• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique

    2022-11-21 09:29:42JuanQin秦娟GangCao曹港RunXu徐閏JingLin林婧HuaMeng孟華WenZhenWang王文貞ZiYeHong洪子葉JianCongCai蔡健聰andDongMeiLi李冬梅
    Chinese Physics B 2022年11期
    關鍵詞:李冬梅子葉

    Juan Qin(秦娟) Gang Cao(曹港) Run Xu(徐閏) Jing Lin(林婧) Hua Meng(孟華) Wen-Zhen Wang(王文貞) Zi-Ye Hong(洪子葉) Jian-Cong Cai(蔡健聰) and Dong-Mei Li(李冬梅)

    1School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China

    2Zhejiang Institute of Advanced Materials,Shanghai University,Jiashan 314113,China

    Time-of-flight(ToF)transient current method is an important technique to study the transport characteristics of semiconductors. Here, both the direct current (DC) and pulsed bias ToF transient current method are employed to investigate the transport properties and electric field distribution inside the MAPbI3 single crystal detector. Owing to the almost homogeneous electric field built inside the detector during pulsed bias ToF measurement,the free hole mobility can be directly calculated to be about 22 cm2·V-1·s-1,and the hole lifetime is around 6.5 μs–17.5 μs.Hence,the mobility-lifetime product can be derived to be 1.4×10-4 cm2·V-1–3.9×10-4 cm2·V-1. The transit time measured under the DC bias deviates with increasing voltage compared with that under the pulsed bias, which arises mainly from the inhomogeneous electric field distribution inside the perovskite. The positive space charge density can then be deduced to increase from 3.1×1010 cm-3 to 6.89×1010 cm-3 in a bias range of 50 V–150 V.The ToF measurement can provide us with a facile way to accurately measure the transport properties of the perovskite single crystals, and is also helpful in obtaining a rough picture of the internal electric field distribution.

    Keywords: MAPbI3,space charge density,electric field distribution,time-of-flight measurement

    1. Introduction

    The remarkable research progress of Halide perovskite materials in optoelectronics have been made[1–3]due to their excellent optical and electrical properties. Of them,the transport behavior of charge carriers is the most essential.[4–9]The mobility and lifetime of charge carriers are the key parameters for transport, and a larger mobility-lifetime product(μτ)leads to a higher charge collection efficiency and a higher sensitivity for detectors. The charge carrier lifetime of perovskite single crystal (PSC) was believed to be longer than that of other semiconductors like CdZnTe (CZT),[5,10]while the mobility of charge carriers was considered to be one order of magnitude smaller than that of CZT,[7,11–14]which might be a hazardous issue for PSC to be utilized in high speed radiation devices. In addition, the reported mobility values of MAPbI3PSC were widely varied in a range of 24 cm2·V-1·s-1–620 cm2·V-1·s-1, by different methods including space charge limited current (SCLC), time of flight(ToF),time-resolved microwave conductivity.[5,10,15]

    The ToF method based on transient current is suitable to the PSC with high resistivity, which can directly profile the transport process of non-equilibrium carriers, and precisely measure the transit time and hence the free carrier mobility.Besides, some internal physical information in semiconductors can be derived from current waveforms (CW) of ToF measurement, such as the interaction of carriers with traps and electric field distribution.[16–19]A study of temperaturedependent mobility of MAPbI3by ToF was caried out first in 2018.[20]The characteristics of the trapping-de-trapping of carriers in PSC defects have been clearly uncovered by the pulsed bias ToF method combined with Monte Carlo simulation.[16,21]

    However, radiation detection operates practically under the DC bias rather than pulsed bias. The space charge inside the bulk is negligible for the pulsed bias,and the drift transport properties can be different from those under the DC condition with non-negligible space charge. The space charge built up inside the detector under the DC bias may redistribute the electric field and hence retard/accelerate the carrier transport,just as in CdTe and CZT.[22–24]Therefore,to better understand the transport properties of PSC operated under DC bias,the space charge and electric field distribution should be taken into account.

