• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls

    2022-11-17 02:59:32RenchuanHE何任川XiaoyiYANG楊肖易ChijieXIAO肖池階XiaogangWANG王曉鋼TianchaoXU徐田超ZhibinGUO郭志彬YueGE蓋躍XiumingYU余修銘ZuyuZHANG張祖煜RuiKE柯銳andRuixinYUAN袁瑞鑫
    Plasma Science and Technology 2022年11期

    Renchuan HE(何任川),Xiaoyi YANG(楊肖易),,Chijie XIAO(肖池階),*,Xiaogang WANG(王曉鋼),Tianchao XU(徐田超),*,Zhibin GUO(郭志彬),Yue GE(蓋躍),Xiuming YU(余修銘),Zuyu ZHANG(張祖煜),Rui KE(柯銳) and Ruixin YUAN(袁瑞鑫)

    1 State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,People’s Republic of China

    2 Department of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    3 Center for Fusion Science of Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    Abstract The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(ωci)are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.

    Keywords:separatrix,ion Bernstein wave,particle transport,magnetic null,magnetic reconnection

    1.Introduction

    Magnetic reconnection is an important issue in plasma physics,which is often accompanied by fast change and reconfiguration of different magnetic topology,and quick conversion between the plasma kinetic energy,thermal energy and magnetic field energy.Most studies focus on the relations between the plasma waves and reconnection trigger process,reconnection rate,energy conversion,etc[1,2].A lot of waves have been observed in reconnection region,such as the Alfvén wave,whistler wave,low hybrid wave,etc[3,4].Those waves propagate almost parallel to the magnetic field lines.To study the physical process perpendicular to the reconnection plane,even the typical spatial scales,the perpendicular modes need to be taken into account,e.g.some drift waves have been mentioned[5,6].Recently,the ion Bernstein wave(IBW)has been observed in a magnetic reconnection region in the Earth’s magnetotail[7].

    The magnetic separatrix is the boundary of different magnetic topological regions which widely exists in the solar surface,the Earth’s magnetosphere,the tokamak plasma,etc.The particle transport and energy transport across the separatrix play important roles in various magnetic configurations[1,8],e.g.the non-null reconnection could happen in the separatrix region in 3D magnetic-nulls configurations.Also,the particle transport in the scrape-off layer(SOL)region shows substantial influence on tokamak plasma confinement[9].

    In order to study the particle transport,as well as the perpendicular-propagating waves near the separatrix of magnetic nulls,we set up a stationary magnetic-null configuration in the plasma test device(PPT)device.Here we report that the IBW[10]is observed near the separatrix in the experiment.The particle flux induced by the IBW has also been found,which is confirmed to be much stronger than the flux driven by other wave modes.

    This paper is organized as follows.The first part goes to the introduction.The experiment method of our research,including both the experiment setup and the probe diagnosis,is introduced in section 2.Some preliminary results of IBW experiments are presented in section 3.The particle transport driven by the IBW across the separatrices of magnetic nulls is shown in section 4.Then conclusion and discussions are listed in the last section.

    2.Experiment method

    The PPT device has a cylindrical vacuum chamber with a 250 mm radius and an overall length of 1000 mm.0-2000 G uniform magnetic field is generated by a pair of Helmholtz coils[11,12].A dipole magnetic field is constructed by placing a hollow cylinder permanent magnet with an 88 mm inside diameter,a 152 mm outer diameter and 140 mm length on the central axis.The distance from center to the separatrices(white line circle in figure 1(a))of magnetic nulls could vary from 90 to 130 mm,which is adjusted by the external magnetic field,from 260 to 660 G,provided by Helmholtz coils.A 13.56 MHz helicon plasma source is used to generate plasma of density up to 1×1012cm-3with an argon gas pressure of about 2 mTorr.The power of the helicon source is set within the range from 1000 to 2000 W for a stable discharge.In the experiment reported in this paper,the asymptotic magnetic field is 395 G and the helicon discharge power is 1500 W as shown in figure 1(a).

    The probe diagnosis system is set in a port(red circle in figure 1(c))in the center of electromagnet coils.Plasma parameters are obtained from the Langmuir probes with a 10 mm s-1scan velocity and recorded in NI 6368 Data Acquisition with sampling frequency up to 2 MHz.

