• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction

    2022-11-21 09:29:42JianMeiLi李健梅DongHao郝東LiHuanSun孫麗歡XiangQianTang唐向前YangAn安旸XinYanShan單欣巖andXingHuaLu陸興華
    Chinese Physics B 2022年11期
    關(guān)鍵詞:興華

    Jian-Mei Li(李健梅) Dong Hao(郝東) Li-Huan Sun(孫麗歡) Xiang-Qian Tang(唐向前)Yang An(安旸) Xin-Yan Shan(單欣巖) and Xing-Hua Lu(陸興華)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    4Center for Excellence in Topological Quantum Computation,Beijing 100190,China

    5Songshan Lake Laboratory for Materials Laboratory,Dongguan 523808,China

    We investigated the photon emission spectra on Ag(111)surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag)nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances,which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.

    Keywords: scanning tunneling microscopy,luminescence,surface plasmon,field emission resonance

    1. Introduction

    Electro-optical phenomenon on a nano-meter scale is important for designing micro and nano photonic devices,as well as for understanding the basic physical principles in light–matter interactions.[1–3]For example, light emission from atomic chains reveals electronic transitions between the discrete energy levels rooting from quantum confinement.[4–6]As another example, the local photon emission from a single molecule in the tunnel junction is caused by inelastic scattering of the tunneling electrons.[7–9]The photo luminescence can also be observed on semiconductor surfaces due to tipinduced carrier recombination.[10,11]The light intensities in these systems are affected by several factors, including electronic current, sample bias, local environment, and quantum efficiency (QE) of electron–photon conversion. For a typical gap antenna nanostructure,the value of QE is on the order of 10-4,[12–14]but it can be increased to 10-2when high concentration of hot carriers is induced by laser illumination in the tunneling gap.[15,16]The local environment,or even an atomic perturbation, may play an important role in determining the emission spectrum. Examples include a single defect in semiconductor,an extra atom attached to quantum dot,or a chemical group bonded to the functioning molecule. Detailed investigation in these delicate effects is strongly desired in order to fully understand the underlying mechanism and to explore into new applications.

    Scanning tunneling microscope(STM) has been playing a unique role in studying light–matter interactions on a microscopic scale. It provides topographic details with atomic spatial resolution,and it can be employed to create vertical metalinsulator–metal structures (MIMs) as a gap antenna,[17,18]

    where the inelastic tunneling electrons excite localized surface plasmons(LSP).In the STM configuration,the tunneling gap can be adjusted by changing the sample bias voltage, while keeping the tunneling current at a constant level. When the bias voltage is set to be higher than the work function of the metal, the system turns into the field emission regime where the intensity of light emission exhibits oscillation as a function of the bias. The luminescence reaches its local maximum value at some specific bias voltages, which is known as the field emission resonance(FER)associated with the hot electron injection and the inelastic electrons tunneling (IET)through the field emission state.[19,20]While several seminar studies have demonstrated the advantages of the STM-based investigations,the influence of local environment on the electron photo luminescence as well as the coupling to the FER has not been fully explored on a nanometer scale yet.

    Here, we examine the photo luminescence from the tunneling junction with an Ag STM tip on Ag(111)surface. The light emission intensity as a function of the sample bias and the tunneling current is examined. Special attention is paid to a local perturbation with an Ag nanostructure deposited on the surface, where an abnormal enhancement in the emission spectra is observed.The correlation between the luminescence intensity and the field emission resonance is investigated and explained by the plasmon resonance in the nano-cavity and the electronic local density of states.