    Here, we focus on the transport properties of the PSC detector by using a ToF transient current measurement system. By employing a DC bias ToF measurement and referring to pulse bias results, it can be estimated that the positive space charge density increases from 3.1×1010cm-3to 6.89×1010cm-3as the bias rises from 50 V to 150 V. A free hole mobility of about 22 cm2·V-1·s-1can be calculated directly from the pulsed bias ToF method due to the almost homogeneous electric field built inside the MAPbI3. The hole lifetime measured in the pulsed mode is 6.5 μs–17.5 μs,and hence the mobility-lifetime product can be derived to be 1.4×10-4cm2·V-1–3.9×10-4cm2·V-1. By using the DC bias voltage, the transit time of holes in MAPbI3is deviated downward from that under pulsed condition due to the positive space charge and inhomogeneous electric field distribution inside the PSC.

    2. Experiment

    The MAPbI3PSC was grown by the inverse temperature crystallization (ITC) method and prepared into a size of 5 mm×5 mm×2 mm, then polished on both sides and deposited with 40-nm-thick Au electrodes (Au/MAPbI3/Au).The details can be found in our previous report.[25]

    Fig. 1. (a) Schematic diagram of ToF transient current measurement system and (b) schematic time sequence of voltage and laser pulse for a ToF measurement. The top panel illustrates that a typical ToF current waveform can be divided into several characteristic segments, with a “knot” between segment 2 and segment 3,which represents the free carrier transit time.

    The ToF transient current measurement system is shown in Fig.1(a),which consists of several apparatuses.The system worked as follows:two signal generators(Keithley 3390)were used to generate two controlled signals sequentially,where the pulse voltage control (Analog Devices LTC 6090) was triggered first,then after a delay time,the laser pulse,which was generated by a 650-nm laser diode (10 mW), was triggered.The current signal in the external circuit was amplified by a current amplifier(ADI LTC6268-10 100 MHz)and sent to oscilloscope (R & S RTE1054 500 MHz, 5 GSa/s) for recording. The laser pulse energy was estimated at 5 nJ(500 ns with 10 mW).

    The time sequence configuration of the pulsed bias voltage and laser pulse in ToF measurement are shown in Fig.1(b).For pulsed bias mode,the frequency and width of the voltage pulse were set to be at 20 Hz and 400 μs, respectively. The delay time between the rising edge of pulsed bias and the laser pulse was 50 μs,while the width of the laser pulse was 500 ns.For DC bias mode,the frequency and width of laser pulse were required to be the same as those for pulsed bias mode.

    3. Results and discussion

    We have measured the ToF CWs for holes under both DC and pulsed bias mode,and the results are displayed in Fig.2.Similar ToF CWs containing all the characteristic segments(Fig. 1(b)) for both modes can be observed. The first sharp rise is attributed to laser pulse excitation. Then,a drop of current occurs as illustrated by segment 1 in Fig.1(b),which can be related to the surface recombination[17]and/or trapping of generated carriers.[16]Surprisingly, the current then tends to increase to another peak within a few microseconds.This phenomenon can be observed for all of our samples,as well as in some reports about PSC and even CZT.[19,20,26]This abnormal increase may arise from the electric field distortion of carriers,as these carriers are highly concentrated in a finite space and separated instantaneously,[20]or due to the presence of surface traps at the interface of MAPbI3,forming depletion zones and possibly acting as pn junctions or“dead(inactive)layers”.[22]During ToF measurement,this unusual rise of current after the first current drop may show a fake knot in CW,which can result in the wrong estimation of mobility if assuming the“knot”position to serve as the transit time.

    When the induced current passes through the second peak value,the curve becomes the same as a typical ToF CW(segment 2 in Fig.1(b)),exhibiting an exponential decay curve related to both the trapping and de-trapping of holes and the electric field distribution inside the semiconductor.[16,17]When the free hole cloud begins to arrive at the cathode,the CW exhibits a turning point called“knot”(knot in Fig.1). So,the knot represents the transit time of free holes.[16,27]

    We then focus on the main differences in ToF CW between the pulsed mode and the DC mode,which can beyreflected mainly at the knot position. Note that the space charge density inside the PSC is negligible for pulsed bias due to a very short delay time of 50 μs. Therefore, a transit time for DC ToF longer than that for pulsed ToF at the same bias voltage amplitude can be observed,which indicates the existence of an inhomogeneous electrical field distribution inside a DC bias detector.

