• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite

    2022-11-21 09:29:18LihongShi史麗弘andJiebinPeng彭潔彬
    Chinese Physics B 2022年11期

    Lihong Shi(史麗弘) and Jiebin Peng(彭潔彬)

    1School of Science,JiangNan University,Wuxi 214122,China

    2School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort. Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles. Here, we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite. Remarkably, we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film.The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons. We find a notably high infrared absorption efficiency,nearly 3 orders larger than that without hBN coating,which can be achieved in our composite system. Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.

    Keywords: thermal radiation,thermal management,infrared absorption,hyperbolic polaritons

    Human thermal comfort can be regarded as the state in which the surface temperature of the skin is converging on the normal body temperature as much as possible. Thermal comfort is associated with multiple heat transfer pathways among skin, textile, sun and the external environment.[1–4]We can achieve thermal comfort by external active equipment, such as air-conditioning, fans and heaters. Except for those active strategies, it is found that improving the personal microclimate is an effective way to enhance human thermal comfort and reduce unnecessary energy consumption.We can consider the mechanism of heat transfer and manage the heat transfer rate between the clothed skin and environment to regulate the personal microclimate effectively. However, the heat transfer rates in human thermal comfort mainly depend on the design of textiles,and traditional textiles cannot flexibly regulate human heat dissipation in cold and hot conditions.[5–7]Consequently, researchers have explored advanced thermoregulatory textiles to achieve thermal comfort for the human body,such as warming textiles using metals with high reflectance in the field of textiles. Due to the lack of breathability, these warming textiles are not comfortable to wear. Hsuet al.developed a high-cost warming textile using cotton with embedded metallic silver nanowires to overcome the shortcut of breathability.[8]In addition,Hazarikaet al.designed a Woven Kevlar fiber by developing copper–nickel(Cu–Ni)nanowires on the WKF surface in a complicated preparative process to reduce the cost.[9]However,these approaches for warming textiles have the disadvantage of mass production. Except for the above methods with reflectivity regulation, some researchers have proposed utilizing solar energy to enhance the warming effect of textiles. Luoet al.made a colored warming textile using a lossy dielectric layer and a metal layer to coat with nanoporous textile.[10]In this design,the metal layer can largely reduce the emittance of the outer surface in the visible band, and the lossy dielectric layer can absorb a large amount of solar energy in the near infrared band. Zhuet al.presented that by coating the exterior and interior of the enclosure roof with two visible-transparent films with distinctive wavelength selectivity, they can implement simultaneous control over the energy exchange among the enclosure with the hot sun, the cold outer space, the atmosphere and the active cooler.[11]Luoet al.reported that an eco-friendly passive nanostructured textile can harvest energy from the sun and the outer space for tunable control of heating and cooling. Under sunlight exposure, its heating and cooling mode is able to make a skin simulator temperature increase/decrease of 8.1°C/6°C,respectively.[12]It is a promising way for advanced thermoregulatory textiles to use solar energy in the development of warming textiles. Nevertheless, there are few studies based on the concept of improving the infrared absorption of textiles.

    In thermal regulation applications,boron nitride(BN)has been considered as an effective two-dimensional(2D)material because of its high thermal conductance and electrical insulation. For instance,a composite fiber with BN nanosheets can provide external radiative heat transfer channels for body heat dissipation due to its highly confined phonon polaritons.[13–17]Several experimental results show that a composite fiber with a-BN/PVA has excellent thermal conductance.[18]Moreover,silk, as one of the most natural materials, has attracted much attention due to its excellent biological properties, such as degradability, good biocompatibility, water vapor permeability,and excellent oxygen.[19–21]Composites consisting of silk and carbon-based materials have shown promising applications in food processing and engineering,[22]tissue engineering and wearable devices.[23,24]In our previous work,we have found that the infrared absorption efficiency of silk fibrils with a graphene coating can be five orders of magnitude larger than that without a graphene coating due to the help of plasmon polaritons.[25]Analogous concepts can be explored in silk/hBN composite for advanced thermoregulatory textiles.

    In this paper,we propose to design a silk/hBN composite to manipulate infrared radiation for tunable thermal absorption. We analyze the infrared radiation in hBN-coated silk composites in detail based on Mie scattering theory. We also study the impact of the thickness of the hexagonal boron nitride (hBN) film and radius of the silk nanofibrils on the absorption efficiency. We also provided an optimal thickness of hBN film for the best optical performance of nanocomposites.