    Measurements of plasma density and floating potential profiles are made by two horizontal 9-tip probe arrays.One array measures floating potential(Uf)and the other one measures ion-saturation current(Isat),biased by-49 V.Each tungsten tip is 1 mm in diameter,1 mm in length and in a ceramic tube with a diameter of 2.4 mm.The distances between adjacent tips are 3 mm.Figure 1(b)shows the photo of the 9-tip probe arrays in helicon plasma.

    Figure 1.Schematic diagram of the magnetic field for the experiments in this paper.(a)The diagram of a magnetic null configuration,and the nine-probe array in the helicon plasma of PPT device.(b)During the experiment nine-tip probe array was extended into the separatrix.(c)The diagram of the PKU plasma test device(PPT).Helical wave plasma is generated through the RF antenna.A Helmholtz coil provides a uniform magnetic field in the middle of the device,while the probe extends through the probe window via a motorized probe platform.After placing a permanent magnet in the center of the device,our experimental configuration was constructed.

    Figure 2.The ion density and floating potential profiles.(a)Ion density profile.(b)Floating potential profile.The five red dotted lines represent the radial range of phase profiles in figure 4.

    Various physical quantities are measured simultaneously by a 5-tip probe array,in which one tip measuresIsatand the other four measureUf.TheIsattip is located in the center of the cross placement 5-tip probe,and the distances between adjacent tips are 3 mm.Two tips measuringUfof equal length to the tip measuringIsatare placed below and above theIsattip.The other twoUftips are 1 mm longer and 1 mm shorter than theIsattip.Details about the layout of the 5-tip probe array can be found in[12].Here we assume the electron temperature fluctuation is negligible as described in[13].Therefore,the fluctuating plasma potential is approximately equal to the fluctuating floating potential,which means the 5-tip probe array could measure plasma density(ni),floating potential(Uf),radial electric field(Er)and poloidal electric field(Ep).

    Measurement of plasma velocity is made by Mach probe based on the pre-sheath theory[14,15],which is composed of two tips measuringIsatand a ceramic plate between the tips.

    3.IBW on separatrix

    In the case we reported here,the plasma ion density is about 1018m-3and the electron temperature is about 3 eV.The ion acoustic velocity calculated byis about5 km s-1and the Alfvén speed respectively calculated byis about 102km s-1,in which‘B’stands for local magnetic induction intensity.

    Figures 2(a)and(b)show the ion density and floating potential profiles.The abscissa in figure 2 is axial position along thez-axis in figure 1,and the ordinate is the radial position along they-axis in figure 1 in mm.The position of the separatrix is estimated by the magnetic distribution as shown in figure 1.The magnetic field line is visible in figure 2 because the potential on the same magnetic line is almost equal.Potential well and ion density maximum are observed clearly near the separatrix where the electric field and density gradient may induce plasma waves or instabilities.

    The auto-spectra of floating potential(figure 3(a))and plasma density(figure 3(b))show the perturbation modes with maximum amplitude near the separatrix located at 30 kHz,38 kHz,between the first and third harmonic ion cyclotron frequency in the 450 G magnetic field measured by Hall effect Gauss meter at=r 104 mm.In figures 3(a)-(c),the abscissa is the radial position in mm,and the ordinate is the frequency in kHz.The magnetic fluctuations amplitude is about 0.01 G forω=30 kHz in our experiment,which is diagnosed by magnetic probes.The amplitude of the electromagnetic component of this wave is calculated bywhich is less than3 V m-1,and the maximum value of electrostatic disturbance measured by the 5-tip probe is100 V m-1.Therefore,the magnetic component of IBW in the experiment should be much smaller than the electrostatic component based on the above experimental results.Therefore,the wave is identified as quasi-electrostatic wave mode in the separatrix region.