    Therefore, for a pulsed mode, since the electric field is homogeneous,the value of hole mobility can be calculated by using the following simple expression:

    Fig.2. (a)DC and(b)pulsed ToF current waveforms at different bias voltages for a 0.2-cm-thick MAPbI3 single crystal detector.

    In Fig.3(a),the reciprocal of the transit time as a function of bias voltage under both DC and puled modes is displayed,where the value of the transit time (i.e.the knot position, or the intersection of the segment 2 and segment 3) is extracted from ToF CWs in Fig.2.The reciprocal of transit time exhibits a good linearity with bias voltage in the pulsed mode, which confirms that the electric field in the pulsed mode is almost homogeneous, and therefore can be reliably used to calculate the free hole mobility of MAPbI3to be 22 cm2·V-1·s-1,well in agreement with reported pulse ToF results.[21,28]As listed in Table 1,the mobility values of MAPbI3exhibit a large variation by the SCLC technique and Hall technique. It is difficult to accurately derive mobility from both SCLC and Hall measurements,since the SCLC model requires an ideal Ohmic injecting contact[29]while Hall measurements are also based on Ohmic contact and are inaccurate for high resistivity materials.In contrast, the ToF method can provide consistent mobility values with a relatively small variation,and our result matches

    Fig.3. (a)Plot of reciprocal of transit time versus bias voltage from pulsed(blue squares) and DC (black dots) ToF measurements, with green line denoting a linear fit to the data from pulsed mode,from which the hole mobility can be calculated to be 22 m2·V-1·s-1. (b)Plot of effect of different electric field gradients on transit time for a DC bias ToF measurement with gradient a assumed to keep constant for all bias voltages. The transit time is calculated from Eq.(2)by setting L=0.2 cm,μ =22 cm2·V-1·s-1.

    For the DC mode,the space charge density and the electric field distribution must be considered after the dielectric relaxation has been achieved. To simplify the physical model,we neglect the effect of the dead layer and assume a linear electric fieldE(x)inside a DC bias detector due to a homogeneous distribution of ionized impurities. A mathematical expression of transit time and voltage at a fixed electric field gradient can been deduced, which has been reported previously as follows:[37,38]

    Table 1. Summary of experimentally determined hole charge carrier mobility for MAPbI3 single crystals,all measured at room temperature.

    A possible explanation to this discrepancy is that the electric field gradient,i.e.a,is not a constant as described above,but rather should change with bias voltage. From Eq.(3),we can see that the parameterais determined by the space charge density, and hence it can be assumed that the space charge density can vary with bias voltage. Moreover,since the curve for the DC ToF measurement in Fig.3(a)is gradually deviated downward as compared with that for the pulsed ToF, much more impurities are supposed to be ionized at higher bias voltages, leading to a larger gradient of electric field and thereby a longer transit time than that in homogeneous electrical field under the same bias voltage amplitude. Similar cases in CZT have been reported,and the ToF results also showed a change in electric field gradient with bias voltage,[26,37]indicating increased ionized impurities.

    From Eqs.(1)and(2) it follows that the transit time under a linear electric field is always longer than that under a constant electric field,whether the electrical field gradientais positive or negative. So, we cannot know whether the space charge is negative or positive. Rather,we find that the induced charges in the DC mode,which can be integrated directly from the ToF CWs, is always around 5% lower than those in the pulse mode under the same bias voltages. For instance, the induced charge in the DC mode is around 21.3 pC as compared with 20.3 pC in the pulse mode under a bias of 150 V.Based on a longer decay characteristic in the DC mode to be discussed below, a lower induced charge density indicates a lower electric field at anode,resulting from the positive space charge distribution inside the detector,which is demonstrated schematically in Fig.4(a).Besides,that the transient current in the DC mode is lower than that in the pulsed mode at the very initial stage under the same voltage also implies a lower electric field at anode. Moreover, this positive space charge can originate most probably from the ionized deep-level donors.