    Fig.1. (a)Schematic figure of our simulation model. A transverse electric field normally incident onto a long hBN-coated silk nanofibril, the radius of silk nanofibril is a. (b)Real part of the out-of-plane and in-plane dielectric functions of hBN versus light wavelength. The dashed lines show the hyperbolic regions of hBN.

    As shown in Fig. 1(a), we consider a long hBn-coated silk nanofibril composite with radius ofa. The BN/silk textile can be fabricated by a fast and scalable three-dimensional(3D) printing method, by which the BN/poly (vinyl alcohol)fiber has been realized in Ref.[18]. The 3D printing fabrication process of the BN/silk composite fibers can be illustrated as follows: first, liquid-phase exfoliated BN nanosheets can be prepared by sonicating raw hBN powders in isopropyl alcohol solution. Then, the raw hBN bulk powders can be exfoliated to BN flakes. After exfoliation,the(100), (101), and(102)peaks of the hBN bulk disappear,and the hBN micropowders can be successfully exfoliated to thin BN nanosheets.Uniform BN/silk suspensions can be obtained by dispersing liquid-phase exfoliated BN nanosheets into a silk dimethyl sulfoxide solution using sonication. Finally, the homogeneous BN/silk dispersion solution can be injected into a coagulation bath from a needle by the 3D printer to fabricate the continuous as-printed fibers.

    The hBN film is a uniaxial dielectric material (bandgap~5.9 eV)in the infrared region. When the optical axis is located in thezdirection, the hBN film has two mid-infrared Reststrahlen bands. When the electric field is perpendicular to the optical axis, the in-plane dielectric function includes the contribution from in-plane phonon vibrations (ωTO,⊥=1370 cm-1,andωLO,⊥=1610 cm-1). When the electric field is parallel to the optical axis,the out-plane dielectric function includes the contribution from out-plane phonon vibrations(ωTO,‖=780 cm-1andωLO,‖=830 cm-1). The dielectric function can be expressed as follows:[27–30]

    wherem=‖,⊥are the out-plane and the in-plane directions,respectively. The other parameters used here areε∞,‖=2.95 andγ‖=4 cm-1,ε∞,⊥=4.87 andγ⊥=5 cm-1. Figure 1(b)shows the real part of the in-plane and out-plane dielectric functions of hBN in frequency space. The dashed lines show that the dielectric function can become negative in the Reststrahlen band between the TO and LO phonon modes. Thus,the in-plane and out-plane dielectric functions of hBN have opposite signs in each Restrahlen band and form a hyperbolic band.

    For 2D materials, when the layer thickness is much smaller than the polariton wavelength,we can model the layer as a 2D isotropic conductivity layer with zero thickness. The effective conductivity of 2D materials is written asσeff=(ct/2iλ0)ε,wherecis the light velocity,λ0is the incident light wavelength,εis the dielectric permittivity of the layer, andtis the thickness of the 2D layer.[31]The thickness of the hBN filmtconsidered here is approximately 5 nm–100 nm,which is much smaller than its polariton wavelength. Therefore, it is reasonable to model the hBN film by an isotropic in-plane conducting layer. The effective two-dimensional conductivity of the hBN film can be written asσeff=(ct/2iλ0)ε⊥, whereε⊥is the in-plane dielectric permittivity without considering the contribution of the out-of-plane part of the dielectric permittivity.

    We apply Mie scattering theory to investigate light scattering in cylinders,which has been widely used in coated coreshell particles[32–34]and graphene/silk composite.[25]According to Mie scattering theory,[35–37]the electric field and magnetic field can be given by

    By applying the boundary conditions atr=a, we can obtain the scattering coefficient as follows:

    We consider the incident light wavelength in the infrared region (~μm), and the diameter of the silk nanofibrils observed in the experiment is in the range of several to tens of nanometers.[37]Because the incident light wavelength is much larger than the radius of silk(λ ?a),we can obtain the electric potential both inside (φc) and outside (φh) the cylinders,which satisfy the Laplace equation: ?2φc,h=0.

    Then,we can achieve the general solutions:

    Figure 2(a) shows the scattering efficiencyversusincident light wavelength. We fix the radius of silk to be 60 nm based on recent experimental works[39,40]and tune the thickness of the hBN film.For a certain thickness of the hBN filmt,there is always an optimal incident light wavelength to achieve the maximum value ofQsca. For example, whent=60 nm,a=60 nm, the incident light wavelength to obtain the maximum value ofQscais approximately 7.2 μm. As the thickness of the hBN film increases, the optimal wavelength to achieve the maximum value ofQscablueshifts. The maximum value ofQscadoes not monotonously increase with increasing thickness of the hBN filmt. It first increases as the thicknesstincreases and then decreases after it reaches a peak. In Fig.2(a),we can see that the maximum value ofQscaarrives att=60 nm anda=60 nm when the incident wavelengthλ=7.2 μm.Therefore, in the following, we will focus on the absorption efficiency of an infrared wavelength around 7.2 μm.