    2. Experiment

    The experiment was performed by using a homebuilt STM in ultrahigh vacuum with a base pressure of 1×10-10Torr(1 Torr=1.33322×102Pa). The Ag(111)surface was cleaned by cycles of argon ion sputtering and annealed at 600°C.The Ag tips were prepared by electrochemical etching from 99.99%Ag wires(Nilaco Corporation)with a diameter of 500 μm.The tips were further cleaned by filament heating, ion sputtering, and finally treated by voltage pulses on clean surfaces. Photons emitted from the tunnel junction were collected by two convex lens(f1=50 mm,Φ1=15 mm,f2=15 mm,Φ2=15 mm) and focused into an optical fiber outside the vacuum chamber which guided the light to a spectrometer (Spectra Pro 2300, Princeton Instruments) for analysis as shown in Fig. 1(a). Spectra in a wavelength range from 400 nm to 980 nm were acquired by a liquid-nitrogencooled charge-coupled device(CCD)with an integration time of 60 s. During acquisition,the STM tip was positioned statically above the sample with feedback loop on.

    Fig.1. (a)Schematic diagram of STM-based luminescence experiment. (b)Luminescence spectra on Ag(111)surface with Ag tip under various bias voltages,with the spectra shifted vertically for clarity. (c)Spectrum intensity map corresponding to panel(b),displaying the relationship between the photon energy and sample bias,with dashed line indicating the boundary hν =eV.

    3. Results and discussion

    Figure 1(b) shows the characteristic luminescence spectra acquired on an atomic flat Ag (111) surface, under various bias voltages from 1.5 V to 4 V.For the low bias voltageV=1.5 V, there is only one peak present in the spectrum at the wavelength of 920 nm (hν=1.35 eV). For the high bias voltageV=4.0 V,multiple peaks can be identified in the spectrum. These luminescence peaks originate from the decay of plasmon modes that are excited by the electrons through inelastic tunneling process.[5,17,21]Figure 1(c) shows the spectrum intensity map as a function of photon energy and the bias voltage. The dashed line indicates a boundary where the maximum electron energy equals the photon energy. It is clear that all spectra obey the relationhν <eV,i.e.the photon energy is limited by the bias voltage, illustrating the quantum cutoff in single electron excitation process.[21]It is worth noting that the luminescence peak at 518 nm (photon energy 2.4 eV) is not obvious in the spectrum obtained under the bias voltage of 2.4 V.In addition,the intensities of two high energy peaks(respectively at wavelengths of 575 nm and 518 nm)rise quickly with the bias voltage increasing. The overall features in the spectra map can serve as a fingerprint of the plasmon modes in the nano-resonator constructed by the crystal surface and the specific STM tip apex.[12]

    The intensity of luminescence spectrum depends on the magnitude of the tunneling current. Figure 2(a) shows three spectrum peaks measured as a function of the tunneling current, performed with a different Ag tip. The bias voltage is set to be±4.5 V, and the tunneling current is set to be between 2 nA and 8 nA (negative current corresponds to negative bias voltage). The integration time is 60 s for each spectrum. The energy values of three spectrum peaks are 1.66 eV, 1.80 eV, and 1.94 eV, respectively. There is no obvious change of the peak position or the peak width(FWHM)of each mode,implying that the cavity resonance remains unchanged over the investigated range of current intensities or gap distances,which is in agreement with the results reported previously.[22]The current-dependent luminescence peak intensity(maximum)is further fitted by the power lawIβ. The exponential constant turns out to beβ ≈1.0±0.05 for all three modes,which is in consistence with the single electron excitation process.[21,23]

    Fig.2.(a)Luminescence spectra from Ag tunneling junction acquired under various tip-sample distances. (b) Plots of intensity versus current for three spectrum peaks.

    We then investigate the luminescence spectrum by extending the bias voltage from 3 V to 9 V. The intensities of luminescence peaks on Ag surface reach a maximum value at the bias voltage of about 4.0 V, and decrease as the bias voltage increases further as shown in Fig.3(c). The observation of maximum in luminescence intensity as a function of the bias voltage is consistent with previous results,[20,24–26]and can be explained below. The electronic band structure of Ag (111) has a band edge position about 4 eV above the Fermi level(work function of Ag is about 4.6 eV.[27–29]). As bias voltage increases,the number of decay channels involving the photon emission increases. On the other hand, when the bias voltage increases from the tunneling regime to the field emission regime,the gap distance increases faster and deviates from a logarithmic fashion. The increased gap distance weakens the tip-sample electromagnetic coupling and subsequently quenches the photon emission. Typically, the peak intensity decreases by a factor of ten when the bias voltage increases from 4 V to about 9 V.

