local minimum and global minimum geometries, respectively. In addition,a potential barrier is also found.

    To make a comparison with available theoretical and experimental results,the spectroscopic parameters of theses stationary points are presented in Table 2 as well as the values obtained from previous theoretical and experimental studies.As shown in Table 2,the global minimum is located atRHH=4.8400 Bohr,RSiH+a= 2.8008 Bohr,RSiH+b= 2.8008 Bohr,andθ[HSiH]+=119.73°,which is in good agreement with experimental dataRHH= 4.8529 Bohr,RSiH+a= 2.8161 Bohr,RSiH+b=2.8161 Bohr, andθ[HSiH]+=119°. The recently reported PES by Gaoet al.[16]obtained similar results with ours,both of which are in good agreement with experimental data.For the harmonic vibrational frequency, theωsymandωasymare in good agreement with each other, except for theωbend.For the local minimum,present values are in good agreement with the values reported by Gaoet al.[16]for both geometric structures and harmonic vibrational frequencies. However,in the transition state,great discrepancies can be found between present values and the results obtained from Gaoet al.[16]

    Fig. 1. Equipotential contour plot (a) for the structure of global minimum value in which the angle ∠[HSiH]+ = 119.73°, contours are equally spaced by 0.4 eV, starting at -5.1 eV and (b) for the Si+ ion approach to H2 molecule in C2v symmetry,contours are equally spaced by 0.4 eV,starting at-5.1 eV.

    Table 2. The spectroscopic parameters of stationary points.

    In order to find the reason why present PES and Gao’s PES are so different in the transition state, Fig. 2 shows the potential energy curves of Si+ions close to the midpoint of H2underC2vsymmetry when the bond length of H2is fixed at 2.999 Bohr and 3.232 Bohr. To compare conveniently, theab initiovalues and the results obtained from Gao’s PES are also displayed in Fig.2. Clearly,there is a conical intersection between the ground state (12A′) and excited state (22A′) and present PES gives a correct description of the conical intersection. However, the potential energy curves obtained from Gao’s PES obviously cannot correctly describe the conical intersection. We suppose this may be attributed to the drawback of many-body expansion method.

    Fig.2. The potential energy curves for the Si+ion approach to the midpoint of H2 molecule at C2v symmetry along with the ab initio results and the values obtained from Gao’s PES[16] ((a)for RHH=2.999 Bohr,(b)for RHH=3.232 Bohr).

    Figure 3(a)shows the change of potential energy for the Si+ion moves around the H2molecule as the bond length of H2fixed at 1.401 Bohr. As seen in the figure, there is a potential well with depth of about 0.4 eV at the positionRQ=4 Bohr, andθ=90°. Figure 3(b) exhibits the H atom moving around SiH+ion asRSiH+=2.844 Bohr. Obviously,there is a shallow potential well and a deep potential well on the side of H atom and Si+ion,respectively. The deep well is located atRQ=3.8 Bohr,θ=40°with the depth about 2.7 eV and the shallow well is located atRQ=1.2 Bohr,θ=135°with the depth about 0.9 eV.

    Figure 4 displays the minimum energy paths of the PES at several selected angles. As seen in the figure, the energy of Si++ H2asymptote is set to be zero. It is very clear that the Si++H2→SiH++H reaction is highly endothermic and the endoergic energy is about 1.30 eV when zero-point energy is not considered. As seen in the figure, there is a shallow potential well and a deep potential well on both sides of the barrier at 30°. The potential well on the right side gradually disappears with the increases of angle. The barrier decreases at first,then disappears,and then gradually increases with the increasing of angle. In the present work, the spin–orbit coupling effect is not considered since it has a little influence on the endothermic energy of the Si++H2reaction.

    Fig. 3. (a) Color plot for the Si+ ion moves around the H2 molecule when the bond length of H2 is fixed at 1.401 Bohr. (b)Color plot for H atom moves around SiH+ ion when the SiH+ bond length fixed at the equilibrium geometry.

    Fig.4.The minimum energy paths of the new PES at different[SiHH]+angles.