    Figure 2(b)shows the extinction efficiencyQextversusthe incident light wavelength fort=60 nm anda=60 nm. There is an optimal incident light wavelength to obtain the maximum value ofQext. We can obtain the absorption efficiencyQabsfor the hBN-coated silk composite after obtaining the extinction efficiency and scattering efficiency. Figure 2(c)shows the absorption efficiencyversusincident light wavelength with fixedt=60 nm anda=60 nm. The absorption efficiencyQabsalmost follows the same trend asQext, as the absolute value ofQscais much smaller than that ofQext. Therefore, the peak positions ofQabsandQextare approximatelyλ=7.2 μm,and the maximum value ofQabsis up to 0.43 fort=60 nm anda=60 nm.

    Fig. 2. (a) The scattering efficiency Qsca versus incident light wavelength for various thicknesses of hBn film t with a fixed diameter of silk(a=60 nm). (b)Extinction efficiency Qext versus incident light wavelength for a=60 nm and t =60 nm. (c)The absorption efficiency Qabs versus incident light wavelength at a=60 nm and t=60 nm.

    An electromagnetic wave,as the main carrier of radiative heat transfer between the body and environment,can be modified by the optical properties of textiles during the control of human thermal radiation.We calculated the dependence of the absorption efficiency in the hBN-coated silk composite on various factors to understand the intrinsic physical mechanism.Figure 3 shows that there is strong resonance absorption of the silk/hBN composite in the infrared region,which is dependent on the radius of the silk fiber, the thickness of hBN film and the wavelength of the external electromagnetic waves. Such strong absorption comes from the hyperbolic phonon polaritons in the reststrahlen band of the hBN film (see Fig. 1(b)).The hyperbolic phonon polaritons possess the feature of the hyperbolic waveguide mode in the hBN film, which leads to a large value of absorption efficiency. Figure 3(a) shows the absorption efficiencyQabsversusthe incident light wavelength for various thicknesses of hBN film with a fixed radiusa=60 nm. The optimal wavelength to achieve the maximum value ofQabsis blueshifted as the thickness of the hBN film increases. For example,fort=30 nm,[Qabs]max=0.19,which is 63%of that of the case att=60 nm.

    Figure 3(b) shows the absorption efficiencyQabsversusradius of silk for different thicknesses of hBN film with fixed incident light wavelength(7.2 μm and 6.2 μm). The radius of silk ranges from 5 nm to 100 nm, which can be fabricated in the experiment. The solid lines show thatQabsis very sensitive to the radius of silk for a certain thickness of hBN film at the incident light wavelengthλ=7.2 μm due to the existence of the optimal radius of silk to satisfy the ideal resonant state. We also find that the optimal radius of silk is approximately equal to the fixed thickness of the hBN film. In Table 1,the optimal radius of silk to obtain the maximum value ofQabsis 32 nm,64 nm,and 95 nm fort=30 nm,60 nm,and 90 nm,respectively. Furthermore,the maximum value ofQabsalso increases as the thickness of the hBN film increases,i.e.,(Qabs)max=0.81(t=90 nm)>(Qabs)max=0.54(t=60 nm)>(Qabs)max=0.27 (t=30 nm). However, the dashed lines show thatQabsat the incident light wavelengthλ=6.2 μm is remarkably smaller than that atλ=7.2 μm. At this light wavelength,Qabsis not sensitive to the radius of the silk due to the mismatch between the resonant modes and the incident light.

    Fig.3. (a)The absorption efficiency Qabs versus incident light wavelength for various thicknesses of hBN film at a=60 nm:t=30 nm(black line);t=60 nm(red line);t=90 nm(green line);(b)The absorption efficiency versus diameter of silk a for various thicknesses of hBN film t=30 nm(black line),t=60 nm(red line),and t=90 nm(green line)with the two wavelengths of incident light of λ =7.2 μm(solid line)and λ =6.2 μm(dashed line). (c)The absorption efficiency Qabs versus thickness of hBn film t for various diameters of silk fibrils: a=30 nm(black line),a=60 nm(red line),and a=90 nm(green line). (d)The absorption efficiency Qabs versus the thickness of the hexagonal boron nitride film t and the radius of silk a.