    The profile of the luminescence is strongly dependent on the tip shape. We intentionally modify the tip by applying a voltage pulse to the sample as shown in Fig. 3(a). The topograph of the surface after the tip modification is shown in Fig. 3(b), where an Ag nanoparticle about 10 nm in size is deposited near the edge of a flat terrace. The luminescence spectrum is measured again by using the new tip(named tip 2)on the flat region of the surface(as marked in Fig.3(b)). The spectra, as shown in Fig. 3(c), display a two-peak feature as compared with the three-peak feature in the spectra acquired by the original tip(tip 1). The luminescence peaks as acquired by tip 2 are located at slightly lower energy, which indicates the presence of a sharper STM tip.[12]The peak intensity decreases significantly as the bias voltage increases up to 9 V,the trend of which is consistent with that of the results obtained by tip 1. Figure 3(d)shows the bias voltage-dependent luminescence spectra taken on the Ag nanoparticle created by tip modification.The tunneling current is kept at 2 nA.The profile of the spectra is very similar to that taken on the terrace,with two peaks at the same photon energy values of 1.63 eV and 1.82 eV. The intensities of both peaks, however, show strong variations as the bias voltage increases to the field emission regime as indicated in Fig. 3(e). The intensities of the two peaks have a few local maximum values with respect to the bias voltage. The first maximum value is seen at the bias voltage of 4.5 V,and the other three maximum values occur at the bias voltages of 6.2 V,7.5 V,and 8.5 V,respectively.As is well known,those maximum values at the bias voltages more than 5 V are related to the field emission resonance. The photon energy under such a resonance condition is determined by the relationshiphν=eVbias-En, (n=1, 2 ,3, ....), whereEnis the energy of the field emission resonance state in the system.The average of two emission modes is used in above relationship analysis andEnis determined to be 4.5 eV, 5.8 eV, and 6.8 eV,forn=1,2,3,respectively,marked by blue rectangles in Fig.3(f).

    Fig. 3. (a)–(b) STM images of clean Ag (111) surface and Ag nanoparticle deposited on the surface, with image size being 180 nm×180 nm, and imaging condition V =3 V and I =0.3 nA. Luminescence spectra are obtained at different locations on the surface as marked by the arrows, with a constant tunneling current of 2 nA.The inset shows the line profile of Ag nanoparticle. (c)Luminescence spectra obtained with two different Ag tips on the flat region of Ag(111)surface under various bias voltages. The spectra are shifted vertically for clarity. (d)Luminescence spectra measured with Ag tip 2 above the Ag nanoparticle as shown in panel(b). The bias voltage is set to range from 3.5 V to 9 V,and the constant tunneling current is set to 2 nA,with NP denoting nanoparticle. (e)Luminescence peak intensity as a function of the bias voltage,with photon energy values of the two modes being 1.63 eV(red)and 1.82 eV(black). (f)The experimental differential conductance measured at constant current(2 nA)with tip 1 on Ag(111),with blue rectangles marking energy values of the first three FERs.