    3. Dynamics

    Based on the newly constructed PES, the dynamics calculations of the Si++ H2→SiH++ H reaction was carried out by using time-dependent wave packet method, which is widely used in the reaction scattering calculation, such as K+ H2,[28]and Li + H2.[29]As discussed above, the Si++H2→SiH++ H reaction is highly endothermic with the energy about 1.3 eV.We suppose the reaction probability of initial state (v0=0,j0=0) will be very small, which is similar with K+H2reaction.[28]Therefore,we chose(v0=2,j0=0)as the initial state. In the dynamical calculations, the convergence test should be carried out at first. In the present work,the convergence test is performed on the reaction probability ofJ=0. Finally, the optimal parameters are obtained and shown in Table 1. As shown in Fig. 4, there is a deep well on the reaction path,therefore it is very time consuming. For reducing the computational cost,the reaction probabilities for particularJ(e.g., 0, 10, 20, ..., 60) were computed and the others were obtained by using theJ-shifting method.[33]

    Table 3.Numerical parameters used in the TDWP calculations(atomic units unless otherwise stated).

    Figure 5 shows the ICSs of the title reaction in the collision energy range from 0 to 1.0 eV. As seen in the figure,a threshold about 0.19 eV is found which is consistent with Fig.4 as the zero-point energy and vibrational energy considered. In addition,some resonance structures are found on the ICS curve,and this can be attributed to the deep well on the reaction path which support numbers of quasi-bound and bound states. The ICSs increase with the increasing collision energy,which is similar with other endothermic reactions.

    Fig.5. The integral cross sections of the Si++H2 (v0 =2,j0 =0)→SiH++H reaction as a function of collision energy.

    The rate constants of the initial state(v0=2,j0=0)are presented in Fig. 6 in the temperature range from 333 K to 1000 K. As shown in the figure, the rate constant increases with roughly a factor about 20 with the increase of temperature. We suppose the rate constants of SiH+2system will be helpful for the modeling of star atmospheres.

    Fig.6. The rate constants of the Si++H2 (v0=2,j0=0)→SiH++H reaction in the temperature range up to 1000 K.

    4. Conclusions

    Based on 18223ab initiopoints, the global PES of the SiH+2system was constructed by using PIP-NN method. The properties of the new PES are discussed and compared in detail with previous theoretical and experimental data. The spectroscopic constants obtained from the new PES are in good agreement with experimental and previous theoretical results.In addition, present PES is in general better than previous ones, and especially the new PES gives a correct description in the region around the conical intersection. To verify the validity of the new PES,the dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++ H reaction is studied by using the TDWP method. The dynamics properties such as ICSs and rate constants are reported in this work. In conclusion,the new PES of the SiH+2system shows reasonable and accurate behavior over the configuration space studied.

    Acknowledgement

    Project was supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education,China(Grant No.JJKH20200482KJ).