    Fig. 4. (a) Schematic diagram of positive space charge and electric field distribution inside the detector, with the light blue background tighter with the red line representing electric field strength. (b) The lifetime of pulsed mode (black dots) and DC mode (red dots) ToF hole carriers, calculated from fitting segment 2 of ToF current waveforms.

    As discussed in Fig.1(b),segment 2 of ToF CW exhibits the exponential decay of holes,and therefore Fig.4(b)shows the hole decay constant as a function of bias voltage under pulsed mode and DC mode, which is obtained by fitting segment 2 of ToF CWs. It can be seen that for both modes, the decay constant decreases with bias increasing,which probably originates from the larger excess carriers due to an increased electric field for the splitting of electron–hole pairs at the very initial stage. The decay constant ranging between 6.7 μs and 17.5 μs in the pulsed mode is just the so-called hole lifetime determined by trapping process and de-trapping process of holes in the pulse,and hence the mobility-lifetime product can be derived to be 1.4×10-4cm2·V-1–3.9×10-4cm2·V-1,which is well consistent with that from the alpha-particle measurement.[39]The decay constant in the DC mode is determined not only by the hole lifetime,but also by the electric field gradient,[37]according to the following formula:

    So, if we assume that the lifetime for the DC mode is the same as that for the pulsed mode, the electric field gradient can be extracted to be 1200 V/cm2–3000 V/cm2, and as the bias voltage increases from 50 V to 150 V,the corresponding positive space charge can then be estimated to increase from 3.1×1010cm-3to 6.89×1010cm-3. This phenomenon that the space charge density increases with bias increasing is well consistent with the above conclusion deduced from the transit time evolution in the DC mode.

    4. Conclusions

    In this work, the transport properties of the MAPbI3single crystal detector are investigated by both the DC bias ToF transient current method and the pulsed bias ToF transient current method. A free hole mobility of about 22 cm2·V-1·s-1and the hole lifetime of 6.7 μs–17.5 μs can be calculated directly from the pulsed bias ToF method,and hence the mobility-lifetime product can be derived to be 1.4×10-4cm2·V-1–3.9×10-4cm2·V-1. Owing to the presence of positive space charge inside the PSC,the transit time measured under the DC bias mode is deviated downward with voltage increasing in comparison with that under the pulsed bias mode. The positive space charge can be estimated to increase from 3.1×1010cm-3to 6.89×1010cm-3with bias increasing from 50 V to 150 V. The DC and pulsed bias ToF measurement methods prove to be reliable methods of accurately measuring the transport properties of the perovskite single crystal under the detector operating conditions.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12175131 and 11905133)and the China Postdoctoral Science Foundation (Grant No.2021M692021).