    It is interesting to note that the peak intensities at different levels of the field emission resonances do not change monotonically. Instead, significant increase in peak intensity is observed at the resonance leveln=3, which is very different from the normal situation where the peak intensity decreases monotonically for higher level of the field emission resonance.[20]This enhancement at higher field emission resonance can be seen obviously due to the presence of the Ag nanoparticle. The schematic diagram for this enhancement mechanism is shown in Fig. 4. We calculate the electronic enhancement by the finite element analysis method. The incident laser illuminates the tunneling gap at an angle of 45°.The photons originate from the radiation attenuation of the local surface plasmons between tip and sample,and are assisted by the inelastic tunneling electrons from the Fermi level of the tip into the field emission resonance states. The energy values of the emitted photon are the same for the tip parked over the plat terrace and above the nanoparticle.This is reasonable since the energy of the plasmon mode is mainly determined by the radius of the curvature of the tip and the tip-sample distance. On the plat terrace,the efficiency of the photon emission is mainly determined by the tip profile where the contribution from the surface is much weaker due to the mismatch in their wave vectors between the propagating surface plasmon mode and the free photon in vacuum. As shown in Fig. 4(b), the presence of nanoparticle results in significant increase in electric field emission. The increased emission is due to the breaking of the translational symmetry of the plan surface,which permits surface plasmon along the sample-vacuum interface to decay radiatively.[30]In other words,the interaction between the localized surface plasmon of the nanoparticle on the surface and the emitted photon results in an extra enhancement effect.[31]

    We estimate the quantum efficiency of the photon emission excited by the tunneling electron in such a nano-resonator,which can be expressed as

    Fig.4. (a)Schematic representation of surface plasmons and electron luminescence in STM tunneling junction, with ω representing the frequency of plasmon mode within the tip-surface resonant cavity,excited by the inelastic scattering of tunneling electrons or field emission electrons. (b)Gap modes of the coupled systems with a stronger field enhancement than the plasmon modes of tip and substrate.(c)Nanostructure of tip and Ag substrate(diameter 40 nm,gap 1 nm)with a maximum enhancement factor of 432 at 1.90 eV.(d)Nanostructure of tip and Ag nanoparticle(diameter 10 nm,height 4 nm)on substrate with a maximum enhancement factor of 885 at 1.90 eV.

    4. Conclusions

    In this work, we investigated the electron luminescence spectra in the tunneling junction of an ultrahigh vacuum lowtemperature STM. The well-defined luminescence peaks are observed to be related to the plasmon modes of the tip-surface cavity. The light intensity is linear with respect to the tunneling current, indicating an electron excitation process. Enhanced luminescence enhancement is observed by the field emission resonance for high bias voltages in the tunneling regime. Abnormal enhancement in photon emission for the higher level of field emission resonance reveals the distinct role of the Ag nanoparticles on surface.The research results in this case provide a detailed understanding of light–plasmon interaction that are essential for many applications such as light harvesting and nano-antenna.Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, and 11727902),the Strategic Priority Research Program(B)of the Chinese Academy of Sciences (Grant No. XDB30201000),and the Beijing Natural Science Foundation, China (Grant No.4181003).