    The dispersion relation of waves in the separatrix region is indicated in figure 3(d).The poloidal wave numberkis shown as the abscissa incm-1and the frequency is shown as the ordinate.The dispersion relationship betweenθk and f is calculated using two equal length tips of the 5-tip probe,spaced 6 mm apart in the poloidal direction.The probe moves inward from250 mm to the center at a speed of10 mm s-1,and each spatial position corresponds to a specific moment in the time series of the probe data.The data for a small period of time0.1 s long near a certain moment is used to calculate thek-spectrumS(kθ,f)for a certain spatial locationr.The calculation method ofS(kθ,f)has been discussed in detail in previous work[16,17].The phase velocity of the mode is calculated as6.3 km s-1,which is close to the ion acoustic velocity calculated byand much slower than the Alfvén speed calculated by

    The cross-phase radial distribution of the wave mode with frequency 30 kHz is shown in figure 4.The abscissa is radial position in mm,and the zero point is set at the position of the lowest floating potential,which is also regarded as the position of the separatrix.The ordinate is the average cross phase of wave modes with frequency from 28 to 32 kHz.The cross phase is calculated similarly to previous research[13]between tips No.1 and Nos.5-9 in the 9-tip probe array.The mode with the largest amplitude near 40 kHz was not used for the phase analysis because of interactions with other modes,which will be discussed in detail in section 5.

    According to figure 2,the tip No.1 is outside the separatrix when tips Nos.5-9 are in the separatrix region.Therefore,the cross-phase radial profile at tips Nos.5-9 position could be obtained by regarding tip No.1’s crossphase as reference phase.The cross-phase profiles are almost zero out of the separatrix,which has supported us to obtain reference phase of potential perturbation from tip No.1.The phase radial profiles in separatrix region indicate that the IBW mode has‖≈k0.Thus,the wave is considered as propagating vertically to the magnetic field line due tok⊥?k‖.

    Overall,the wave is identified as an IBW based on the following criteria.

    i.The frequency of the wave mode we observed is close to but higher than the ion cyclotron frequency.

    ii.It manifests as a quasi-electrostatic wave.

    iii.The 30 kHz and 46 kHz modes can coincide with theoretically calculated IBW curves.The IBW mode on 30 kHz matches well with the equation(2)in[18-20].

    iv.The characteristic low-hybrid frequency is~106Hz in our experiment,which is much higher than the perturbation we found.

    Besides the experiment case discussed above with 395 G asymptotic magnetic field,the IBW mode also exists in the cases with asymptotic magnetic field from 315 to 552 G.As shown in figures 5(a)and(b),the maximum of IBW amplitude is near the maximum ofErandin separatrix region,which may provide energy to the IBW mode.Therefore,the separatrix region is suspected to be the origin of IBW.As shown in the auto-spectrums figures 3 and 5(c),there is a significant decrease in the amplitude of IBW fluctuations atr=100 mm andr=107 mm near the separatrix region,where the cross-phase angle in figure 3(c)also changes abruptly.The wave damping induced by ion-neutral collision could be estimated throughwhereIm(k⊥),viiandvg⊥denote IBW collisional damping rate,ion-neutral collision frequency and the IBW group velocity vertical to the magnetic field line.Ion-neutral collision frequency is7.7 ×104s-1based on the result of previous work.vg~vp≈6.3 km s-1because the phase velocities for different IBW modes have no significant change in figure 3.

    The IBW modes we observed in the separatrix region are quasi-electrostatic wave modes with frequenciesω≤2ωci?ωLH,wave vectorand phase velocitiesvp~Cs.Figure 3(c)clearly shows that the phase difference between IBW’sandchanges repeatedly near the separatrix,which means that the modes may drive particle flux across the separatrix.Related contents will be further discussed in the next section.

    Figure 4.The cross-phase radial profile of with frequencies from 28 to 32 kHz.Tip No.1 is regarded as the reference probe.The region presented by profiles is marked in the figure 2.

    Figure 5.Ion density profile,floating potential profile,amplitude of IBW,and plasma flow in separatrix region.(a)Ion density profile in m -3 and (b)Floating potential profile in V and Er profile in V m-1.(c)Normalized IBW perturbations.Amplitude ofis normalized byand amplitude ofis normalized byVertical particle flux driven by IBW(red line),low-frequency wave modes(cyan line)and plasma flux parallel to the magnetic field line measured by Mach probe(blue line).Γin the ordinate is the flux normalized by n 0 Cs,where n0 is local plasma ion density andCs is ion acoustic speed.S is the cross-sectional area through which the fluxes flow.