    猜你喜歡
    張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國(guó)藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    同題異學(xué)(1)
    Code switching for college students on campus
    人人妻人人澡欧美一区二区| 变态另类成人亚洲欧美熟女| 亚洲在线自拍视频| 日韩一卡2卡3卡4卡2021年| 香蕉丝袜av| 国产一卡二卡三卡精品| 日韩欧美 国产精品| 国产精品亚洲美女久久久| 国产精品一区二区免费欧美| 色综合欧美亚洲国产小说| 精品熟女少妇八av免费久了| 亚洲国产精品成人综合色| 欧美激情极品国产一区二区三区| 日韩精品免费视频一区二区三区| 欧美三级亚洲精品| 欧美乱码精品一区二区三区| 精品国产乱子伦一区二区三区| 亚洲第一电影网av| 99热6这里只有精品| 99精品久久久久人妻精品| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 国产熟女xx| 看免费av毛片| 国产在线精品亚洲第一网站| av片东京热男人的天堂| 亚洲色图 男人天堂 中文字幕| 久久性视频一级片| 1024视频免费在线观看| 久久中文字幕人妻熟女| 变态另类丝袜制服| 亚洲久久久国产精品| 国产一卡二卡三卡精品| 一级a爱片免费观看的视频| 成人国产一区最新在线观看| 一边摸一边做爽爽视频免费| 亚洲va日本ⅴa欧美va伊人久久| 国内精品久久久久精免费| √禁漫天堂资源中文www| x7x7x7水蜜桃| 1024手机看黄色片| 国产亚洲av嫩草精品影院| 99国产精品一区二区蜜桃av| 亚洲七黄色美女视频| 成在线人永久免费视频| av在线天堂中文字幕| 99在线人妻在线中文字幕| 欧美黑人欧美精品刺激| 久久99热这里只有精品18| 久久国产精品男人的天堂亚洲| 国产男靠女视频免费网站| 亚洲精品在线观看二区| 免费在线观看影片大全网站| 午夜两性在线视频| 亚洲三区欧美一区| 老熟妇乱子伦视频在线观看| 亚洲午夜精品一区,二区,三区| 亚洲av成人一区二区三| 国产在线精品亚洲第一网站| 夜夜躁狠狠躁天天躁| 亚洲人成网站高清观看| 天堂影院成人在线观看| 午夜久久久在线观看| 成熟少妇高潮喷水视频| 大型av网站在线播放| 国产av不卡久久| 午夜免费观看网址| 国产一区在线观看成人免费| 亚洲精品一区av在线观看| 久久久久久免费高清国产稀缺| 白带黄色成豆腐渣| 不卡av一区二区三区| 国产成人精品久久二区二区免费| 国产aⅴ精品一区二区三区波| 国产成人一区二区三区免费视频网站| 麻豆成人午夜福利视频| 母亲3免费完整高清在线观看| 国产精品精品国产色婷婷| 美女高潮到喷水免费观看| 国产成年人精品一区二区| 国产精品,欧美在线| 草草在线视频免费看| 国产不卡一卡二| 久久久久久人人人人人| 午夜视频精品福利| 一级黄色大片毛片| 色综合婷婷激情| 99精品在免费线老司机午夜| 午夜久久久在线观看| av福利片在线| 人人妻人人澡人人看| a在线观看视频网站| 亚洲九九香蕉| 国产精品自产拍在线观看55亚洲| 国产黄a三级三级三级人| 国产一区二区激情短视频| 久久精品国产亚洲av香蕉五月| 亚洲成人精品中文字幕电影| 欧美+亚洲+日韩+国产| 精品国产亚洲在线| 白带黄色成豆腐渣| 亚洲最大成人中文| 在线观看舔阴道视频| 国产伦在线观看视频一区| 人人妻人人看人人澡| 一级毛片精品| 91老司机精品| 精品久久久久久久久久免费视频| xxx96com| xxx96com| www.熟女人妻精品国产| 国产激情久久老熟女| 午夜老司机福利片| 一本久久中文字幕| 嫁个100分男人电影在线观看| 丝袜人妻中文字幕| 国产麻豆成人av免费视频| 国产成人精品久久二区二区91| 国产午夜精品久久久久久| 国产高清激情床上av| 婷婷六月久久综合丁香| 午夜福利一区二区在线看| 午夜影院日韩av| 久久精品91蜜桃| 不卡av一区二区三区| 一级毛片女人18水好多| 亚洲av成人一区二区三| 国产片内射在线| 国产aⅴ精品一区二区三区波| 国产精品一区二区免费欧美| 欧美最黄视频在线播放免费| 人人妻人人看人人澡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品国产高清国产av| 韩国av一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 亚洲 欧美一区二区三区| 国产1区2区3区精品| 少妇的丰满在线观看| 国产成人一区二区三区免费视频网站| 天天添夜夜摸| 亚洲性夜色夜夜综合| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| 午夜亚洲福利在线播放| 男女之事视频高清在线观看| 18禁裸乳无遮挡免费网站照片 | 国产av一区在线观看免费| 男女那种视频在线观看| 无限看片的www在线观看| 亚洲五月色婷婷综合| 少妇 在线观看| 