    猜你喜歡
    興華
    毛焰藝術(shù)風(fēng)格中的自我表達(dá)
    快樂在哪里
    你是最棒的小樹苗
    興華市林湖鄉(xiāng):村企聯(lián)建共走振興路
    Adsorption and rotational barrier for a single azobenzene molecule on Au(111)surface?
    村長外號(hào)叫“老邪”
    攝影作品欣賞
    金沙江文藝(2019年7期)2019-07-29 01:57:06
    書法,何者為要——從沃興華的創(chuàng)作瓶頸談起
    藝術(shù)品(2018年5期)2018-06-29 02:14:58
    馬興華攝影作品欣賞
    金沙江文藝(2017年4期)2017-03-31 07:35:16
    一级毛片高清免费大全| 亚洲无线观看免费| 欧美一级a爱片免费观看看| 99热精品在线国产| 欧美黄色淫秽网站| 一级毛片精品| 免费av不卡在线播放| 日本免费一区二区三区高清不卡| 亚洲美女视频黄频| 国产一区二区三区在线臀色熟女| 免费观看的影片在线观看| 欧美色欧美亚洲另类二区| svipshipincom国产片| 国产av麻豆久久久久久久| 亚洲最大成人中文| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 午夜福利在线观看吧| 国产亚洲精品久久久com| 免费观看人在逋| 久久久水蜜桃国产精品网| 最近最新中文字幕大全免费视频| 毛片女人毛片| 国产精品久久电影中文字幕| 国产伦在线观看视频一区| 欧美日韩瑟瑟在线播放| 欧美乱码精品一区二区三区| 可以在线观看毛片的网站| 白带黄色成豆腐渣| 大型黄色视频在线免费观看| 久久精品国产亚洲av香蕉五月| 淫秽高清视频在线观看| 成年人黄色毛片网站| 成人性生交大片免费视频hd| 亚洲av成人精品一区久久| 免费看光身美女| 久久精品人妻少妇| 亚洲精品美女久久久久99蜜臀| 51午夜福利影视在线观看| 香蕉国产在线看| 这个男人来自地球电影免费观看| 美女高潮的动态| 色av中文字幕| 一个人看视频在线观看www免费 | 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| av在线天堂中文字幕| 高清毛片免费观看视频网站| 99久久综合精品五月天人人| 国产探花在线观看一区二区| 麻豆久久精品国产亚洲av| 国产真人三级小视频在线观看| 日韩三级视频一区二区三区| 国产精华一区二区三区| 国产精品 欧美亚洲| 天堂网av新在线| 国产人伦9x9x在线观看| netflix在线观看网站| 日日夜夜操网爽| 国产精品1区2区在线观看.| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 黄频高清免费视频| av片东京热男人的天堂| 久久人妻av系列| 久久久久久久久中文| 熟女电影av网| 色吧在线观看| 欧美在线一区亚洲| 99久国产av精品| 可以在线观看毛片的网站| 真人做人爱边吃奶动态| 国产探花在线观看一区二区| 成人18禁在线播放| 成熟少妇高潮喷水视频| 国产亚洲av嫩草精品影院| 十八禁人妻一区二区| 人妻丰满熟妇av一区二区三区| 国产v大片淫在线免费观看| 九九热线精品视视频播放| 亚洲精品色激情综合| 国产精品,欧美在线| 宅男免费午夜| 午夜免费观看网址| av欧美777| 久久精品aⅴ一区二区三区四区| 日韩欧美三级三区| 一进一出好大好爽视频| 男人舔女人下体高潮全视频| 国产精品香港三级国产av潘金莲| 91av网一区二区| 美女免费视频网站| 波多野结衣高清作品| 日本免费a在线| 国产美女午夜福利| 天堂网av新在线| 黑人巨大精品欧美一区二区mp4| 日韩 欧美 亚洲 中文字幕| 亚洲无线在线观看| 成人性生交大片免费视频hd| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 亚洲乱码一区二区免费版| 最新中文字幕久久久久 | 最近最新免费中文字幕在线| 91麻豆av在线| 不卡av一区二区三区| 男人舔女人的私密视频| 床上黄色一级片| 国模一区二区三区四区视频 | 巨乳人妻的诱惑在线观看| 麻豆国产97在线/欧美| 国产成人影院久久av| 精品午夜福利视频在线观看一区| 亚洲自偷自拍图片 自拍| 悠悠久久av| 国产高潮美女av| 亚洲精品在线美女| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 人妻久久中文字幕网| 亚洲无线观看免费| 日本与韩国留学比较| 亚洲中文av在线| 青草久久国产| 男女那种视频在线观看| 不卡一级毛片| 免费高清视频大片| 亚洲成人久久爱视频| 亚洲在线自拍视频| 九九在线视频观看精品| 免费av毛片视频| 久久亚洲真实| 国产97色在线日韩免费| 91在线观看av| 少妇熟女aⅴ在线视频| 欧美日韩综合久久久久久 | 国产精品av久久久久免费| АⅤ资源中文在线天堂| 国产一区二区在线av高清观看| 