    Figure 6.Diagram of the flux in separatrix area.

    Figure 7.self-bio-coherence in different positions:(a)50-51 mm,(b)104-105 mm.

    4.Particle transport driven by the IBWs

    The particle flux can be calculated by bringing the above physical quantities into equation(5),in which the angle bracket indicates the time average of signals over0.025 s.Considering that our probe’s velocity is 10 mm s-1,the spatial resolution of particle flux calculations is 0.25 mm.

    The measured parallel plasma flow and the radial particle flux generated by perturbations near the separatrix region is illustrated in figure 5(d).The red line represents the flux driven by IBW perturbations from 26 to 50 kHz,and the flux driven by low-frequency wave modes from 0.5 to 15 kHz is shown by green line and two orders of magnitudes smaller than that driven by IBW.The particle transport caused by IBW is more than an order of magnitude larger than the particle transport caused by perturbations at lower frequencies and on the same order of magnitude as the plasma flow in the parallel direction.Therefore,we can assume that IBW induces significant transport near the separatrix region.

    Figure 6 is a diagram based on figure 5(d)for the fluxes in the magnetic-null configuration.The shaded region illustrates the separatrix region.The yellow line is the parallel plasma flow that is measured by Mach probes and assumed to flow through a torus section.The blue line indicates the radial ion flux that is driven by IBW and assumed to flow through a spherical surface.The total particle transport in the separatrix region can be obtained by the particle flux density timesΓthe area crossed by the particle flowS,which can be calculated by equation(6)for transport perpendicular to the magnetic field line and by equation(7)for transport parallel to the magnetic field line.

    Figure 8.Bi-coherence between

    5.Conclusion and discussion

    There are several possible mechanisms for IBW generation suggested in previous research,such as mode conversion from Alfvén wave to IBW which were studied in space plasma theory[20]and tokamak heating experiment[21],as well as by the ion Bernstein instability due toat suprathermal perpendicular speeds[22].

    As shown in figures 5(a)and(b),parallel magnetic plasma flux with approximately 0.2 Mach number in separatrix region and theErandin separatrix region could drive poloidalfrom=r 104 to=r 105 mm.folw.ConsideringTi~0.3 eVin this case,the velocity of the parallel plasma flow and the velocity of the flow generated by the electric field gradient and the density gradient are greater than the velocity of the thermal motion of the ions.Therefore,we suppose the formation mechanisms of IBW in this case may be due towhich resembles predecessors’research [20].The further research will be scheduled to clarify this topic in the future.

    In this work,it is identified that the IBW exists in the separatrix near the null.The IBW modes have multi-frequency components.This may be due to the wave-wave interaction between IBW and other mode.Figures 3(a)and(b),the autospectra of the plasma density and the floating potentials,show that there is a low frequency perturbation mode at about 8 kHz,which is found to have interaction with IBW in figure 8.By comparingself-bio-coherence in different positions,we find that the nonlinear interaction is stronger in the separatrix region.Figure 7 indicates the bi-coherence betweenandon separatrix,which also suggests the wave-wave interaction between the IBW and the low frequency mode.The frequencies of low frequency mode and IBW follow equation(8).The interaction probably causes the equal frequency interval between IBW components

    fIBWiindicates the different components of IBW modes.

    Considering the previous studies[12,23],the low frequency mode might be some drift waves.Further study is needed to the suspected drift waves and the wave-wave interactions on separatrix.

    As mentioned above,due to the asynchronism betweenandthe IBW mode could drive particle fulxes,i.e.increasing the particle diffusion across magnetic lines,in the separatrix region.The transport levels from the radial particle flux driven by IBW and the parallel flow measured by Mach probe are on the same magnitude.Therefore,this effect could not only increase the particle exchange near the boundary of open field line region and closed field line region,but also have an important role during the formation of equilibrium profiles,which may cause an inhomogeneous distribution of electrons and ions and thus acceleration of ions and electrons through electric fields in the separatrix region.For the importance of IBW’s transport effect in the separatrix region,further studies should focus on the IBW properties in the separatrix region.