    猜你喜歡
    李冬梅子葉
    區(qū)分“旁”“榜”“傍”
    偷“糖”記
    懸鈴木幼苗的初生維管系統(tǒng)演化結構研究
    黑山羊胎盤子葉性狀結構與繁殖性能的相關性
    探地雷達在市政道路管理中的應用探討
    中華建設(2019年2期)2019-08-01 05:57:42
    植物子葉生理功能的研究進展
    妹妹冒用姐姐身份結婚引發(fā)案中案
    百姓生活(2016年4期)2016-10-26 14:07:31
    投籃高手
    Componential Analysis of Lexicon
    橘紅心大白菜形態(tài)標記的遺傳及穩(wěn)定性研究
    中國蔬菜(2012年6期)2012-02-23 01:00:42
    在线观看一区二区三区| 黑人高潮一二区| 少妇人妻一区二区三区视频| 天天躁日日操中文字幕| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 日本黄色片子视频| 男人舔奶头视频| 亚洲av不卡在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲熟女精品中文字幕| 日韩视频在线欧美| av免费观看日本| 午夜精品一区二区三区免费看| 男人和女人高潮做爰伦理| 亚洲最大成人av| 精品不卡国产一区二区三区| 五月伊人婷婷丁香| 久久人人爽人人片av| 亚洲精品自拍成人| 精品国内亚洲2022精品成人| 久久久久久久久久久免费av| 一区二区三区高清视频在线| 亚洲成人久久爱视频| 91久久精品国产一区二区三区| 亚洲精品视频女| 国产精品不卡视频一区二区| 舔av片在线| 丝瓜视频免费看黄片| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 老司机影院成人| .国产精品久久| 最近手机中文字幕大全| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 2022亚洲国产成人精品| 午夜福利成人在线免费观看| 精品一区二区免费观看| 天堂av国产一区二区熟女人妻| 大话2 男鬼变身卡| 日本黄色片子视频| 2021天堂中文幕一二区在线观| 麻豆精品久久久久久蜜桃| 国产精品av视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 99久久人妻综合| 天美传媒精品一区二区| 七月丁香在线播放| 免费无遮挡裸体视频| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 久久综合国产亚洲精品| 久久久成人免费电影| 国产成人91sexporn| 高清日韩中文字幕在线| 午夜福利在线在线| 国产又色又爽无遮挡免| 日韩 亚洲 欧美在线| 亚洲国产欧美人成| 午夜福利网站1000一区二区三区| 国产伦一二天堂av在线观看| 国产色爽女视频免费观看| 亚洲国产精品成人久久小说| 春色校园在线视频观看| 在线观看免费高清a一片| 一夜夜www| av免费观看日本| 尤物成人国产欧美一区二区三区| 午夜福利高清视频| 亚洲一区高清亚洲精品| 纵有疾风起免费观看全集完整版 | 亚洲久久久久久中文字幕| 国产高清有码在线观看视频| 精品一区二区免费观看| 在线播放无遮挡| 禁无遮挡网站| 国产真实伦视频高清在线观看| 国产伦在线观看视频一区| 2021少妇久久久久久久久久久| xxx大片免费视频| 成人一区二区视频在线观看| 全区人妻精品视频| 性插视频无遮挡在线免费观看| 欧美日韩综合久久久久久| 亚洲国产成人一精品久久久| 午夜福利视频精品| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| av在线播放精品| 欧美bdsm另类| 国产熟女欧美一区二区| 国产单亲对白刺激| 老司机影院成人| 大香蕉97超碰在线| 日韩电影二区| 日产精品乱码卡一卡2卡三| 麻豆国产97在线/欧美| 99久国产av精品国产电影| 老女人水多毛片| 老司机影院毛片| 成人国产麻豆网| 女人十人毛片免费观看3o分钟| 高清日韩中文字幕在线| 国产黄频视频在线观看| 看十八女毛片水多多多| 国产综合懂色| 联通29元200g的流量卡| 色播亚洲综合网| 国产免费福利视频在线观看| 欧美日韩亚洲高清精品| 久久精品人妻少妇| 成年女人在线观看亚洲视频 | 国产男人的电影天堂91| 亚洲成人中文字幕在线播放| av福利片在线观看| 尤物成人国产欧美一区二区三区| 午夜老司机福利剧场| 免费av毛片视频| 午夜免费男女啪啪视频观看| videos熟女内射| 国产伦一二天堂av在线观看| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说 | 久久久成人免费电影| 国产伦精品一区二区三区视频9| 80岁老熟妇乱子伦牲交| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 激情五月婷婷亚洲| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| 午夜视频国产福利| 国产高清不卡午夜福利| 纵有疾风起免费观看全集完整版 | 日韩av在线免费看完整版不卡| 国产黄频视频在线观看| www.