    Table 1. Parameters t,aopt,and(Qabs)max.

    Figure 3(c) shows the absorption efficiencyversusthe thickness of the hBN film for various radius of silk. We consider that the range of the thickness of the hBN film is 5 nm–100 nm. The absorption efficiencyQabsfor a certain radius of silk first increases with the thickness of the hBN film,and then decreases after it reaches a peak. The optimal thickness of the hBN film to achieve the maximum value of the absorption efficiencyQabsis approximately equal to the given radius of silk,which is consistent with the results observed in Fig.3(b). Figure 3(d)shows the absorption efficiencyQabsversusboth the thickness of the hBN film and the radius of silk to give a clear picture of the dependence of the absorption efficiency on the silk radius and the thickness of the hBN film. We can see that the maximum value ofQabsincreases as both the thickness of the hBN film and the silk radius increase. The maximum value ofQabscan be obtained when the thickness of the hBN film is approximately equal to the silk radius,which has been observed in Figs.3(b)and 3(c).

    Before summary, we emphasize the effect of the hBN coating on the infrared absorption efficiency in silks. Figure 4 shows the absorption efficiencyQabsversusincident light wavelength ata=60 nm for both the cases with and without the hBN coating. It is obvious that the absorption efficiencyQabsfor the hBN-coated silk composite is much larger than that without the hBN coating in the wavelength range(6 μm≤λ ≤8 μm). For instance,Qabs=0.43 for the case with the hBN coating is three orders larger than that without the hBN coating (Qabs=1.3×10-4). Figure 4 also shows that the absorption efficiencyQabsfor pure silk is 9.8×10-5–4.0×10-4, which is consistent with the experimental results of Ref. [41]. The experimental data in Ref. [41] show that the absorption of pure silk is from 0–4.0×10-3for the wavelength range from 16 μm–18 μm. This shows the feasibility of Mie scattering theory in the description of the absorption of pure silk and functionalized silk. Therefore, it is concluded that the absorption of the silk composite is improved with the hBN coating. The enhancement of the infrared absorption in the hBN-coated silk composite comes from electromagnetic resonance coupling between the hBN coating and neighboring silk. The electromagnetic resonance can shift the high absorption efficiency of the silk/hBN composite to the mid-infrared electromagnetic wave to make it more closely matched with the thermal radiation of the human body. A similar phenomenon is also shown in Refs.[25,42],and we have demonstrated that infrared radiation can be modulated by silk fibers coated with a thin sheet of graphene.[25]Our previous results show that this modulation arises from the electromagnetic coupling between graphene coated on neighboring silk.In addition,Zhanget al.,have reported that infrared radiation can be tuned by a unique artificial fiber, which is also based on electromagnetic coupling between carbon nanotubes and neighboring fibers.[42]

    Fig.4. The absorption efficiency Qabs versus incident light wavelength for a=60 nm and t =60 nm for silk fibrils with(black line)and without hBn film coating(red line).

    In summary, we studied infrared radiation in an hBNcoated silk composite. Our results show that the enhanced infrared absorption efficiency in the composite depends strongly on the hBN coating on the silk. The observed dependence on the hBN coating arises from the electromagnetic resonance coupling between the hBN coating and neighboring silk. Furthermore, by tuning the thickness of the coated hBN film and radius of silk, we could control the absorption efficiency through the composites since there is an optimal condition to satisfy the ideal resonant state. We can obtain an absorption efficiency of approximately 0.43 when the thickness of the coated hBN is approximately 60 nm. Our results provide a new way to explore an effective way to enhance the abilities of personal regulation of advanced textiles based on infrared absorption. In future work,we can make use of the out-plane phonon vibrations to improve the enhancement in the long wavelength region, and several strategies have been provided in the following section. We will provide several other ways to increase the infrared absorption efficiency as follows: (i)enhancing in-plane anisotropy,such as grating or doping. We only use an isotropic coated hBn thin film for convenience in our numerical calculation. However,as we know,the in-plane anisotropy can provide a highly confined in-plane hyperbolic phonon polariton,which can be tuned by the structural parameters and enhance the infrared absorption efficiency in a specific direction.Such an anisotropic coating has more functions and aptitudes,for example,dual-mode textiles. (ii)Cooperating with other polaritons. For example, we can coat hBn and graphene together regardless of the difficulty of preparation.In that case,the phonon polariton in hBn can interact with the plasmon polariton in graphene and form hybridized phononplasmon polariton modes over a wide frequency region,which can further improve the infrared absorption efficiency.