    The mechanism of the IBW generation,and its role during the reconnection process need further studies.We will investigate the interaction between IBW and the low frequency modes,as well as IBW during 3D reconnection in the near future.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.11975038)and the National MCF Energy R&D Program of China(Nos.2017YFE0300601 and 2018YFE0311400).

    国产成人影院久久av| 欧美成狂野欧美在线观看| 男女之事视频高清在线观看| 国产精品久久视频播放| 18禁美女被吸乳视频| 又大又爽又粗| 人成视频在线观看免费观看| 亚洲av日韩精品久久久久久密| 欧美不卡视频在线免费观看 | 脱女人内裤的视频| 欧美一级a爱片免费观看看 | 国产不卡一卡二| 国产一区二区三区视频了| 欧美激情久久久久久爽电影| 欧美高清成人免费视频www| 日本在线视频免费播放| 久久九九热精品免费| 国产成人精品无人区| 一进一出好大好爽视频| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出| 久久精品综合一区二区三区| 日韩欧美免费精品| 国产黄a三级三级三级人| 欧美日本亚洲视频在线播放| 久久久久久九九精品二区国产 | av在线天堂中文字幕| 日日干狠狠操夜夜爽| av欧美777| 亚洲精品一区av在线观看| 999久久久精品免费观看国产| 国产三级中文精品| 夜夜看夜夜爽夜夜摸| 动漫黄色视频在线观看| 亚洲av成人一区二区三| 亚洲人成网站高清观看| 午夜精品一区二区三区免费看| 久久久久免费精品人妻一区二区| 免费在线观看视频国产中文字幕亚洲| 在线观看舔阴道视频| 手机成人av网站| 动漫黄色视频在线观看| 国产精品99久久99久久久不卡| 中文资源天堂在线| 窝窝影院91人妻| 91老司机精品| 欧美一级a爱片免费观看看 | av天堂在线播放| 精品福利观看| 九色国产91popny在线| 久久精品国产99精品国产亚洲性色| 操出白浆在线播放| 欧美成狂野欧美在线观看| 久久精品成人免费网站| 一进一出抽搐动态| 精品日产1卡2卡| 久久伊人香网站| 亚洲av中文字字幕乱码综合| 日韩欧美在线乱码| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 国产三级在线视频| 亚洲av成人av| 中文字幕人妻丝袜一区二区| 亚洲精品中文字幕一二三四区| 18美女黄网站色大片免费观看| 国产精品精品国产色婷婷| 免费看美女性在线毛片视频| 亚洲精品久久国产高清桃花| 久久久久性生活片| 日韩大码丰满熟妇| 日本一二三区视频观看| 精品欧美国产一区二区三| 成人国语在线视频| 国产精品美女特级片免费视频播放器 | 99精品在免费线老司机午夜| 久久久精品大字幕| 熟女少妇亚洲综合色aaa.| 老司机午夜福利在线观看视频| 老司机福利观看| 色综合欧美亚洲国产小说| 亚洲五月婷婷丁香| 一夜夜www| 欧美日韩乱码在线| 中文字幕人成人乱码亚洲影| 亚洲自拍偷在线| 999久久久国产精品视频| 在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 国产黄a三级三级三级人| 国产精品爽爽va在线观看网站| 我要搜黄色片| 午夜福利在线观看吧| 午夜福利视频1000在线观看| 老司机午夜十八禁免费视频| 欧美国产日韩亚洲一区| 黄色毛片三级朝国网站| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 村上凉子中文字幕在线| 男女下面进入的视频免费午夜| 麻豆国产av国片精品| 毛片女人毛片| 女人被狂操c到高潮| 级片在线观看| 成人一区二区视频在线观看| 手机成人av网站| 欧美日本亚洲视频在线播放| 亚洲,欧美精品.| 黄片小视频在线播放| 中文字幕人妻丝袜一区二区| 国产黄色小视频在线观看| 国产视频内射| 麻豆成人av在线观看| 美女午夜性视频免费| 中亚洲国语对白在线视频| 男女那种视频在线观看| 国产三级在线视频| 亚洲精华国产精华精| 九色国产91popny在线| 黄色 视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人成人乱码亚洲影| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 一级片免费观看大全| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 国产精品,欧美在线| 日韩国内少妇激情av| 麻豆成人av在线观看| 精品一区二区三区视频在线观看免费| 