一级a爱片免费观看的视频| 美女午夜性视频免费| av国产免费在线观看| 草草在线视频免费看| 久久亚洲精品不卡| 亚洲片人在线观看| av国产免费在线观看| 日韩欧美一区二区三区在线观看| 国产成人福利小说| 嫩草影院入口| 色综合婷婷激情| 丁香六月欧美| 国产视频一区二区在线看| 男女下面进入的视频免费午夜| 这个男人来自地球电影免费观看| 9191精品国产免费久久| 香蕉av资源在线| 久久久国产成人免费| 黑人操中国人逼视频| 亚洲片人在线观看| 99热6这里只有精品| 国内精品一区二区在线观看| 变态另类丝袜制服| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 99re在线观看精品视频| 欧美激情在线99| 熟女少妇亚洲综合色aaa.| 国产精品乱码一区二三区的特点| av欧美777| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看| 亚洲色图av天堂| 此物有八面人人有两片| 久久久精品欧美日韩精品| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 我的老师免费观看完整版| 岛国视频午夜一区免费看| 天堂√8在线中文| tocl精华| 黑人操中国人逼视频| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 国内精品一区二区在线观看| 在线免费观看的www视频| 亚洲五月婷婷丁香| 在线视频色国产色| 亚洲人成电影免费在线| 国产乱人伦免费视频| 在线永久观看黄色视频| 性色avwww在线观看| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 国产精品 欧美亚洲| 亚洲自偷自拍图片 自拍| 啦啦啦免费观看视频1| 亚洲av熟女| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 88av欧美| 亚洲欧美激情综合另类| 国产黄片美女视频| 深夜精品福利| 亚洲欧美日韩高清专用| 亚洲国产中文字幕在线视频| 波多野结衣高清无吗| 亚洲九九香蕉| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 国产主播在线观看一区二区| 国产淫片久久久久久久久 | 手机成人av网站| 精品久久久久久,| 九九热线精品视视频播放| 桃色一区二区三区在线观看| 成年版毛片免费区| 宅男免费午夜| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看 | 热99re8久久精品国产| 九色成人免费人妻av| 国产午夜精品久久久久久| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 毛片女人毛片| 久久精品aⅴ一区二区三区四区| 99热只有精品国产| av在线天堂中文字幕| 丝袜人妻中文字幕| 欧美激情在线99| 好男人在线观看高清免费视频| 国产伦人伦偷精品视频| 亚洲乱码一区二区免费版| 国产精品久久久av美女十八| 18禁观看日本| 亚洲美女视频黄频| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 美女 人体艺术 gogo| 精品99又大又爽又粗少妇毛片 | 手机成人av网站| 免费看光身美女| 国内精品美女久久久久久| 国产精品香港三级国产av潘金莲| 成年女人永久免费观看视频| 国产午夜精品久久久久久| 亚洲av第一区精品v没综合| 国产成人aa在线观看| 波多野结衣巨乳人妻| 成人三级黄色视频| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 午夜两性在线视频| 国内精品美女久久久久久| 免费在线观看成人毛片| 无人区码免费观看不卡| 亚洲第一电影网av| 欧美不卡视频在线免费观看| 老司机深夜福利视频在线观看| ponron亚洲| 97超视频在线观看视频| 91麻豆精品激情在线观看国产| 国产精品一区二区三区四区久久| 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 亚洲欧美日韩高清专用| 亚洲avbb在线观看| 亚洲午夜理论影院| 搞女人的毛片| 国产三级中文精品| 啦啦啦免费观看视频1| or卡值多少钱| 在线观看午夜福利视频| www.