    亚洲人成网站在线观看播放| 欧美一级a爱片免费观看看| 国产老妇伦熟女老妇高清| 精品久久久久久电影网 | 国产色爽女视频免费观看| 国产麻豆成人av免费视频| 91在线精品国自产拍蜜月| 亚洲精品色激情综合| 91av网一区二区| 国产大屁股一区二区在线视频| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 黄色一级大片看看| 午夜精品国产一区二区电影 | 三级毛片av免费| 嫩草影院新地址| 国产精品日韩av在线免费观看| 久久久久精品久久久久真实原创| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 99热这里只有是精品50| 丝袜美腿在线中文| 搡女人真爽免费视频火全软件| 国产三级中文精品| 国产精品电影一区二区三区| 亚洲人与动物交配视频| 日本猛色少妇xxxxx猛交久久| 91av网一区二区| 欧美精品一区二区大全| 夫妻性生交免费视频一级片| 日韩在线高清观看一区二区三区| 男女那种视频在线观看| 久久6这里有精品| 国产欧美另类精品又又久久亚洲欧美| 日韩在线高清观看一区二区三区| 桃色一区二区三区在线观看| 日韩强制内射视频| 少妇人妻一区二区三区视频| 三级男女做爰猛烈吃奶摸视频| 国产色婷婷99| 蜜桃亚洲精品一区二区三区| 日韩 亚洲 欧美在线| 男女视频在线观看网站免费| 九九久久精品国产亚洲av麻豆| 波野结衣二区三区在线| 国产免费男女视频| 水蜜桃什么品种好| 我要搜黄色片| 五月玫瑰六月丁香| 久久婷婷人人爽人人干人人爱| 成人毛片a级毛片在线播放| 熟女电影av网| 啦啦啦啦在线视频资源| 狂野欧美激情性xxxx在线观看| 久久99蜜桃精品久久| 老司机影院毛片| 欧美+日韩+精品| 成人美女网站在线观看视频| 亚洲av不卡在线观看| 日韩一区二区三区影片| 午夜激情欧美在线| av卡一久久| 狠狠狠狠99中文字幕| 国产成人福利小说| 国产男人的电影天堂91| 97超碰精品成人国产| 非洲黑人性xxxx精品又粗又长| 亚洲熟妇中文字幕五十中出| av.在线天堂| 日韩视频在线欧美| 国产成人午夜福利电影在线观看| 最近中文字幕高清免费大全6| 国产精品,欧美在线| 深夜a级毛片| 国产午夜精品久久久久久一区二区三区| 在线观看66精品国产| a级一级毛片免费在线观看| 免费观看的影片在线观看| 日日撸夜夜添| 亚洲国产高清在线一区二区三| av在线老鸭窝| 国产69精品久久久久777片| 精品一区二区三区视频在线| 欧美成人a在线观看| 国产精品日韩av在线免费观看| a级毛片免费高清观看在线播放| 91aial.com中文字幕在线观看| 日本免费在线观看一区| 在线播放无遮挡| 日韩一区二区视频免费看| 男女那种视频在线观看| 内地一区二区视频在线| 一二三四中文在线观看免费高清| 高清av免费在线| 亚洲综合色惰| 亚洲国产精品国产精品| 狂野欧美白嫩少妇大欣赏| 欧美色视频一区免费| 亚洲av福利一区| 亚洲精品日韩在线中文字幕| 国产精品一区二区三区四区免费观看| 国产淫语在线视频| 中文字幕免费在线视频6| 一级黄片播放器| 最后的刺客免费高清国语| 精品一区二区免费观看| 国产爱豆传媒在线观看| 日韩国内少妇激情av| 又爽又黄a免费视频| 成人综合一区亚洲| 国产中年淑女户外野战色| 亚洲av熟女| 精品午夜福利在线看| 久久精品国产自在天天线| 成人三级黄色视频| 国产成人午夜福利电影在线观看| 久久久久性生活片| 男人的好看免费观看在线视频| www.色视频.com| 亚洲国产精品sss在线观看| 国产亚洲精品av在线| 最近2019中文字幕mv第一页| 少妇被粗大猛烈的视频| 国产成人一区二区在线| 欧美3d第一页| 一本久久精品| 久久久久九九精品影院| 日本午夜av视频| 好男人在线观看高清免费视频| 欧美性感艳星| 在线免费观看的www视频| 国产三级中文精品| 久久精品人妻少妇| 成人高潮视频无遮挡免费网站| 亚洲国产精品久久男人天堂| 丝袜喷水一区| 久久久色成人| 亚州av有码| 久久这里只有精品中国| 男女下面进入的视频免费午夜| 亚洲精品久久久久久婷婷小说 | 国产免费福利视频在线观看| 人人妻人人澡人人爽人人夜夜 | 国产精品美女特级片免费视频播放器| 一个人观看的视频www高清免费观看| АⅤ资源中文在线天堂| 久久精品久久久久久噜噜老黄 | 草草在线视频免费看| 边亲边吃奶的免费视频| 亚洲成人精品中文字幕电影| 久久精品国产自在天天线| 国产精品久久久久久精品电影| 久久这里只有精品中国| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| 一二三四中文在线观看免费高清| 国产精品三级大全| 国产一区二区亚洲精品在线观看| 国内精品美女久久久久久| 久久久亚洲精品成人影院| 