日韩欧美国产一区二区入口| 国内揄拍国产精品人妻在线| 视频区欧美日本亚洲| 禁无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区字幕在线| 成人特级黄色片久久久久久久| 久久人人精品亚洲av| 美女高潮喷水抽搐中文字幕| 搡老妇女老女人老熟妇| 女警被强在线播放| 一本精品99久久精品77| 三级男女做爰猛烈吃奶摸视频| 一级a爱片免费观看的视频| 欧美性猛交黑人性爽| 两性夫妻黄色片| 精品久久久久久久人妻蜜臀av| 国产成人系列免费观看| 好男人在线观看高清免费视频| 国产亚洲精品综合一区在线观看 | 国产单亲对白刺激| 亚洲精品在线美女| 搡老妇女老女人老熟妇| 看免费av毛片| 色噜噜av男人的天堂激情| 两性夫妻黄色片| netflix在线观看网站| 日韩 欧美 亚洲 中文字幕| 俺也久久电影网| 成人精品一区二区免费| 99久久精品热视频| 免费在线观看亚洲国产| 熟女电影av网| 性色av乱码一区二区三区2| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 俺也久久电影网| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产区一区二久久| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 亚洲在线自拍视频| 男人舔女人下体高潮全视频| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 国产精品免费视频内射| 国产精品av久久久久免费| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 亚洲国产精品sss在线观看| 国产成人影院久久av| 怎么达到女性高潮| 激情在线观看视频在线高清| 欧美精品亚洲一区二区| 午夜福利在线在线| 国产高清激情床上av| 亚洲av第一区精品v没综合| 亚洲欧美激情综合另类| 欧美最黄视频在线播放免费| 老司机深夜福利视频在线观看| 成人国产一区最新在线观看| 亚洲精品色激情综合| 午夜免费激情av| 日韩欧美国产在线观看| 亚洲熟女毛片儿| 婷婷六月久久综合丁香| 色播亚洲综合网| √禁漫天堂资源中文www| 又黄又爽又免费观看的视频| 亚洲欧美日韩无卡精品| 香蕉丝袜av| 久久久国产成人精品二区| 99国产精品99久久久久| 99久久久亚洲精品蜜臀av| 在线免费观看的www视频| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 熟女电影av网| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 1024香蕉在线观看| 婷婷丁香在线五月| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 国产精品1区2区在线观看.| videosex国产| 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 非洲黑人性xxxx精品又粗又长| 国产乱人伦免费视频| 久久久久久大精品| 最新美女视频免费是黄的| 国产三级在线视频| 久久香蕉激情| 国产伦在线观看视频一区| 88av欧美| 色av中文字幕| 精品电影一区二区在线| 精品欧美国产一区二区三| 色老头精品视频在线观看| 国产一区二区激情短视频| 高清在线国产一区| avwww免费| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| 一级片免费观看大全| 女人爽到高潮嗷嗷叫在线视频| 五月玫瑰六月丁香| 正在播放国产对白刺激| 男女下面进入的视频免费午夜| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 精品久久久久久久末码| 成人高潮视频无遮挡免费网站| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 亚洲欧美精品综合久久99| 麻豆成人av在线观看| 日韩欧美一区二区三区在线观看| 在线观看免费日韩欧美大片| 国产人伦9x9x在线观看| 老司机靠b影院| 久久中文字幕一级| 成熟少妇高潮喷水视频| 亚洲色图av天堂| av国产免费在线观看| 欧美黑人巨大hd| 最近最新中文字幕大全电影3| 亚洲成人久久性| 99国产综合亚洲精品| 人妻久久中文字幕网| 曰老女人黄片| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片| 精品第一国产精品| 亚洲成av人片在线播放无| 成人国产一区最新在线观看| 国产高清视频在线观看网站| 国产真实乱freesex| 午夜精品一区二区三区免费看| 好男人电影高清在线观看| 精品久久久久久久毛片微露脸| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 99国产综合亚洲精品| 