色视频.com| 国产亚洲91精品色在线| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 成人毛片60女人毛片免费| 国产一区二区亚洲精品在线观看| 亚洲精品国产av蜜桃| 免费无遮挡裸体视频| 亚洲熟女精品中文字幕| 有码 亚洲区| 18禁在线无遮挡免费观看视频| 日本黄色片子视频| 在线观看人妻少妇| 亚洲精品一二三| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 欧美精品国产亚洲| 日韩欧美精品免费久久| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品 | 日韩中字成人| 久久久久久久久久黄片| 乱人视频在线观看| 精品久久久久久久末码| 国产精品一区www在线观看| 成年免费大片在线观看| 尤物成人国产欧美一区二区三区| 久久精品熟女亚洲av麻豆精品 | 黄片无遮挡物在线观看| 精品午夜福利在线看| 日本爱情动作片www.在线观看| 久久精品夜色国产| 国产综合懂色| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 亚洲第一区二区三区不卡| 一级毛片电影观看| videos熟女内射| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | 可以在线观看毛片的网站| 国产白丝娇喘喷水9色精品| 亚洲精品乱码久久久久久按摩| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 九草在线视频观看| 亚洲国产欧美人成| 极品教师在线视频| 久久久久久久久久成人| 三级经典国产精品| 午夜精品国产一区二区电影 | 超碰av人人做人人爽久久| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 亚洲av二区三区四区| 少妇人妻一区二区三区视频| 青青草视频在线视频观看| 久久人人爽人人片av| 青春草视频在线免费观看| 三级经典国产精品| 99热网站在线观看| 日本av手机在线免费观看| 又爽又黄无遮挡网站| 亚洲av成人精品一区久久| 国产熟女欧美一区二区| 国产 亚洲一区二区三区 | 日本爱情动作片www.在线观看| 久久99热6这里只有精品| 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 亚洲国产欧美在线一区| 六月丁香七月| 天堂俺去俺来也www色官网 | 国产高潮美女av| 久久99蜜桃精品久久| 国产精品精品国产色婷婷| 欧美3d第一页| 全区人妻精品视频| 国产高清有码在线观看视频| 男女那种视频在线观看| 国产 一区精品| 国模一区二区三区四区视频| 中文字幕av在线有码专区| 久久久久精品久久久久真实原创| 大香蕉97超碰在线| 一个人看的www免费观看视频| 日韩av免费高清视频| 亚洲成人久久爱视频| 日韩在线高清观看一区二区三区| 永久免费av网站大全| 亚洲综合色惰| 搡老妇女老女人老熟妇| 国产精品嫩草影院av在线观看| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 特大巨黑吊av在线直播| 22中文网久久字幕| 午夜免费激情av| 国产精品人妻久久久久久| 色综合亚洲欧美另类图片| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频 | 我要看日韩黄色一级片| 午夜精品一区二区三区免费看| 国产一区二区三区av在线| 插阴视频在线观看视频| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 免费观看精品视频网站| 日韩伦理黄色片| 国产美女午夜福利| 大话2 男鬼变身卡| 精品久久久精品久久久| 女人久久www免费人成看片| 亚洲精品国产成人久久av| av黄色大香蕉| eeuss影院久久| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 可以在线观看毛片的网站| 亚洲国产av新网站| 国产精品蜜桃在线观看| av播播在线观看一区| 在现免费观看毛片| 插逼视频在线观看| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 九色成人免费人妻av| 久久精品国产亚洲av天美| 午夜福利在线在线| 人妻少妇偷人精品九色| 免费观看在线日韩| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| 久久人人爽人人爽人人片va| 丝袜喷水一区| 精品一区二区免费观看| 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 禁无遮挡网站| 人体艺术视频欧美日本| 欧美成人a在线观看| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 亚洲精品一区蜜桃| 日本午夜av视频| 亚洲欧美一区二区三区国产| 日本黄大片高清| 亚洲欧洲日产国产| 亚洲四区av| 噜噜噜噜噜久久久久久91| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 国产精品国产三级专区第一集| 