精华液| 色综合婷婷激情| avwww免费| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女| 精品久久蜜臀av无| 婷婷精品国产亚洲av| 97超视频在线观看视频| 日本一二三区视频观看| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 久久中文字幕人妻熟女| 99热这里只有精品一区 | 国产不卡一卡二| 丝袜人妻中文字幕| 亚洲午夜理论影院| 欧美午夜高清在线| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区久久| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 90打野战视频偷拍视频| 日韩欧美三级三区| 国产成人aa在线观看| 曰老女人黄片| 亚洲精品粉嫩美女一区| 国产精品久久电影中文字幕| 午夜福利在线在线| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 亚洲 欧美一区二区三区| 色噜噜av男人的天堂激情| 成人av在线播放网站| 亚洲va日本ⅴa欧美va伊人久久| 国产成年人精品一区二区| 欧美成人免费av一区二区三区| 午夜精品在线福利| 99re在线观看精品视频| 91在线精品国自产拍蜜月 | 日本成人三级电影网站| 长腿黑丝高跟| 日韩欧美国产在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看日韩欧美| 免费在线观看影片大全网站| 欧美xxxx黑人xx丫x性爽| 亚洲av片天天在线观看| 国产成人福利小说| 高潮久久久久久久久久久不卡| 欧美在线黄色| 久久草成人影院| 国产乱人视频| 久9热在线精品视频| 少妇熟女aⅴ在线视频| 久久精品影院6| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 老司机午夜福利在线观看视频| 男人舔女人的私密视频| 久99久视频精品免费| 在线a可以看的网站| av视频在线观看入口| 国产伦一二天堂av在线观看| 久久久久久国产a免费观看| 日本一本二区三区精品| 国产私拍福利视频在线观看| 日本三级黄在线观看| 搡老岳熟女国产| 国产日本99.免费观看| 一区二区三区高清视频在线| 久久久国产成人免费| 黄色成人免费大全| 日本 欧美在线| 欧美激情久久久久久爽电影| 国产成人精品久久二区二区91| 亚洲无线观看免费| 国产精品av久久久久免费| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片精品| 国产黄a三级三级三级人| 91老司机精品| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 五月玫瑰六月丁香| 日韩大尺度精品在线看网址| 99在线人妻在线中文字幕| 日本一本二区三区精品| 亚洲av成人av| 欧美最黄视频在线播放免费| 变态另类丝袜制服| 一级毛片精品| 亚洲av电影在线进入| 99国产精品99久久久久| 噜噜噜噜噜久久久久久91| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 国产aⅴ精品一区二区三区波| 草草在线视频免费看| 欧美日韩亚洲国产一区二区在线观看| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| 男女下面进入的视频免费午夜| 婷婷丁香在线五月| 在线观看一区二区三区| 欧美中文综合在线视频| 黄色女人牲交| 观看免费一级毛片| 亚洲国产欧洲综合997久久,| 成人一区二区视频在线观看| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 长腿黑丝高跟| 成人欧美大片| 亚洲av电影在线进入| 91在线观看av| 国产精品av久久久久免费| 国产高清三级在线| 99re在线观看精品视频| 高清在线国产一区| 男女下面进入的视频免费午夜| 99久久国产精品久久久| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站| 精品人妻1区二区| 久久久久性生活片| 午夜福利18| 性欧美人与动物交配| 日韩欧美精品v在线| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| av黄色大香蕉| 中文字幕人妻丝袜一区二区| 成人欧美大片| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线 | 99在线人妻在线中文字幕| 丁香六月欧美| 91av网站免费观看| 国产精品一区二区三区四区免费观看 | av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 人人妻人人澡欧美一区二区| 久久草成人影院| 热99在线观看视频| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 亚洲中文日韩欧美视频| 日韩欧美免费精品| 激情在线观看视频在线高清| 一边摸一边抽搐一进一小说| 国产99白浆流出| 日韩欧美 国产精品| 嫁个100分男人电影在线观看| 国产午夜福利久久久久久| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 热99re8久久精品国产| 波多野结衣高清无吗| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 亚洲男人的天堂狠狠| 国产精品久久久人人做人人爽| 国产av一区在线观看免费| 