中文字幕精品亚洲无线码一区| 免费一级毛片在线播放高清视频| 色在线成人网| 亚洲五月天丁香| 久久国产精品人妻蜜桃| 人妻夜夜爽99麻豆av| 老汉色av国产亚洲站长工具| 亚洲人与动物交配视频| 757午夜福利合集在线观看| 久久精品国产清高在天天线| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 在线国产一区二区在线| 免费电影在线观看免费观看| 日韩有码中文字幕| 曰老女人黄片| 日韩三级视频一区二区三区| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 欧美又色又爽又黄视频| 热99re8久久精品国产| 色哟哟哟哟哟哟| 男女视频在线观看网站免费 | 国内少妇人妻偷人精品xxx网站 | 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 久久人妻av系列| 午夜福利欧美成人| 亚洲av电影不卡..在线观看| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 国产成人aa在线观看| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 国产精品久久视频播放| 小说图片视频综合网站| a级毛片在线看网站| 日韩精品中文字幕看吧| 老鸭窝网址在线观看| 亚洲国产精品合色在线| а√天堂www在线а√下载| 无限看片的www在线观看| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看 | 国产精品一区二区三区四区免费观看 | 在线观看66精品国产| 国产成人精品无人区| 日本熟妇午夜| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 99久久无色码亚洲精品果冻| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 日韩精品中文字幕看吧| av超薄肉色丝袜交足视频| 午夜激情av网站| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 最近最新免费中文字幕在线| 亚洲熟女毛片儿| 桃红色精品国产亚洲av| 老司机靠b影院| 久久久国产成人免费| 两个人的视频大全免费| 亚洲成人久久爱视频| 日韩免费av在线播放| 日韩有码中文字幕| 婷婷精品国产亚洲av在线| 很黄的视频免费| 精品人妻1区二区| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 可以免费在线观看a视频的电影网站| 亚洲国产精品999在线| 国产单亲对白刺激| 一区福利在线观看| 91大片在线观看| 久久久久久久久久黄片| 看免费av毛片| 女生性感内裤真人,穿戴方法视频| 国产激情偷乱视频一区二区| 国产午夜精品久久久久久| 亚洲精品av麻豆狂野| 久久久久久国产a免费观看| 成人欧美大片| 久久久精品欧美日韩精品| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av高清一级| 欧美激情久久久久久爽电影| 免费看十八禁软件| 亚洲中文字幕日韩| 在线观看日韩欧美| 国产男靠女视频免费网站| 欧美3d第一页| 一区福利在线观看| 最近最新中文字幕大全电影3| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 国产1区2区3区精品| 欧美性猛交黑人性爽| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦观看免费观看视频高清| 国产午夜精品久久久久久| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼| 亚洲人成电影免费在线| 亚洲乱码一区二区免费版| 国产精品亚洲av一区麻豆| 美女午夜性视频免费| 久久伊人香网站| 宅男免费午夜| 天堂av国产一区二区熟女人妻 | 啦啦啦观看免费观看视频高清| 国产三级黄色录像| 91九色精品人成在线观看| 午夜亚洲福利在线播放| 国产精品免费视频内射| 国产欧美日韩一区二区精品| 国产精品久久久久久亚洲av鲁大| 精品欧美一区二区三区在线| 亚洲激情在线av| 久久久精品大字幕| 亚洲人成77777在线视频| 欧美绝顶高潮抽搐喷水| 人成视频在线观看免费观看| 国内精品久久久久精免费| 亚洲av中文字字幕乱码综合| 欧美在线黄色| 成人手机av| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 巨乳人妻的诱惑在线观看| 精品一区二区三区四区五区乱码| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 亚洲av中文字字幕乱码综合| 长腿黑丝高跟| 高清在线国产一区| 日韩 欧美 亚洲 中文字幕| 欧美中文日本在线观看视频| 