97碰自拍视频| 美女免费视频网站| 欧美黑人欧美精品刺激| 亚洲精品色激情综合| 一个人免费在线观看的高清视频| 国产精品精品国产色婷婷| 久久中文字幕人妻熟女| www.www免费av| 亚洲欧美激情综合另类| 亚洲免费av在线视频| 成人18禁在线播放| 中文字幕高清在线视频| www日本在线高清视频| 亚洲色图av天堂| 国语自产精品视频在线第100页| 日韩欧美 国产精品| 久久精品aⅴ一区二区三区四区| 黄片小视频在线播放| 天堂动漫精品| 亚洲人成77777在线视频| 天天添夜夜摸| 在线观看午夜福利视频| 国产熟女午夜一区二区三区| 国产麻豆成人av免费视频| 亚洲欧美精品综合久久99| 欧洲精品卡2卡3卡4卡5卡区| 色综合婷婷激情| 国产视频一区二区在线看| 亚洲真实伦在线观看| 啦啦啦免费观看视频1| 免费在线观看完整版高清| 国产91精品成人一区二区三区| 亚洲精品美女久久久久99蜜臀| 嫩草影院精品99| 丝袜人妻中文字幕| 久久性视频一级片| 日韩一卡2卡3卡4卡2021年| 亚洲avbb在线观看| 我的亚洲天堂| 又黄又粗又硬又大视频| 一边摸一边做爽爽视频免费| 欧美+亚洲+日韩+国产| 男人舔女人下体高潮全视频| 免费av毛片视频| 叶爱在线成人免费视频播放| 精品熟女少妇八av免费久了| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦观看免费观看视频高清| 91在线观看av| 夜夜看夜夜爽夜夜摸| 久久久久亚洲av毛片大全| 少妇被粗大的猛进出69影院| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 中文字幕人妻熟女乱码| 国产亚洲欧美精品永久| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 国产在线观看jvid| 免费在线观看完整版高清| 亚洲av熟女| 91国产中文字幕| 成年女人毛片免费观看观看9| 怎么达到女性高潮| 免费电影在线观看免费观看| 国产精品爽爽va在线观看网站 | 精品熟女少妇八av免费久了| 可以免费在线观看a视频的电影网站| 人人澡人人妻人| 又黄又爽又免费观看的视频| 国产精品综合久久久久久久免费| 无遮挡黄片免费观看| 日韩三级视频一区二区三区| 99久久无色码亚洲精品果冻| 亚洲人成伊人成综合网2020| 午夜久久久久精精品| 亚洲中文日韩欧美视频| 午夜两性在线视频| 搡老岳熟女国产| 国产成年人精品一区二区| 成人午夜高清在线视频 | 黑人巨大精品欧美一区二区mp4| 少妇粗大呻吟视频| 色综合亚洲欧美另类图片| 日本免费a在线| x7x7x7水蜜桃| 亚洲天堂国产精品一区在线| 亚洲自偷自拍图片 自拍| 午夜视频精品福利| 啦啦啦免费观看视频1| 黑丝袜美女国产一区| 在线观看日韩欧美| 亚洲精品国产一区二区精华液| 热re99久久国产66热| 国产亚洲精品久久久久久毛片| 欧美又色又爽又黄视频| 亚洲熟妇中文字幕五十中出| 免费人成视频x8x8入口观看| 黄色片一级片一级黄色片| 级片在线观看| 天天一区二区日本电影三级| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 97超级碰碰碰精品色视频在线观看| 看免费av毛片| 亚洲国产高清在线一区二区三 | 国产三级黄色录像| 在线观看午夜福利视频| 熟女少妇亚洲综合色aaa.| 9191精品国产免费久久| 999久久久国产精品视频| 深夜精品福利| 成人手机av| e午夜精品久久久久久久| 熟女少妇亚洲综合色aaa.| 91在线观看av| 成人av一区二区三区在线看| 国产又色又爽无遮挡免费看| 91av网站免费观看| 非洲黑人性xxxx精品又粗又长| 黄色a级毛片大全视频| 美国免费a级毛片| 97碰自拍视频| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| 人人妻人人澡欧美一区二区| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 国产又黄又爽又无遮挡在线| 国产精品一区二区精品视频观看| av天堂在线播放| 美女高潮到喷水免费观看| 亚洲成av人片免费观看| 欧美大码av| 日韩国内少妇激情av| 欧美日韩黄片免| 99精品欧美一区二区三区四区| 国产精品久久视频播放| 亚洲男人的天堂狠狠| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 一区二区三区精品91| 久久久国产成人精品二区| 我的亚洲天堂| 精品国产亚洲在线| 波多野结衣高清作品| 午夜精品在线福利| 中文字幕最新亚洲高清| 欧美日韩瑟瑟在线播放| 一级a爱片免费观看的视频| 一夜夜www| bbb黄色大片| 久久 成人 亚洲| 欧美一区二区精品小视频在线| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 级片在线观看| 欧美日韩精品网址| 一区福利在线观看| 18美女黄网站色大片免费观看| 成人18禁高潮啪啪吃奶动态图| 