两个人的视频大全免费| 亚洲自拍偷在线| 村上凉子中文字幕在线| 国产乱人视频| 久久久亚洲精品成人影院| 国产精品福利在线免费观看| 高清日韩中文字幕在线| 国内精品一区二区在线观看| 亚洲成色77777| 天堂影院成人在线观看| 啦啦啦韩国在线观看视频| 少妇的逼水好多| 久久久久免费精品人妻一区二区| 91精品国产九色| 美女高潮的动态| 桃色一区二区三区在线观看| 天天躁日日操中文字幕| 亚洲五月天丁香| 久久久精品94久久精品| 国产一区二区亚洲精品在线观看| 噜噜噜噜噜久久久久久91| av视频在线观看入口| 少妇猛男粗大的猛烈进出视频 | 天天躁日日操中文字幕| 国产又色又爽无遮挡免| 久久精品久久久久久噜噜老黄 | 久久久亚洲精品成人影院| 欧美色视频一区免费| 免费大片18禁| 一二三四中文在线观看免费高清| 国产一区二区在线av高清观看| 一边亲一边摸免费视频| 亚洲最大成人av| 少妇裸体淫交视频免费看高清| 九九热线精品视视频播放| 村上凉子中文字幕在线| 国产在线男女| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 校园人妻丝袜中文字幕| 性插视频无遮挡在线免费观看| 亚洲国产最新在线播放| 国产老妇伦熟女老妇高清| 女人被狂操c到高潮| 插阴视频在线观看视频| 99久久中文字幕三级久久日本| 亚洲成人精品中文字幕电影| 成人毛片60女人毛片免费| 神马国产精品三级电影在线观看| 国产午夜福利久久久久久| 精品酒店卫生间| 看免费成人av毛片| 可以在线观看毛片的网站| 丝袜喷水一区| 免费观看精品视频网站| 国产精品熟女久久久久浪| 嫩草影院入口| 91在线精品国自产拍蜜月| 国产男人的电影天堂91| 看非洲黑人一级黄片| 神马国产精品三级电影在线观看| 国产精品av视频在线免费观看| 日韩一本色道免费dvd| 欧美三级亚洲精品| 欧美日韩综合久久久久久| 少妇熟女aⅴ在线视频| 精品久久久久久久人妻蜜臀av| 99热这里只有精品一区| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 老司机影院毛片| 日韩av不卡免费在线播放| 亚洲av.av天堂| 国产黄片视频在线免费观看| 美女xxoo啪啪120秒动态图| 成年女人永久免费观看视频| 高清日韩中文字幕在线| 亚洲自偷自拍三级| 我要看日韩黄色一级片| 日韩成人av中文字幕在线观看| 欧美一区二区亚洲| 亚洲精品影视一区二区三区av| 久久久久九九精品影院| 国产人妻一区二区三区在| 久热久热在线精品观看| 老师上课跳d突然被开到最大视频| 一级爰片在线观看| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 欧美3d第一页| 久久久久久久亚洲中文字幕| 国产午夜精品论理片| 午夜视频国产福利| 久久久久国产网址| 天天躁夜夜躁狠狠久久av| 久久精品国产自在天天线| 国产成人福利小说| 国产成人精品婷婷| 午夜福利在线观看吧| 成人午夜高清在线视频| 在线免费十八禁| 最近手机中文字幕大全| 欧美色视频一区免费| 国产一区二区三区av在线| 国产一区二区在线观看日韩| 久久99蜜桃精品久久| 日韩欧美 国产精品| 国产免费一级a男人的天堂| 中文欧美无线码| 九九久久精品国产亚洲av麻豆| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| av又黄又爽大尺度在线免费看 | 天天躁日日操中文字幕| 啦啦啦啦在线视频资源| 国产综合懂色| 91精品一卡2卡3卡4卡| 久久精品国产亚洲av涩爱| 国产成人freesex在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲在线观看片| 女人久久www免费人成看片 | 日本免费a在线| 两个人视频免费观看高清| 三级毛片av免费| 啦啦啦韩国在线观看视频| 在线观看66精品国产| 国内揄拍国产精品人妻在线| 久久精品综合一区二区三区| av女优亚洲男人天堂| 级片在线观看| 亚洲无线观看免费| 日韩人妻高清精品专区| 久久久久久九九精品二区国产| 国产熟女欧美一区二区| 亚洲国产高清在线一区二区三| 亚洲精品自拍成人| 深夜a级毛片| 我的女老师完整版在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲人成网站在线播| 国产精品人妻久久久久久| 日本免费一区二区三区高清不卡| 亚洲伊人久久精品综合 | 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 黄色欧美视频在线观看| 久久精品91蜜桃| 日本午夜av视频| 男人舔奶头视频| 大话2 男鬼变身卡| av国产免费在线观看| 国产一区二区在线av高清观看| 