久久99热这里只有精品18| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 黄色欧美视频在线观看| 国产精品一区二区在线观看99 | 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放| 色哟哟·www| 亚洲av成人精品一区久久| 婷婷六月久久综合丁香| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 国产v大片淫在线免费观看| 亚洲精品自拍成人| 水蜜桃什么品种好| 中文天堂在线官网| 男人爽女人下面视频在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美日韩视频高清一区二区三区二| 午夜视频国产福利| 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 国产v大片淫在线免费观看| 亚洲真实伦在线观看| 国产淫片久久久久久久久| 99视频精品全部免费 在线| 女人十人毛片免费观看3o分钟| 国产成人一区二区在线| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| 欧美另类一区| 波多野结衣巨乳人妻| 午夜激情久久久久久久| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久 | av专区在线播放| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 老师上课跳d突然被开到最大视频| 九九在线视频观看精品| 一级a做视频免费观看| 麻豆成人午夜福利视频| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 天美传媒精品一区二区| 久久精品国产亚洲网站| 亚洲人成网站在线观看播放| 国产精品福利在线免费观看| 校园人妻丝袜中文字幕| 一级爰片在线观看| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 久久99精品国语久久久| 欧美3d第一页| 91av网一区二区| 国产视频内射| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 我的老师免费观看完整版| 午夜精品在线福利| 亚洲国产高清在线一区二区三| 最后的刺客免费高清国语| 免费av不卡在线播放| 国产免费视频播放在线视频 | 性插视频无遮挡在线免费观看| 大香蕉久久网| 大片免费播放器 马上看| 免费大片黄手机在线观看| 嫩草影院新地址| 欧美激情国产日韩精品一区| 成人午夜高清在线视频| 白带黄色成豆腐渣| 一区二区三区免费毛片| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 亚洲自偷自拍三级| 国产成人精品一,二区| 国产精品久久久久久精品电影| 亚洲av在线观看美女高潮| 亚洲美女视频黄频| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 午夜精品在线福利| 22中文网久久字幕| 三级男女做爰猛烈吃奶摸视频| 嫩草影院新地址| 亚洲欧美日韩东京热| 日本av手机在线免费观看| 国产探花极品一区二区| 久久韩国三级中文字幕| 在线a可以看的网站| 亚洲高清免费不卡视频| 亚洲国产高清在线一区二区三| 高清欧美精品videossex| 天堂中文最新版在线下载 | 亚洲精品第二区| freevideosex欧美| 干丝袜人妻中文字幕| 亚洲精品日韩av片在线观看| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 亚洲图色成人| 最近最新中文字幕免费大全7| 国产高清三级在线| 男女边吃奶边做爰视频| kizo精华| 久久精品久久精品一区二区三区| 黄色日韩在线| 午夜福利视频1000在线观看| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 日韩av在线免费看完整版不卡| 欧美xxxx性猛交bbbb| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 亚洲人成网站在线播| 日本wwww免费看| 伊人久久国产一区二区| 亚洲av成人av| 小蜜桃在线观看免费完整版高清| 综合色丁香网| 亚洲色图av天堂| 18禁在线无遮挡免费观看视频| 美女脱内裤让男人舔精品视频| 高清欧美精品videossex| 两个人的视频大全免费| 少妇人妻精品综合一区二区| 久久国产乱子免费精品| 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 男女国产视频网站| 一个人看视频在线观看www免费| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 国内精品宾馆在线| freevideosex欧美| 亚洲国产成人一精品久久久| 色吧在线观看| 亚洲丝袜综合中文字幕| 国产精品女同一区二区软件| 国产成人精品福利久久| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 水蜜桃什么品种好| 国产一区二区三区av在线| 熟妇人妻不卡中文字幕| 