搞女人的毛片| 巨乳人妻的诱惑在线观看| 夜夜爽天天搞| 久久伊人香网站| 日韩精品中文字幕看吧| 国产一区在线观看成人免费| 亚洲精品中文字幕一二三四区| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 动漫黄色视频在线观看| 免费电影在线观看免费观看| 又大又爽又粗| 制服人妻中文乱码| 亚洲专区国产一区二区| 国产精品久久久久久亚洲av鲁大| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 黄色毛片三级朝国网站| 成人特级黄色片久久久久久久| 午夜福利一区二区在线看| 午夜免费激情av| av超薄肉色丝袜交足视频| 最近最新中文字幕大全电影3 | 亚洲精品av麻豆狂野| 久久久久久免费高清国产稀缺| 免费在线观看完整版高清| 欧美成人一区二区免费高清观看 | 久久香蕉精品热| 午夜a级毛片| 99久久无色码亚洲精品果冻| 精品久久久久久成人av| 国产伦在线观看视频一区| 一级a爱片免费观看的视频| 最近最新中文字幕大全免费视频| 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 美女免费视频网站| 91av网站免费观看| 久久久国产成人精品二区| 黑人操中国人逼视频| 久久欧美精品欧美久久欧美| 国产精品精品国产色婷婷| 国产日本99.免费观看| 无限看片的www在线观看| 久久国产精品男人的天堂亚洲| 亚洲国产欧美一区二区综合| 国产99久久九九免费精品| 日韩成人在线观看一区二区三区| 国产精品爽爽va在线观看网站 | 亚洲精品国产一区二区精华液| 欧美国产精品va在线观看不卡| 日本五十路高清| a级毛片a级免费在线| 老司机午夜十八禁免费视频| 亚洲最大成人中文| 在线观看一区二区三区| cao死你这个sao货| 国产久久久一区二区三区| 国产黄片美女视频| 在线免费观看的www视频| 两性夫妻黄色片| 脱女人内裤的视频| 男人舔女人的私密视频| 久久久国产精品麻豆| 日本一区二区免费在线视频| 91在线观看av| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 亚洲精品中文字幕在线视频| 99在线人妻在线中文字幕| 99精品久久久久人妻精品| 精品国产乱子伦一区二区三区| 国产一级毛片七仙女欲春2 | 国产精品野战在线观看| 精品人妻1区二区| 免费观看人在逋| 法律面前人人平等表现在哪些方面| 亚洲熟女毛片儿| 色综合亚洲欧美另类图片| 成人手机av| 精品国产国语对白av| 搡老岳熟女国产| 69av精品久久久久久| 国产精品一区二区免费欧美| 日本五十路高清| 日韩av在线大香蕉| 我的亚洲天堂| 成人国产一区最新在线观看| 亚洲七黄色美女视频| 制服人妻中文乱码| 亚洲av成人不卡在线观看播放网| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美在线二视频| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕| 悠悠久久av| 午夜亚洲福利在线播放| 精品久久久久久久久久久久久 | 亚洲自拍偷在线| a在线观看视频网站| 久久久久久久久中文| av欧美777| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 久久精品国产清高在天天线| 午夜老司机福利片| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 一卡2卡三卡四卡精品乱码亚洲| 老司机靠b影院| 两个人视频免费观看高清| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| 国产高清videossex| 无遮挡黄片免费观看| 午夜免费激情av| 又黄又爽又免费观看的视频| 亚洲熟妇熟女久久| www国产在线视频色| 欧美亚洲日本最大视频资源| 免费观看人在逋| 国产99久久九九免费精品| www日本黄色视频网| 国产麻豆成人av免费视频| 777久久人妻少妇嫩草av网站| 可以在线观看毛片的网站| 自线自在国产av| 国产精品久久视频播放| 精品国产国语对白av| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 国产亚洲精品久久久久久毛片| 国产精品av久久久久免费| 精品久久久久久久久久免费视频| 亚洲国产毛片av蜜桃av| 国产av又大| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 国产片内射在线| 亚洲国产毛片av蜜桃av| 国产av又大| 欧美不卡视频在线免费观看 | 亚洲久久久国产精品| 特大巨黑吊av在线直播 | 国产亚洲av高清不卡| av在线天堂中文字幕| 日本一本二区三区精品| 亚洲国产精品sss在线观看| 一进一出抽搐动态| 国产精品1区2区在线观看.