亚洲成人精品中文字幕电影| 亚洲自拍偷在线| 久久久午夜欧美精品| 国产精品一及| 女人十人毛片免费观看3o分钟| 男人的好看免费观看在线视频| 精品无人区乱码1区二区| 精品久久久久久久久久久久久| 亚洲人成网站在线观看播放| 亚洲中文字幕日韩| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 最近手机中文字幕大全| 亚洲久久久久久中文字幕| 国产免费男女视频| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 一夜夜www| 久久草成人影院| 国产在线男女| 国产亚洲5aaaaa淫片| 国产精品三级大全| 午夜福利视频1000在线观看| 国产老妇伦熟女老妇高清| 欧美成人午夜免费资源| 黄色配什么色好看| 免费观看a级毛片全部| 女人十人毛片免费观看3o分钟| 在线免费观看不下载黄p国产| 国产亚洲av片在线观看秒播厂 | 午夜亚洲福利在线播放| 最近手机中文字幕大全| 中文字幕制服av| 天堂av国产一区二区熟女人妻| 成人欧美大片| 在线a可以看的网站| 色吧在线观看| 性插视频无遮挡在线免费观看| 美女高潮的动态| 日韩,欧美,国产一区二区三区 | 两个人视频免费观看高清| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 男人舔奶头视频| 男女国产视频网站| 国产真实乱freesex| 亚洲天堂国产精品一区在线| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 精品人妻视频免费看| 淫秽高清视频在线观看| 99久久无色码亚洲精品果冻| 我的女老师完整版在线观看| av视频在线观看入口| 色播亚洲综合网| 国产精品一二三区在线看| 精品国内亚洲2022精品成人| 日韩成人伦理影院| 成人三级黄色视频| 激情 狠狠 欧美| 欧美3d第一页| h日本视频在线播放| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 亚洲综合色惰| 麻豆成人午夜福利视频| 亚洲在线自拍视频| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 噜噜噜噜噜久久久久久91| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| 热99re8久久精品国产| 中国美白少妇内射xxxbb| 中文欧美无线码| 日韩成人av中文字幕在线观看| 成人av在线播放网站| 赤兔流量卡办理| 国产亚洲5aaaaa淫片| 69人妻影院| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩av片在线观看| 国产免费视频播放在线视频 | 性色avwww在线观看| 午夜视频国产福利| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 在线播放国产精品三级| 麻豆久久精品国产亚洲av| 高清av免费在线| 久久久国产成人精品二区| 波野结衣二区三区在线| 欧美精品国产亚洲| 乱系列少妇在线播放| 免费av观看视频| 哪个播放器可以免费观看大片| 岛国在线免费视频观看| 高清在线视频一区二区三区 | 国产乱人视频| 欧美性感艳星| 直男gayav资源| 边亲边吃奶的免费视频| 青青草视频在线视频观看| 国产在线一区二区三区精 | 日产精品乱码卡一卡2卡三| 丝袜美腿在线中文| 国产色婷婷99| 蜜臀久久99精品久久宅男| 亚洲国产精品成人综合色| 国产91av在线免费观看| 日韩欧美 国产精品| 亚洲综合色惰| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 国产女主播在线喷水免费视频网站 | 纵有疾风起免费观看全集完整版 | 最近最新中文字幕大全电影3| .国产精品久久| 成人漫画全彩无遮挡| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 69人妻影院| 国产探花在线观看一区二区| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播| av福利片在线观看| 九色成人免费人妻av| 欧美丝袜亚洲另类| 欧美不卡视频在线免费观看| 在线免费观看的www视频| 国内精品宾馆在线| 日日摸夜夜添夜夜添av毛片| 日本wwww免费看| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 精品久久久久久电影网 | 欧美日本视频| 免费看a级黄色片| 男女视频在线观看网站免费| 天堂网av新在线| 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 