97超视频在线观看视频| 亚洲精品乱久久久久久| 丝袜喷水一区| 91久久精品国产一区二区三区| 人妻一区二区av| av在线播放精品| av天堂中文字幕网| 五月天丁香电影| 神马国产精品三级电影在线观看| 亚洲av不卡在线观看| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 亚洲性久久影院| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 久久99热6这里只有精品| 26uuu在线亚洲综合色| 老女人水多毛片| 男女边吃奶边做爰视频| 天天一区二区日本电影三级| 国语对白做爰xxxⅹ性视频网站| 纵有疾风起免费观看全集完整版 | 麻豆久久精品国产亚洲av| 99热6这里只有精品| 精品人妻视频免费看| 99热这里只有精品一区| 中文精品一卡2卡3卡4更新| 亚洲av中文字字幕乱码综合| 两个人视频免费观看高清| 国产av码专区亚洲av| 国产淫片久久久久久久久| 自拍偷自拍亚洲精品老妇| 成年av动漫网址| 国产一区亚洲一区在线观看| 免费看不卡的av| 嫩草影院新地址| 欧美日韩综合久久久久久| 日本一二三区视频观看| freevideosex欧美| 亚洲不卡免费看| 亚洲av成人av| 国产精品99久久久久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲第一区二区三区不卡| 大香蕉97超碰在线| 天堂中文最新版在线下载 | 高清日韩中文字幕在线| 亚洲人成网站在线播| 欧美日韩精品成人综合77777| 久久精品国产亚洲网站| 久久久久久九九精品二区国产| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 成人午夜高清在线视频| 精品少妇黑人巨大在线播放| 一级二级三级毛片免费看| 欧美高清成人免费视频www| a级毛片免费高清观看在线播放| av专区在线播放| 麻豆国产97在线/欧美| 国产探花极品一区二区| 女的被弄到高潮叫床怎么办| av又黄又爽大尺度在线免费看| 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 成人二区视频| 亚洲自偷自拍三级| 久久久久久久久久成人| 久久国内精品自在自线图片| 亚洲欧美精品专区久久| av黄色大香蕉| 我要看日韩黄色一级片| 人体艺术视频欧美日本| 免费在线观看成人毛片| 99热网站在线观看| 久久亚洲国产成人精品v| 美女内射精品一级片tv| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 日韩欧美三级三区| 欧美人与善性xxx| 男插女下体视频免费在线播放| 免费高清在线观看视频在线观看| 尤物成人国产欧美一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲成色77777| 国产麻豆成人av免费视频| 免费播放大片免费观看视频在线观看| 成年女人在线观看亚洲视频 | 欧美 日韩 精品 国产| 亚洲国产欧美在线一区| 日韩,欧美,国产一区二区三区| 99久国产av精品国产电影| 国产一区二区三区av在线| 久久久久久久亚洲中文字幕| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 亚洲国产精品专区欧美| 久久久久久久久中文| 好男人视频免费观看在线| 国产高潮美女av| 中文字幕免费在线视频6| 国产国拍精品亚洲av在线观看| 看免费成人av毛片| 亚洲精品日本国产第一区| eeuss影院久久| 可以在线观看毛片的网站| 少妇猛男粗大的猛烈进出视频 | a级毛片免费高清观看在线播放| 一个人看的www免费观看视频| 三级毛片av免费| 亚洲综合色惰| 国产伦在线观看视频一区| 毛片女人毛片| av免费观看日本| 亚洲丝袜综合中文字幕| 六月丁香七月| 国产av在哪里看| 日本一本二区三区精品| 91在线精品国自产拍蜜月| 午夜福利网站1000一区二区三区| 久久久久久久国产电影| 激情五月婷婷亚洲| 插逼视频在线观看| 成人二区视频| 精品久久久久久久久av| 波野结衣二区三区在线| 久久人人爽人人片av| 日韩大片免费观看网站| 不卡视频在线观看欧美| 国产精品久久久久久精品电影小说 | 亚洲在线观看片| 女人十人毛片免费观看3o分钟| 22中文网久久字幕| av黄色大香蕉| 国产黄色小视频在线观看| 三级国产精品欧美在线观看| 99热这里只有精品一区| 激情 狠狠 欧美| 免费观看av网站的网址| 亚洲精品456在线播放app| 国产国拍精品亚洲av在线观看| www.av在线官网国产| 最近2019中文字幕mv第一页| 久久久久久久久大av| 人妻一区二区av| 精品一区二区三区视频在线| 草草在线视频免费看| av在线亚洲专区| 精品一区二区三区视频在线| 国产伦精品一区二区三区视频9| 亚洲国产日韩欧美精品在线观看| 99久国产av精品国产电影| 在线观看一区二区三区| 91精品一卡2卡3卡4卡| 国产精品熟女久久久久浪| 26uuu在线亚洲综合色| 亚洲精华国产精华液的使用体验| 2021少妇久久久久久久久久久| 欧美bdsm另类| 亚洲欧美成人精品一区二区| 一本一本综合久久| 国产精品av视频在线免费观看| 在线播放无遮挡| 亚洲av免费高清在线观看| 精品国产三级普通话版|