| 黄色视频,在线免费观看| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| 久久久精品国产亚洲av高清涩受| 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 久久久久久久久久黄片| 国产激情久久老熟女| 神马国产精品三级电影在线观看 | av超薄肉色丝袜交足视频| 一区二区三区国产精品乱码| 久久中文看片网| 美女扒开内裤让男人捅视频| 亚洲精品一区av在线观看| 欧美成狂野欧美在线观看| 老司机在亚洲福利影院| av在线天堂中文字幕| 成人欧美大片| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 此物有八面人人有两片| 十八禁人妻一区二区| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 日日夜夜操网爽| 久久中文看片网| √禁漫天堂资源中文www| 波多野结衣av一区二区av| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 国产精品久久视频播放| 亚洲自偷自拍图片 自拍| 久久久久久久午夜电影| 久久午夜综合久久蜜桃| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 丝袜在线中文字幕| www.www免费av| 亚洲一区中文字幕在线| 露出奶头的视频| 丁香六月欧美| 天堂动漫精品| 精品久久久久久成人av| 97碰自拍视频| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 在线观看舔阴道视频| 国产三级黄色录像| 淫妇啪啪啪对白视频| 久久精品aⅴ一区二区三区四区| 国产区一区二久久| 日韩精品青青久久久久久| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av高清一级| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 两人在一起打扑克的视频| 精品电影一区二区在线| 午夜福利视频1000在线观看| 少妇 在线观看| 日本 欧美在线| 久久久久国产精品人妻aⅴ院| 日本免费a在线| 91九色精品人成在线观看| 免费高清在线观看日韩| 国产成人精品久久二区二区免费| 日本 av在线| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 韩国av一区二区三区四区| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区视频在线观看免费| 人成视频在线观看免费观看| 久久国产亚洲av麻豆专区| 丁香欧美五月| 亚洲人成伊人成综合网2020| 一区二区三区高清视频在线| 制服诱惑二区| 免费在线观看影片大全网站| 久久久国产成人免费| 黄色 视频免费看| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 日韩高清综合在线| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲在线自拍视频| 免费电影在线观看免费观看| 一本精品99久久精品77| 免费av毛片视频| 伦理电影免费视频| 国产精品免费一区二区三区在线| 欧美大码av| 亚洲成人国产一区在线观看| 精品久久久久久久久久久久久 | av视频在线观看入口| 国产精品国产高清国产av| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 色精品久久人妻99蜜桃| 成年版毛片免费区| 午夜福利在线观看吧| 麻豆成人av在线观看| 高清毛片免费观看视频网站| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 老司机靠b影院| 久99久视频精品免费| 大型黄色视频在线免费观看| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 搡老岳熟女国产| 中文字幕精品亚洲无线码一区 | 国产精品日韩av在线免费观看| 国产精品野战在线观看| 色综合站精品国产| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 成年版毛片免费区| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 桃红色精品国产亚洲av| 99久久久亚洲精品蜜臀av| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 国产成人欧美在线观看| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 91麻豆精品激情在线观看国产| 免费一级毛片在线播放高清视频| 亚洲精品中文字幕一二三四区| 国产精品免费视频内射| 精品欧美国产一区二区三| 国产亚洲精品第一综合不卡| 成人18禁在线播放| 国产午夜精品久久久久久| 无限看片的www在线观看|