99国产极品粉嫩在线观看| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利欧美成人| 中文字幕最新亚洲高清| 久久久水蜜桃国产精品网| 亚洲午夜理论影院| 夜夜爽天天搞| 悠悠久久av| 亚洲免费av在线视频| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 久久久久久大精品| 激情在线观看视频在线高清| 国产av又大| 人人妻,人人澡人人爽秒播| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 国产1区2区3区精品| 性色av乱码一区二区三区2| 欧美日韩精品网址| 一级作爱视频免费观看| 国产在线观看jvid| 久久人妻av系列| 亚洲无线在线观看| 又黄又爽又免费观看的视频| 国产亚洲av嫩草精品影院| 亚洲av成人不卡在线观看播放网| 老司机福利观看| 亚洲av美国av| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区| 欧美一级毛片孕妇| 免费在线观看完整版高清| 看黄色毛片网站| 久久久久久久精品吃奶| 两个人的视频大全免费| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 9191精品国产免费久久| 男女视频在线观看网站免费 | 亚洲成a人片在线一区二区| 欧美黑人精品巨大| 淫妇啪啪啪对白视频| 亚洲狠狠婷婷综合久久图片| 亚洲专区国产一区二区| 日韩有码中文字幕| 一区福利在线观看| 窝窝影院91人妻| 亚洲欧美一区二区三区黑人| 精品国产超薄肉色丝袜足j| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片| 窝窝影院91人妻| 亚洲av熟女| 老司机靠b影院| 中出人妻视频一区二区| 亚洲国产欧洲综合997久久,| 老司机深夜福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 日韩精品青青久久久久久| 欧美中文综合在线视频| 九色成人免费人妻av| 两性午夜刺激爽爽歪歪视频在线观看 | 好看av亚洲va欧美ⅴa在| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 国产69精品久久久久777片 | 日韩大码丰满熟妇| 日本五十路高清| 级片在线观看| 最近视频中文字幕2019在线8| 手机成人av网站| 麻豆成人午夜福利视频| 五月伊人婷婷丁香| 欧美一级a爱片免费观看看 | 国产一区二区三区视频了| 欧美中文日本在线观看视频| 岛国视频午夜一区免费看| 国产午夜精品论理片| 桃红色精品国产亚洲av| 精品久久久久久,| 国产在线精品亚洲第一网站| 免费观看人在逋| 妹子高潮喷水视频| 中出人妻视频一区二区| 变态另类丝袜制服| 曰老女人黄片| 热99re8久久精品国产| 黄色女人牲交| 欧美日本视频| 久久性视频一级片| 少妇人妻一区二区三区视频| 国内精品久久久久精免费| 两个人视频免费观看高清| 日韩欧美 国产精品| 狂野欧美激情性xxxx| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品一区av在线观看| 人妻久久中文字幕网| 国产精品久久久久久精品电影| xxx96com| 叶爱在线成人免费视频播放| 日韩中文字幕欧美一区二区| 国产亚洲欧美98| 精品乱码久久久久久99久播| 欧美日韩国产亚洲二区| 国产精华一区二区三区| 久久国产乱子伦精品免费另类| 淫妇啪啪啪对白视频| 岛国在线免费视频观看| 午夜福利高清视频| 欧美国产日韩亚洲一区| 成在线人永久免费视频| 全区人妻精品视频| 久久草成人影院| 国产免费av片在线观看野外av| 亚洲 欧美一区二区三区| 岛国在线免费视频观看| 成人国产一区最新在线观看| 中文在线观看免费www的网站 | 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 欧美黑人欧美精品刺激| 天天一区二区日本电影三级| 国产熟女午夜一区二区三区| 久久精品国产亚洲av香蕉五月| 看黄色毛片网站| 丝袜人妻中文字幕| 97碰自拍视频| xxx96com| 亚洲aⅴ乱码一区二区在线播放 | 一卡2卡三卡四卡精品乱码亚洲| av有码第一页| 久久香蕉精品热| 久久草成人影院| 欧美一区二区国产精品久久精品 | 我要搜黄色片| 久久婷婷成人综合色麻豆| 亚洲国产精品久久男人天堂| 亚洲av日韩精品久久久久久密| 亚洲熟女毛片儿| 成人三级做爰电影| 哪里可以看免费的av片| av免费在线观看网站| 久久久久性生活片| 天堂动漫精品| 久久久久精品国产欧美久久久| 成在线人永久免费视频| 老司机靠b影院| 国产av一区在线观看免费| 免费看美女性在线毛片视频| 成人av一区二区三区在线看| 国产精品 欧美亚洲| 少妇裸体淫交视频免费看高清 | 中国美女看黄片| 婷婷精品国产亚洲av在线| 精品国产乱子伦一区二区三区| 亚洲国产精品成人综合色| 男女午夜视频在线观看|