午夜免费激情av| 久久人妻av系列| 久久久久久九九精品二区国产| 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| eeuss影院久久| 亚洲欧美一区二区三区国产| 免费无遮挡裸体视频| 亚洲18禁久久av| 国产精品久久电影中文字幕| av福利片在线观看| 国产精品一区二区三区四区久久| 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| av播播在线观看一区| av在线天堂中文字幕| 一个人观看的视频www高清免费观看| 国产亚洲一区二区精品| 中文亚洲av片在线观看爽| 有码 亚洲区| 国产在线一区二区三区精 | 亚洲国产高清在线一区二区三| 亚州av有码| 韩国高清视频一区二区三区| 国产一级毛片七仙女欲春2| 久久6这里有精品| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄 | 午夜激情欧美在线| 三级经典国产精品| 久久精品影院6| 午夜福利成人在线免费观看| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 中文字幕免费在线视频6| 亚洲中文字幕一区二区三区有码在线看| 一级毛片电影观看 | 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 国产老妇伦熟女老妇高清| 三级经典国产精品| 色综合站精品国产| 国产在线一区二区三区精 | 免费播放大片免费观看视频在线观看 | 国产精品女同一区二区软件| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 国产黄色小视频在线观看| 一级毛片aaaaaa免费看小| 边亲边吃奶的免费视频| 91久久精品国产一区二区成人| 99热这里只有是精品50| 日本午夜av视频| 99在线视频只有这里精品首页| 亚洲性久久影院| 日韩三级伦理在线观看| 成年av动漫网址| 欧美日韩在线观看h| 久99久视频精品免费| 亚洲经典国产精华液单| 综合色丁香网| 日韩欧美在线乱码| 长腿黑丝高跟| 精品久久久久久成人av| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 黄色一级大片看看| 免费观看人在逋| kizo精华| or卡值多少钱| av在线老鸭窝| 美女国产视频在线观看| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 精品人妻偷拍中文字幕| 毛片女人毛片| 欧美区成人在线视频| 性色avwww在线观看| 不卡视频在线观看欧美| 久久久精品94久久精品| 别揉我奶头 嗯啊视频| 天天躁夜夜躁狠狠久久av| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 亚洲国产精品专区欧美| 成人鲁丝片一二三区免费| 日本五十路高清| 国产真实乱freesex| 中文在线观看免费www的网站| av在线蜜桃| 深爱激情五月婷婷| 久久久久久久久久成人| 长腿黑丝高跟| 亚洲成人久久爱视频| 免费av不卡在线播放| 国产免费视频播放在线视频 | 性色avwww在线观看| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 不卡视频在线观看欧美| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| 国产成人福利小说| 联通29元200g的流量卡| 亚洲av福利一区| 午夜精品一区二区三区免费看| 久久亚洲精品不卡| 午夜精品国产一区二区电影 | 国产精品一及| 亚洲精品一区蜜桃| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 国产乱人视频| 免费在线观看成人毛片| 欧美三级亚洲精品| 欧美zozozo另类| 亚洲在线观看片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热这里只有是精品在线观看| ponron亚洲| 国产在视频线精品| 夫妻性生交免费视频一级片| 亚洲高清免费不卡视频| 国产毛片a区久久久久| 搡老妇女老女人老熟妇| 亚洲性久久影院| 免费大片18禁| 国产成人一区二区在线| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 精品免费久久久久久久清纯| 国产伦精品一区二区三区四那| 爱豆传媒免费全集在线观看| 日本一本二区三区精品| 七月丁香在线播放| 日本一本二区三区精品| 国产精品一及| 国产免费又黄又爽又色| 日本猛色少妇xxxxx猛交久久|