宅男免费午夜| 亚洲中文日韩欧美视频| 亚洲av熟女| 午夜两性在线视频| 99久久国产精品久久久| 99re在线观看精品视频| 真实男女啪啪啪动态图| 视频区欧美日本亚洲| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 岛国在线观看网站| 十八禁人妻一区二区| 国产99白浆流出| 可以在线观看的亚洲视频| 日韩成人在线观看一区二区三区| 日本三级黄在线观看| 国产高清视频在线观看网站| 人人妻人人看人人澡| 成人一区二区视频在线观看| 露出奶头的视频| 日韩国内少妇激情av| 免费看十八禁软件| 亚洲成人久久性| 国内精品久久久久久久电影| 国产真人三级小视频在线观看| 级片在线观看| 成年女人永久免费观看视频| 又黄又粗又硬又大视频| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 中文字幕精品亚洲无线码一区| 在线视频色国产色| 在线播放国产精品三级| 床上黄色一级片| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 91九色精品人成在线观看| 男女视频在线观看网站免费| 999久久久精品免费观看国产| 国内精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清在线视频| 免费观看人在逋| 黄色日韩在线| 国产真实乱freesex| 91av网一区二区| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜一区二区| 亚洲专区字幕在线| 久久久久九九精品影院| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久v下载方式 | 国产淫片久久久久久久久 | 免费在线观看视频国产中文字幕亚洲| 麻豆av在线久日| 老汉色∧v一级毛片| 久久久久性生活片| 国产欧美日韩一区二区三| 小蜜桃在线观看免费完整版高清| 夜夜爽天天搞| 一区二区三区高清视频在线| 精品午夜福利视频在线观看一区| 精品乱码久久久久久99久播| 亚洲av片天天在线观看| 欧美成人一区二区免费高清观看 | 欧美3d第一页| 欧美午夜高清在线| 一区二区三区国产精品乱码| 欧美激情在线99| 1000部很黄的大片| 免费看日本二区| 免费电影在线观看免费观看| 人人妻人人看人人澡| 日本 欧美在线| 好男人电影高清在线观看| 99久久综合精品五月天人人| 五月玫瑰六月丁香| 亚洲va日本ⅴa欧美va伊人久久| 青草久久国产| 亚洲自拍偷在线| 中文字幕最新亚洲高清| 噜噜噜噜噜久久久久久91| av天堂中文字幕网| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 精品国产乱子伦一区二区三区| 国产精品女同一区二区软件 | 免费在线观看成人毛片| 午夜免费观看网址| 一级毛片高清免费大全| 国产精品 国内视频| 久久久久久人人人人人| 老司机福利观看| 国产午夜精品久久久久久| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线 | 日本免费a在线| 全区人妻精品视频| 在线看三级毛片| 国产精品久久久久久精品电影| 国产亚洲精品综合一区在线观看| 国模一区二区三区四区视频 | 国产激情久久老熟女| 久久精品综合一区二区三区| 国产精品99久久99久久久不卡| 成人av在线播放网站| 亚洲国产看品久久| 欧美最黄视频在线播放免费| 母亲3免费完整高清在线观看| 999久久久国产精品视频| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久av网站| 欧美不卡视频在线免费观看| 美女 人体艺术 gogo| 99久久精品热视频| 韩国av一区二区三区四区| 午夜免费激情av| 日韩欧美精品v在线| 国产探花在线观看一区二区| 久久久久久久精品吃奶| 男人舔奶头视频| 最近最新中文字幕大全电影3| 欧美性猛交╳xxx乱大交人| 成人特级黄色片久久久久久久| 又爽又黄无遮挡网站| 亚洲18禁久久av| 欧美日韩瑟瑟在线播放| 成人av在线播放网站| 黄色女人牲交| 久久精品亚洲精品国产色婷小说| a在线观看视频网站| 亚洲乱码一区二区免费版| xxx96com| cao死你这个sao货| 欧美又色又爽又黄视频| 国产 一区 欧美 日韩| 观看美女的网站| 人妻夜夜爽99麻豆av| 日本三级黄在线观看| 叶爱在线成人免费视频播放| 麻豆久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 亚洲av日韩精品久久久久久密| 久久国产精品影院| 久久精品国产99精品国产亚洲性色| 免费高清视频大片| av天堂中文字幕网| www国产在线视频色| 19禁男女啪啪无遮挡网站| 黑人巨大精品欧美一区二区mp4| 亚洲精品456在线播放app | 国产精品99久久99久久久不卡| 桃色一区二区三区在线观看| 长腿黑丝高跟| 麻豆成人av在线观看| 国产精品亚洲av一区麻豆|